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Author's Note

This is a digital re-design of the disk version of PC Magazine BASIC Techniques and Utilities, which
was originally published by Ziff-Davis Press in Emeryville, CA. When Ziff-Davis Press decided it was
no longer profitable for them to continue printing it, they returned the rights to me. This digital version
of my book is provided free as a service to the programming community. You are welcome to use any
of  the code fragments  or  complete  programs in any way you see fit  for  no charge,  including for
commercial applications. However, the author retains all copyrights for the text and the programs. You
may share this book and the accompanying programs with others, but only if you distribute the book
and sources in its entirety, as originally uploaded by me to my web page (http://www.ethanwiner.com). 

While I should not have to belabor the obvious: All of this software and the accompanying text are
provided "as is", with no warranty expressed or implied. The author is not liable for any damages
whatsoever, including incidental or consequential. Use this information at your own risk. If you wipe
out your hard disk or CMOS memory, I am not responsible! 

Special thanks are owed to Ariella Baston who spent more than half a year lovingly formatting every
single page, creating a linked Table Of Content, and so much more.

You will notice a few comments here and there that were added to this digital version of my book only,
and relate to VB/DOS, which was not covered in the original printed version.  Since I  do not use
VB/DOS on a regular basis,  I  can't  guarantee that all  of the VB/DOS differences and features are
documented completely. In most cases, however, the information about BASIC PDS applies equally to
VB/DOS. 

I will happily provide support for this book and answer questions as time permits via email sent to
ethan  w  @ethanwiner.com  . However, I much prefer to answer questions in the public forums rather than
through e-mail, because public messages let others benefit from the answers. 

– Ethan Winer
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Notes on the 2019 recreation of BASIC Techniques and Utilities
By Ariella Baston

I didn't discover BASIC Techniques and Utilities until 2018, and I wish I had seen its original print in
1992. I feel it's the best programming book on QuickBASIC, and writing software for classic PCs. The
depth of knowledge and practical application suggested in this work can light fires of discipline and
craftsmanship no matter the decade or language. This book will remind you to care deeply about what
your software is doing in its environment, and that there's always more you can do to improve its
execution.

One of my hobbies is document conversion and archival, from modern works retrofitted for the past, to
past works rejuvenated for the present. When I learned that this book's original publishing design files
were lost,  I felt impassioned to recreate them and give the book a new good-looking digital life. I
reached out to Ethan and he was happy to support the effort. Ethan provided text files of the book's
copy, and I consulted scans of the original 1992 printing to consider how it had once been put together,
and what the images and tables looked like.

The work took 8 months of time spread across lunch breaks, evenings and weekends (I work full-time
as a Business Analyst), and it was some of the best fun I've had in retro-computing. Finishing every
chapter felt like a love-letter to my past in software development. I hope you enjoy the new edition as
much as I enjoyed putting it together!

 The recreation work involved:
• Assembly of all source text files into a word processor, including the fun cleanup of correcting

CRLF to wrapping text, correcting paragraph breaks, cleaning up tabs and trailing white space,
converting double spaces to singles, hyphens to em dashes, fixed-width preservation of code
sections, applying styles, sections, and more. 

• Recreation of all figures, tables, and screenshots. These took the most time, and involved a lot
of extra software like virtual machines, MS-DOS apps, vector art apps, bitmap art apps, and
spreadsheets.

• A new cover.
• New Part and Chapter layouts.
• Creation of new digital assets in modern and more accessible document formats like SVG, ODT

and PNG.
• Fixing mistakes that were in the original book.

Software used: LibreOffice, GIMP, Inkscape, FreeDOS, Virtualbox, Linux Mint. 
Hardware used: Unicomp Classic 101 keyboard, Acer laptop.

Feel  free  to  say  hello  via  email!  I'd  love  to  hear  of  your  adventures  with  programming  and
retro-computing:

ariella@allthethings.ca
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In memory of my father, Dr. Frank Winer
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PREFACE

Introduction

BASIC has always been the most popular language for personal computers. It is easy to learn and use,
extremely powerful, and some form of BASIC is included for free with nearly every PC. Although
BASIC is often associated with beginners and students, it is in fact ideally suited for a wide range of
programming projects. Because it offers the best features of a high-level language coupled with direct
access  to  DOS  and  BIOS  system  services,  BASIC  is  fast  becoming  the  language  of  choice  for
beginners and professional developers alike. This book is about power programming using Microsoft
compiled BASIC.
 
It is intended for people who already possess a fundamental understanding of BASIC programming
concepts, but want to achieve the best performance possible from their BASIC compiler.

Power programming is knowing when and how to use BASIC commands such as CALL INTERRUPT,
VARSEG and VARPTR, and even PEEK and POKE effectively. It involves understanding the PC's
memory organization sufficiently to determine how much stack space is needed for a recursive sub
program or function. A power programmer knows how to translate a time-critical portion of a BASIC
program  into  assembly  language  when  needed.  Finally,  and  perhaps  most  importantly,  power
programming means knowing enough about BASIC's internal operation to determine which sequence
of instructions is smaller or faster than another.

This book will show you how to go beyond creating programs that merely work. Because it explains
how the compiler operates and how it interacts with the BASIC runtime language library, this book will
teach you how to write programs that are as small and fast as possible. Although the emphasis here is
on Microsoft  QuickBASIC and the BASIC Professional  Development System (PDS),  much of  the
information will apply to other BASIC compilers such as Power Basic from Spectra Publishing.

Despite  what  you may have read,  BASIC is  the most capable and easy to  learn of the high-level
languages. Modern BASIC compilers are highly optimizing, and can thus create extremely efficient
executable programs. In addition, you can often achieve with just a few BASIC statements what would
take many pages of code in another high-level language.  Moreover,  beginners can be immediately
productive  in  BASIC,  while  serious  programmers  have  a  wealth  of  powerful  capabilities  at  their
disposal.

Microsoft BASIC has many capabilities that are not available in any other high-level language. Among
these  are  dynamic  (variable-length)  strings,  automatic  memory  allocation  and  heap  management,
built-in  support  for  sophisticated  graphics,  and interrupt-driven communications.  Add to  that  huge
arrays,  network  file  handling,  music  and  sound,  and  protection  against  inadvertently  overwriting
memory, and you can see why BASIC is so popular.
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This book aims to provide intermediate to advanced programmers with information that is not available
elsewhere. It does not, however, cover elementary topics such as navigating the QuickBASIC editor,
loading and saving files, or using the Search and Replace feature. That information is readily available
elsewhere. Rather, it delves into previously uncharted territory, and examines compiled BASIC at its
innermost layer. Besides the discussions and programs in the text, this book includes a companion ZIP
file that contains all of the subroutines and other code listed in this book, including several useful
utilities. Installing these programs is described in the Appendix.

Conventions used in this book

This book uses the terms QuickBASIC and QB to mean the Microsoft QuickBASIC4.x and 7.x editing
environments.  BC  and  Compiler  indicate  the  BC.EXE  command-line  compiler  that  comes  with
QuickBASIC, Microsoft BASIC PDS, and the now-discontinued BASIC 6.0. When a distinction is
necessary,  QBX  will  refer  to  the  QuickBASIC  Extended  editor  that  comes  with  the  BASIC
Professional Development System (PDS). In most cases, the discussions will be the same for all of
these  versions  of  BASIC.  When  a  difference  does  occur,  the  PDS  and  QBX  exceptions  will  be
indicated as call-out boxes, or [in square brackets].

Code sections are presented in fixed width format.

Technical terms that are introduced and useful to learn are italicized. 

How this book is organized

This book is divided into parts, and each part contains several chapters that discuss a specific aspect of
BASIC programming. You needn't fully understand an entire chapter before moving on to the next one.
Each topic will be covered in great depth, and in many cases you will want to return to a given chapter
as your knowledge and understanding of the subject matter increases.

PART 1 Under the Hood and its three chapters describe in detail how your BASIC source code is
manipulated throughout the compiling and linking process.

Chapter  1 An Introduction to Compiled BASIC presents an overview of compilers in general,
and BASIC compilers in particular. It discusses what BASIC compilers are all about and how
they work, and how the compiled code that is generated interacts with routines in the runtime
libraries.

Chapter 2 Variables and Data discusses variables, constants, and other program data, and how
they  fit  within  the  context  of  the  PC's  memory  organization.  This  chapter  also  covers  bit
manipulation using AND, OR, and XOR.
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Chapter  3  Programming  Methods examines  the  various  control  flow methods  available  in
BASIC,  showing  which  statements  and  procedure  constructs  are  appropriate  in  different
situations.  In  particular,  you  will  learn  the  relative  advantages  and  disadvantages  of  each
method, based on their capabilities, code size, and speed.

PART 2 Programming Hands On examines programming techniques, and shows specific examples
of writing effective code and also making it work. 

Chapter 4 Debugging Strategies explores program debugging using the facilities built into the
QuickBASIC editing environment, as well as the CodeView utility that comes with Microsoft
BASIC PDS.  This  chapter  also  discusses  common  programming  problems,  along  with  the
appropriate solutions.

Chapter  5 Compiling and Linking explains compiling and linking, both from within the QB
environment,  and  directly  from  DOS.  A  number  of  compiler  options  are  inadequately
documented by Microsoft, and each is discussed here in great detail. A thorough discussion of
the LIB.EXE utility program included with BASIC explains how libraries are manipulated and
organized.

Chapter  6  File  and  Device  Handling covers  all  aspects  of  file  and  device  handling,  and
discusses the many different ways in which data may be read and written. The emphasis here is
on speeding file handling as much as possible, and storing data on disk efficiently. Because
input/output (I/O) devices are accessed similarly, they too are described here in detail.

Chapter  7 Network and Database Programming explains the basics of writing database and
network  applications,  and  discusses  file  locking  strategies  using  practical  programming
examples. A series of subroutines show how to read and write files using the popular dBASE
format, and these may be incorporated into programs that you write.

Chapter  8  Sorting  and  Searching shows  how to  sort  and  search  array  data  as  quickly  as
possible. Several methods are examined including conventional and indexed sorting, and many
useful subroutines are presented.

The final part,  PART 3 Beyond BASIC, includes information that is rarely covered in books about
BASIC. Its three chapters go far beyond the information provided in any of the Microsoft manuals.

Chapter  9 Program Optimization covers several general  optimization techniques that reduce
the space of programs and make them run faster. The material is organized into three principle
categories: programming shortcuts and speed improvements, miscellaneous tips and techniques,
and benchmarking.

Chapter 10 Key Memory Areas in the PC identifies many of the key memory areas in the PC,
and shows when and how they can be manipulated in a BASIC program. 
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Chapter  11 Accessing DOS and BIOS Services presents an in-depth discussion of accessing
DOS  and  BIOS  services  using  CALL  INTERRUPT.  These  services  offer  a  wealth  of
functionality that BASIC cannot otherwise provide directly.

Chapter 12 Assembly Language Programming is an introduction to assembly language, from a
BASIC programmer's perspective. This chapter presents many useful subroutines, and includes
a thorough discussion of how they work.

Finally, the Appendix describes the additional source files that accompany this book.
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A brief history of Microsoft Compiled BASIC

In March of 1982, IBM released the first BASIC compiler for the IBM PC. This compiler, BASCOM
1.0, was written by Microsoft for IBM using code and methods developed by Bill Gates, Greg Whitten,
and others.  Although Microsoft  had already written BASIC compilers  for  the Apple II  and CP/M
computers, BASCOM 1.0 was the most powerful they had produced so far. Compared to the Microsoft
BASIC interpreters available at that time, BASCOM 1.0 offered many additional capabilities, and also
an enormous increase in program execution speed. Line numbers were no longer mandatory, program
statements could exceed 255 characters,  and a single string could be as long as 32,767 characters.
Further,  assembly language subroutines could be linked directly to a compiled BASIC application.
Over the next few years, Microsoft continued to enhance the compiler, and in 1985 it was released by
IBM as BASCOM 2.0. This version offered many improvements over the older BASCOM 1.0. Among
the  most  important  were multi-line  DEF FN functions,  dynamic  arrays,  descriptive line  labels  (as
opposed to numbers),  network record locking,  and an ISAM file handler.  With named subroutines
programmers were finally able to exceed the 64K code size limitation, by writing separate modules that
could then be linked together. The inclusion of subroutine parameters—long overdue for BASIC—was
an equally important step toward fostering structured programming techniques in the language.

At the same time that IBM released BASCOM 2.0, Microsoft offered essentially the same product as
QuickBASIC 1.0, but without the ISAM file handler.  However,  there was one other big difference
between these compilers: QuickBASIC 1.0 carried a list price of only $99. This low price was perhaps
the most important feature of all, because high-performance BASIC was finally available to everyone,
and not just professional developers.

Encouraged by the tremendous acceptance of QuickBASIC 1.0, Microsoft quickly followed that with
QuickBASIC  version  2.0  in  early  1986.  This  important  new  release  added  an  integrated  editing
environment,  as well  as EGA graphics capabilities.  The editor was especially  welcome,  because it
allowed programs to be developed and tested very rapidly. The environment was further enhanced with
the advent of Quick Libraries, which allowed assembly language subroutines to be easily added to a
BASIC program.  Quick  Libraries  also  helped  launch  the  start  of  a  new class  of  BASIC product:
third-party add-on libraries.

In  early  1987  Microsoft  released  the  next  major  enhancement  to  QuickBASIC,  version  3.0
QuickBASIC 3.0 included a limited form of step and trace debugging, as well as the ability to monitor
a  variable's  value  continuously  during  program execution.  Also  added  was  support  for  the  EGA's
43-line text mode, and several new language features. Perhaps most impressive of the new features was
the control flow statements DO and LOOP, and SELECT CASE. Beyond merely providing a useful
alternative to the IF statement, these constructs also let the compiler generate more efficient code.

Also added with version 3.0 was optional support for an 8087 numeric coprocessor. In order to support
a coprocessor, however, Microsoft had to abandon their own proprietary numeric format. 
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Both the Microsoft and IEEE methods for storing single and double precision numbers use four bytes
and eight bytes respectively, but the bits are organized differently. Although the IEEE format which the
8087 requires is  substantially  slower than Microsoft's  own, it  is  the current  standard.  Therefore,  a
second version of the compiler was included solely to support IEEE math.

By  the  time  QuickBASIC  4.0  was  announced  in  late  1987,  hundreds  of  thousands  of  copies  of
QuickBASIC were already in use world-wide. With QuickBASIC 4.0, Microsoft had created the most
sophisticated programming environment ever seen in a  main-stream language:  the threaded p-code
interpreter.  This  remarkable  technology  allowed  programmers  to  enjoy  the  best  features  of  an
interpreted language, but with the execution speed of a compiler.

In  addition  to  an  Immediate  mode  whereby  program  statements  could  be  executed  one  by  one,
QuickBASIC 4.0 also supported program break-points, monitoring the value of multiple variables and
expressions, and even stepping backwards through a program. This greatly enhanced the debugging
capabilities of the language, and increased programmer productivity enormously.

Also  new in  QuickBASIC 4.0  was  support  for  inter-language calling.  Although  this  meant  that  a
program written in Microsoft BASIC could now call subroutines written in any of the other Microsoft
languages,  it  also meant that IEEE math was no longer an option—it  became mandatory.  When a
QuickBASIC 4.0 program was run on a PC equipped with a coprocessor, floating point math was
performed very quickly indeed. However, it  was very much slower on every other computer!  This
remained a sore point for many BASIC programmers, until Microsoft introduced BASIC 6.0 later that
year.  That  version included an  alternate  math library  that  was similar  to  their  original  proprietary
format.

Also added in QuickBASIC 4.0 were huge arrays, long (4-byte) integer variables, user-defined TYPE
variables,  fixed-length  strings,  true  functions,  and  support  for  CodeView  debugging.  With  the
introduction of huge arrays, BASIC programmers could create arrays that exceeded 64K in size, with
only a few restrictions. TYPE variables let the programmer define a composite data type comprised of
any mix of BASIC's intrinsic data forms, thus adding structure to a program's data as well as to its
code. The newly added FUNCTION procedures greatly improved on BASIC's earlier DEF FN-style
functions by allowing recursion, the passing of TYPE variables and entire arrays as arguments, and the
ability to modify an incoming parameter.

Although BASIC 6.0 provided essentially the same environment and compiler as QuickBASIC 4.0, it
also included the ability to create programs that could be run under OS/2. Other features of this release
were a utility program to create custom run-time libraries, and a copy of the Microsoft Programmer's
Editor. The custom run-time utility was particularly valuable, since it allowed programmers to combine
frequently-used  subroutines  with  the  BRUN.EXE  language  library,  and  then  share  those  routines
among any number of chained modules.

QuickBASIC 4.5 was introduced in 1988, although the only major enhancement over the earlier 4.0
version was a new help system and slightly improved pull-down menus. Unfortunately, the new menus
required much more memory than QuickBASIC 4.0,  and the "improved" environment  reduced the
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memory available  for  programs and  data  by  approximately  40K.  To this  day,  many programmers
continue to use QuickBASIC 4.0 precisely because of its increased program capacity.

In answer to programmer's demands for more string memory and smaller, more efficient programs,
Microsoft released the BASIC Professional Development System version 7.0 in late 1989. This was an
enormous  project  even  for  a  company  the  size  of  Microsoft,  and  at  one  point  more  than  fifty
programmers were working on the new compiler and QBX environment. PDS version 7.0 finally let
BASIC programmers exceed the usual 64K string memory limit, albeit with some limitations.

Other features introduced with that version were an ISAM file handler, improved library granularity,
example tool box packages for creating simple graphics and pull-down menus, local error handling,
arrays within TYPE variables,  and greatly improved documentation.  Because the QBX editor  uses
expanded memory to  store  subprograms and functions,  much larger  programs could  be  developed
without resorting to editing and compiling outside of the environment.

Sixth months later PDS version 7.1 was released, with the long-overdue ability to redimension an array
but without destroying its contents. Also added in that version were support for passing fixed-length
string  arrays  to  subprograms and functions,  and an option to  pass  parameters  by value to  BASIC
procedures. Although the BYVAL option had been available since QuickBASIC 4.0, it was usable only
with subroutines written in non-BASIC languages. With this mechanism, BASIC can now create more
efficient object code than ever before.

Just  as  the initial  print version  of  this  book  was
being completed, Microsoft released Visual Basic for
DOS.  Although  this  book  does  not  address  VB/DOS
specifically, most of the information about BASIC PDS
applies to VB/DOS. One notable exception is that VB/DOS
supports far strings only, where BASIC PDS lets you
specify either near strings or far. Because far strings
are stored in a separate "far" area of DOS memory, it
takes  slightly  longer  to  access  those  strings.
Therefore, a VB/DOS program that is string-intensive
will  not be as fast as an equivalent compiled with
QuickBASIC or with PDS near strings. This book also
does not cover the pseudo event-driven forms used by
VB/DOS.
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PART 1
Under the Hood



1
An Introduction to Compiled BASIC

This chapter explores the internal workings of the BASIC compiler. Many people view a compiler
simply as a "black box" which magically transforms BASIC source files into executable code.  Of
course, magic does not play a part in any computer program, and the BC compiler that comes with
Microsoft BASIC is no exception. It is merely a program that processes data in the same way any other
program would. In this case, the data is your BASIC source code.

You will learn here what the BASIC compiler does, and how it does it. You will also get an inside
glimpse at some of the decisions a compiler must make, as it transforms your code into the assembly
language commands the CPU will execute. By truly understanding the compiler's role, you will be able
to exploit its strengths and also avoid its weaknesses. 

Compiler Fundamentals

No matter what language a program is written in, at some point it must be translated into the binary
codes that the PC's processor can understand. Unlike BASIC commands, the CPU within every PC is
capable of acting on only very rudimentary instructions. Some typical examples of these instructions
are "Add 3 to the value stored in memory location 100", and "Compare the value stored at address 4012
to the number  -12 and jump to the code at address 2015 if it is less". Therefore, one very important
value of a high-level language such as BASIC is that a programmer can use meaningful names instead
of memory addresses when referring to variables and subroutines. Another is the ability to perform
complex actions that require many separate small steps using only one or two statements.

As an example, when you use the command PRINT X% in a program, the value of X% must first be
converted from its native two-byte binary format into an ASCII string suitable for display. Next, the
current cursor location must be determined, at which point the characters in the string are placed into
the screen's memory area. Further, the cursor position has to be updated, to place it just past the digits
that were printed. Finally, if the last digit happened to end up at the bottom-right corner of the screen,
the display must also be scrolled up a line. As you can see, that's an awful lot of activity for such a
seemingly simple statement!

A compiler,  then,  is a program that translates these English-like BASIC source statements into the
many  separate  and  tiny  steps  the  microprocessor  requires.  The  BASIC  compiler  has  four  major
responsibilities:

Translate BASIC statements into an equivalent series of assembly language commands.
1. Assign addresses in memory to hold each of the variables being used by the program.
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2. Remember the addresses in the generated code where each line number or label occurs, for
GOTO and GOSUB statements.

3. Generate additional code to test for events and detect errors when the /v, /w, or /d compile
options are used.

As the compiler processes a program's source code, it translates only the most basic statements directly
into assembly language. For other, more complex statements, it instead generates calls to routines in the
BASIC run-time library that is supplied with your compiler. When designing a BASIC program you
would most  likely  identify  operations  that  need to  be performed more than once,  and then create
subprograms or functions rather than add the same code in-line repeatedly.  Likewise,  the compiler
takes advantage of the inherent efficiency of using called subroutines. 

For example, when you use a BASIC statement such as PRINT Work$, the compiler processes it as if
you had used CALL PRINT(Work$). That is, PRINT really is a called subroutine. Similarly, when
you write OPEN FileName$ FOR RANDOM AS #1 LEN = 1024, the compiler treats that as a
call to its Open routine, and it creates code identical to  CALL OPEN(FileName$, 1,1024,4).
Here, the first argument is the file name, the second is the file number you specified, the third is the
record length, and the value 4 is BASIC's internal code for RANDOM. Because these are BASIC key
words, the CALL statement is of course not required. But the end result is identical. While the BC
compiler could certainly create code to print the string or open the file directly, that would be much less
efficient than using subroutines. Indeed, all of the subroutines in the Microsoft-supplied libraries are
written in assembly language for the smallest size and highest possible performance. 

Data Storage

The second important job the compiler must perform is to identify all of the variables and other data
your program is using, and allocate space for them in the object file. There are two kinds of data that
are manipulated in a BASIC program—static data and dynamic data. The term static data refers to any
variable whose address and size does not change during the execution of a program. That is, all simple
numeric and TYPE variables, and static numeric and TYPE arrays. String constants such as "Press a
key to continue" and DATA items are also considered to  be static data,  since their  contents never
change. 

Dynamic  data  is  that  which  changes  in  size  or  location  when the  program runs.  One example  of
dynamic data is a dynamic array, because space to hold its contents is allocated when the program runs.
Another is string data, which is constantly moved around in memory as new strings are assigned and
old ones are erased. Variable and array storage is discussed in depth in Chapter 2, so I won't belabor
that now. The goal here is simply to introduce the concept of variable storage. The important point is
that BC deals only with static data, because that must be placed into the object file. 

As the compiler processes your source code, it must remember each variable that is encountered, and
allocate space in the object file to hold it. Further, all of this data must be able to fit into a single 64K
segment, which is called DGROUP (for Data Group). Although the compiled code in each object file
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may be as large as 64K, static data is combined from all of the files in a multi-module program, and
may  not  exceed 64K in  total  size.  Note  that  this  limitation  is  inherent  in  the  design  of  the  Intel
microprocessors, and has nothing to do with BC, LINK, or DOS. 

As each new variable is encountered, room to hold it is placed into the next available data address in
the object file. (In truth, the compiler retains all variable information in memory, and writes it to the
end of the file all at once following the generated code.) For each integer variable, two bytes are set
aside.  Long integer  and single  precision  variables  require  four  bytes  each,  while  double  precision
variables occupy eight bytes. Fixed-length string and TYPE variables use a varying number of bytes,
depending on the components you have defined. 

Static numeric and TYPE arrays are also written to the object file by the compiler. The number of bytes
that are written of course depends on how many elements have been specified in the DIM statement.
Also, notice that no matter what type of variable or array is encountered, only zeroes are written to the
file. The only exceptions are quoted string constants and DATA items, in which case the actual text
must be stored. Unlike numeric, TYPE, and fixed-length variables, strings must be handled somewhat
differently.  For each string variable a program uses,  a  four-byte table  called a  string descriptor is
placed into the object file. However, since the actual string data is not assigned until the program is run,
space for that data need not be handled by the compiler. With string arrays—whether static or dynamic
—a table of four-byte descriptors is allocated. 

Finally, each array in the program also requires an array descriptor. This is simply a table that shows
where the array's data is located in memory, how many elements it currently holds, the length in bytes
of each element, and so forth. 

Assembly Language Considerations

In order to fully appreciate how the translation process operates, you will first need to understand what
assembly  language  is  all  about.  Please  understand  that  there  is  nothing  inherently  difficult  about
assembly language. Like BASIC, assembly language is comprised of individual instructions that are
executed  in  sequence.  However,  each  of  these  instructions  does  much  less  than  a  typical  BASIC
statement.  Therefore,  many more steps  are  required to  achieve a  given result  than in  a  high-level
language. Some of these steps will be shown in the following examples. If you are not comfortable
with the idea of tackling assembly language concepts just yet, please feel free to come back to this
section at a later time. 

Let's begin by examining some very simple BASIC statements, and see how they are translated by the
compiler.  For  simplicity,  I  will  show  only  integer  math  operations.  The  80x86  family  of
microprocessors  can manipulate  integer  values  directly,  as  opposed to  single and double precision
numbers which are much more complex. The short code fragment in Listing 1-1 shows some very
simple  BASIC  instructions,  along  with  the  resulting  compiled  assembly  code.  In  case  you  are
interested, disassemblies such as those you are about to see are easy to create for yourself using the

3



Microsoft CodeView utility. CodeView is included with the Macro Assembler as well as with BASIC
PDS. 

A% = 12
   MOV  WORD PTR [A%],12    ;move a 12 into the word variable A%

X% = X% + 1
   INC  WORD PTR [X%]       ;add 1 to the word variable X%

Y% = Y% + 100
   ADD  WORD PTR [Y%],100   ;add 100 to the word variable Y%

Z% = A% + B%
   MOV  AX,WORD PTR [B%]    ;move the contents of B% into AX
   ADD  AX,WORD PTR [A%]    ;add to that the value of A%
   MOV  WORD PTR [Z%],AX    ;move the result into Z%

Listing 1-1: These short examples show the compiled results of some simple BASIC math operations. 

The first statement, A% = 12, is directly translated to its assembler equivalent. Here, the value 12 is
moved into the word-sized address named A%. Although an integer is the smallest data type supported
by BASIC, the microprocessor can in fact deal with variables as small as one byte. Therefore, the
WORD PTR (word pointer) argument is needed to specify that A% is a full two-byte integer, rather
than a single byte. Notice that in assembly language, brackets are used to specify the contents of a
memory address. This is not unlike BASIC's PEEK() function, where parentheses are used for that
purpose. 

In  the  second  statement,  X% = X% + 1,  the  compiler  generates  assembly  language  code  to
increment, or add 1 to, the word-sized variable in the location named X%. Since adding or subtracting a
value of 1 is  such a common operation in all  programming languages,  the designers of the 80x86
included the INC (and complementary DEC) instruction to handle that. 

Y% = Y% + 100 is similarly translated, but in this case to assembler code that adds the value 100 to
the word-sized variable at address Y%. As you can see, the simple BASIC statements shown thus far
have a direct assembly language equivalent. Therefore, the code that BC creates is extremely efficient,
and in fact could not be improved upon even by a human hand-coding those statements in assembly
language. 

The last  statement,  Z% = A% + B%,  is  only slightly more complicated than the others.  This  is
because  separate  steps  are  required  to  retrieve  the  contents  of  one  memory  location,  before
manipulating it and assigning the result to another location. Here, the value held in variable B% is
moved into one of the processor's registers (AX). The value of variable A% is then added to AX, and
finally the result is moved into Z%. There are about a dozen registers within the CPU, and you can
think of them as special variables that can be accessed very quickly. 

The next example in Listing 1-2 shows how BASIC passes arguments to its internal routines, in this
case PRINT and OPEN. Whenever a variable is passed to a routine, what is actually sent is the address
(memory location) of the variable. This way, the routine can go to that address, and read the value that
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is  stored  there.  As  in  Listing  1-1,  the  BASIC  source  code  is  shown  along  with  the  resultant
compiler-generated assembler instructions. 
 
It may also be worth mentioning that the order in which the arguments are sent to these routines is
determined by how the routines are designed. In BASIC, if a SUB is designed to accept, say, three
parameters in a certain order, then the caller must pass its arguments in that same order. 

Parameters in assembler routines are handled in exactly the same manner. Of course, any arbitrary
order could be used, and what's important is simply that they match. 

PRINT Work$
    MOV  AX,OFFSET Work$     ;move the address of Work$ into AX
    PUSH AX                  ;push that onto the CPU stack
    CALL B$PESD              ;call the string printing routine

OPEN FileName$ FOR OUTPUT AS #1
    MOV  AX,OFFSET FileName$ ;load the address of FileName$
    PUSH AX                  ;push that onto the stack
    MOV  AX,1                ;load the specified file number
    PUSH AX                  ;and push that as well
    MOV  AX,-1               ;-1 means that a LEN= was not given
    PUSH AX                  ;and push that
    MOV  AX,2                ;2 is the internal code for OUTPUT
    PUSH AX                  ;pass that on too
    CALL B$OPEN              ;finally, call the OPEN routine

Listing 1-2: Many BASIC statements create assembler code that passes arguments to internal routines,
as shown above. 

When you tell BASIC to print a string, it first loads the address of the string into AX, and then pushes
that onto the stack. The stack is a special area in memory that all programs can access, and it is often
used in compiled languages to hold the arguments being sent to subroutines. In this case, the OFFSET
operator tells  the CPU to obtain the address where the variable  resides,  as opposed to the current
contents of the variable. Notice that the words offset, address, and memory location all mean the same
thing. Also notice that calls in assembly language work exactly the same as calls in BASIC. When the
called  routine  has  finished,  execution  in  the  main  program  resumes  with  the  next  statement  in
sequence. 

Once the address for Work$ has been pushed, BASIC's B$PESD routine is called. Internally, one of the
first things that B$PESD does is to retrieve the incoming address from the stack. This way it can locate
the characters that are to be printed. B$PESD is responsible for printing strings, and other BASIC
library routines are provided to print each type of data such as integers and single precision values. 

In case you are interested, PESD stands for Print End-of-line String Descriptor. Had a semicolon been
used in the print statement—that is, PRINT Work$;—then B$PSSD would have been called instead
(Print Semicolon String Descriptor). Likewise, printing a 4-byte long integer with a trailing comma as
in PRINT Value&, would result in a call to B$PCI4 (Print Comma Integer 4), where the 4 indicates
the integer's size in bytes. 
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In the second example of Listing 1-2 the OPEN routine is set up and called in a similar fashion, except
that four parameters are required instead of only one. Again, each parameter is pushed onto the stack in
turn, followed by a call to the routine. Most of BASIC's internal routines begin with the characters
"B$",  to  avoid a conflict  with subroutines  of your own. Since a dollar  sign is  illegal  in a BASIC
procedure name, there is no chance that you will inadvertently choose one of the same names that
BASIC uses. 

As  you  can  see,  there  is  nothing  mysterious  or  even  difficult  about  assembly  language,  or  the
translations performed by the BASIC compiler.  However, a sequence of many small steps is often
needed to perform even simple calculations and assignments. We will discuss assembly language in
much greater depth in Chapter 12, and my purpose here is merely to present the underlying concepts. 

Please note that variable names are not retained after a program has been compiled. Once BC has
finished its job, all references to each variable name have been replaced with an equivalent memory
addresses in the object file. Further,  once LINK has joined the object files and linked them to the
BASIC language libraries, the procedure names are lost as well. These issues will be explored in much
greater detail in Chapter 12. 

Compiler Optimization

As you have seen,  some code is  translated by the compiler into the equivalent assembly language
statements,  while  other  code  is  instead  converted  to  calls  to  the  language  routines  in  the  BASIC
libraries.  Some statements,  however,  are  not translated at  all.  Rather,  they are known as  compiler
directives that  merely  provide  information  to  the  compiler  as  it  works.  Some  examples  of  these
non-executable BASIC statements include DEFINT, OPTION BASE, and REM, as well as the various
"meta  commands"  such  as  '$INCLUDE  and  '$DYNAMIC.  Some  others  are  SHARED,  BYVAL,
DATA, DECLARE, CONST, and TYPE. 

For our purposes here, it is important to understand that DIM when used on a static array is also a
non-executable statement. Because the size of the array is known when the program is compiled, BC
can simply set aside memory in the object file to hold the array contents. Therefore, code does not need
to be generated to actually create the array. Similarly, TYPE/END TYPE statements also merely define
a given number of bytes that will ultimately end up in the program file when the TYPE variable is later
dimensioned by your program. 

Event and Error Checking

The last compiler responsibility I will discuss here is the generation of additional code to test for events
and debugging errors. This occurs whenever a program is compiled using the /d, /w, or /v command
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line switches. Although event trapping and debugging are entirely separate issues, they are handled in a
similar manner. Let's start with event trapping. 

When the IBM PC was first introduced, the ability to handle interrupt-driven events distinguished it
from  its  then-current  Apple  and  Commodore  counterparts.  Interrupts  can  provide  an  enormous
advantage  over  polling  methods,  since  polling  requires  a  program  to  check  constantly  for,  say,
keyboard or communications activity. With polling, a program must periodically examine the keyboard
using INKEY$, to determine if a key was pressed. But when interrupts are used,  the program can
simply go about its business, confident that any keystrokes will be processed. Here's how that works: 

Each  time  a  key  is  pressed  on  a  PC,  the  keyboard  generates  a  hardware  interrupt  that  suspends
whatever is currently happening and then calls a routine in the ROM BIOS. That routine in turn reads
the character from the keyboard's output port, places it into the PC's keyboard buffer, and returns to the
interrupted application. The next time a program looks for a keystroke, that key is already waiting to be
read. For example, a program could begin writing a huge multi-megabyte disk file, and any keystrokes
will still be handled even if the operator continues to type. 

Understand that hardware interrupts are made possible by a direct physical connection between the
keyboard circuitry and the PC's microprocessor. The use of interrupts is a powerful concept, and one
which is important to understand. Unfortunately, BASIC does not use interrupts in most cases, and this
discussion is presented solely in the interest of completeness. 

Event Trapping

BASIC provides a number of event handling statements that perhaps could be handled via interrupts,
but aren't. When you use ON TIMER, for example, code is added to periodically call a central event
handler to check if the number of seconds specified has elapsed. Because there are so many possible
event traps that could be active at  one time, it  would be unreasonable to expect BASIC to set up
separate  interrupts  to  handle  each  possibility.  In  some  situations,  such  as  ON  KEY,  there  is  a
corresponding  interrupt.  In  this  case,  the  keyboard  interrupt.  However,  some  events  such  as  ON
PLAY(Count), where a GOSUB is made whenever the PLAY buffer has fewer than Count characters
remaining, have no corresponding physical interrupt. Therefore, polling for that condition is the only
reasonable method. 

The example in Listing 1-3 shows what happens when you compile using the /v switch. Notice that the
calls  to  B$EVCK (Event  Check)  are  not  part  of  the  original  source  code.  Rather,  they  show the
additional code that BC places just before each program statement. 

DEFINT A-Z
    CALL B$EVCK              'this call is generated by BC
ON TIMER(1) GOSUB HandleTime
    CALL B$EVCK              'this call is generated by BC
TIMER ON
    CALL B$EVCK              'this call is generated by BC
X = 10
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    CALL B$EVCK              'this call is generated by BC
Y = 100
    CALL B$EVCK              'this call is generated by BC
END

HandleTime:
    CALL B$EVCK              'this call is generated by BC
BEEP
    CALL B$EVCK              'this call is generated by BC
RETURN

Listing 1-3: When the /v compiler switch is used, BC generates calls to a central event handler at each
BASIC statement. 

At five bytes per call, you can see that using /v can quickly bloat a program to an unacceptable size.
One alternative is to instead use /w. In fact, /w can be particularly attractive in those cases where event
handling cannot be avoided, because it lets you specify where a call to B$EVCK is made: at each line
label or line number in your source code. The only downside to using line numbers and labels is that
additional working memory is needed by BC to remember the addresses in the code where those labels
are placed. This is not usually a problem, though, unless the program is very large or every line is
labelled. 

All  of  the  various  BASIC event  handling  commands  are  specified  using  the  ON statement.  It  is
important to understand, however, that ON GOTO and ON GOSUB do not involve events. That is, they
are really just an alternate form of GOTO and GOSUB respectively, and thus do not require compiling
with /w or /v. 

Error Trapping

The last compiler option to consider here is the /d switch, because it too generates extra code that you
might not otherwise be aware of. When a program is compiled with /d, two things are added. First, for
every BASIC statement a call is made to a routine named B$LINA, which merely checks to see if
Ctrl-Break has been pressed. Normally, a compiled BASIC program is immune to pressing the Ctrl-C
and Ctrl-Break keys, except during an INPUT or LINE INPUT statement. Since much of the purpose of
a debugging mode is to let you break out of an errant program gone berserk, the Ctrl-Break checking
must be performed frequently. These checks are handled in much the same way as event trapping, by
calling a special routine once for each line in your source code. 

Another important factor resulting from the use of /d is that all array references are handled through a
special called routine which ensures that the element number specified is in fact legal. Many people
don't realize this, but when a program is compiled without /d and an invalid element is given, BASIC
will  blindly write to the wrong memory locations.  For example,  if  you use  DIM Array%(1 TO
100) and then attempt to assign, say, element number 200, BASIC is glad to oblige. Of course, there is
no element 200 in that case, and some other data will no doubt be overwritten in the process. 
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To prevent these errors from going undetected, BC calls the B$HARY (Huge Array) routine to calculate
the address based on the element number specified. If B$HARY determines that the array reference is
out of bounds, it invokes an internal error handler and you receive the familiar "Subscript out of range"
message. Normally, the compiler accesses array elements using as little code as possible, to achieve the
highest possible performance. If a static array is dimensioned to 100 elements and you assign element
10, BC knows at the time it compiles your program the address at which that element resides. It can
therefore access that element directly, just as if it were a non-array variable. 

Even when you use a variable to specify an array element such as Array%(X) = 12, the starting address
of the array is known, and the value in X can be used to quickly calculate how far into the array that
element is located. Therefore, the lack of bounds checking in programs that do not use /d is not a bug in
BASIC. Rather, it is merely a trade-off to obtain very high performance. Indeed, one of the primary
purposes of using /d is to let BC find mistakes in your programs during development, though at the cost
of execution speed. 

The biggest complication from BASIC's point of view is when huge (greater than 64K) arrays are being
manipulated. In fact, B$HARY is the very same routine that BC calls when you use the /ah switch to
specify huge arrays (hence the name HARY). Since extra code is needed to set up and call B$HARY
compared to the normal array access, using /ah also creates programs that are larger and slower than
when it is not used. Further, because B$HARY is used by both /d and /ah, invalid element accesses will
also be trapped when you compile using /ah. 

Overflow Errors

The final result of using /d is that extra code is generated after certain math operations, to check for
overflow errors that might otherwise go undetected. Overflow errors are those that result in a value too
large for a given data type. For example, if you multiply two integers and the result exceeds 32767, that
causes an overflow error. Similarly, an underflow error would be created by a calculation resulting a
value that is too small. 

When a floating point math operation is performed, errors that result from overflow are detected by the
routines that perform the calculation. When that happens there is no recourse other than halting your
program with an appropriate  message.  Integer  operations,  however,  are  handled  directly  by 80x86
instructions. Further, an out of bounds result is not necessarily illegal to the CPU. Thus, programs
compiled without the /d option can produce erroneous results, and without any indication that an error
occurred. 

To prove this to yourself, compile and run the short program shown in Listing 1-4, but without using /d.
Although the correct result should be 90000, the answer that is actually displayed is 24464. And you
will notice that no error message is displayed!
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As with illegal array references, BC would rather optimize for speed, and give you the option of using /
d as an aid for tracking down such errors as they occur. If you compile the program in Listing 1-4 with
the /d option, then BASIC will report the error as expected. 

Since an overflow resulting from integer operations is not technically an error as far as the CPU is
concerned, how, then, can BASIC trap for that? Although an error in the usual sense is not created,
there is a special flag variable within the CPU that is set whenever such a condition occurs. Further, a
little-used assembler instruction, INTO (Interrupt 4 if Overflow), will generate software Interrupt 4 if
that flag is set. Therefore, all BC has to do is create an Interrupt 4 handler, and then place an INTO
instruction after every integer math operation in the compiled code. The interrupt handler will receive
control and display an "Overflow" message whenever an INTO calls it. Since the INTO instruction is
only  one  byte  and  is  also  very  fast,  using  it  this  way  results  in  very  little  size  or  performance
degradation. 

X% = 30000
Y% = X% * 3
PRINT Y%

Listing 1-4: This brief program illustrates how overflow errors are handled in BASIC. 

Compiler Optimization

Designing a compiler for a language as complex as BASIC involves some very tricky programming
indeed. Although it is one thing to translate a BASIC source file into a series of assembly language
commands, it is another matter entirely to do it well! Consider that the compiler must be able to accept
a BASIC statement such as X! = ABS(SQR((Y# + Z!) ^VAL(Work$))), and reduce that to
the individual steps necessary to arrive at the correct result. 

Many, many details must be accounted for and handled, not the least of which are syntax or other errors
in the source code. Moreover, there are an infinite number of ways that a programmer can accomplish
the  same  thing.  Therefore,  the  compiler  must  be  able  to  recognize  many  different  programming
patterns,  and substitute  efficient  blocks  of assembler  code whenever  it  can.  This  is  the role  of an
optimizing compiler.

One  important  type  of  optimization  is  called  constant  folding.  This  means  that  as  much  math  as
possible is performed during compilation, rather than creating code to do that when the program runs.
For example, if you have a statement such as X = 4 * Y * 3 BC can, and does, change that to X =
Y * 12.  After all,  why multiply 3 times 4 later,  when the answer can be determined now? This
substitution is performed entirely by the BC compiler, without your knowing about it. 

Another important type of optimization is BASIC's ability to remember calculations it  has already
performed, and use the results again later if possible. BC is especially brilliant in this regard, and it can
look ahead many lines in your source code for a repeated use of the same calculations. Listing 1-5
shows a short fragment of BASIC source code, along with the resultant assembler output. 
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X% = 3 * Y% * 4
    MOV  AX,12               ;move the value 12 into AX
    IMUL WORD PTR [Y%]       ;Integer-Multiply that times Y%
    MOV  WORD PTR [X%],AX    ;assign the result in AX to X%

A% = S% * 100
    MOV  BX,AX               ;save the result from above in BX
    MOV  AX,100              ;then assign AX to 100
    IMUL WORD PTR [S%]       ;now multiply AX times S%
    MOV  WORD PTR [A%],AX    ;and assign A% from the result
Z% = Y% * 12
    MOV  WORD PTR [Z%],BX    ;assign Z% from the earlier result

Listing 1-5:  These short  code fragments illustrate how adept  BC is  at  reusing the result  of earlier
calculations already performed. 

As you can see in the first part of Listing 1-5, the value of 3 times 4 was resolved to 12 by the compiler.
Code was then generated to multiply the 12 times Y%, and the result is in turn assigned to X%. This is
similar to the compiled code examined earlier in Listing 1-1. Notice, however, that before the second
multiplication of S% is performed, the result currently in AX is saved in the BX register. Although AX
is destroyed by the subsequent multiplication of S% times 100, the result that was saved earlier in BX
can be used to assign Z% later on. Also notice that even though 3 * 4 was used first, BC was smart
enough to realize that this is the same as the 12 used later. 

While the compiler can actually look ahead in your source code as it works, such optimization will be
thwarted by the presence of line numbers and labels, as well as IF blocks. Since a GOTO or GOSUB
could jump to a labelled source line from anywhere in the program, there is no way for BC to be sure
that earlier statements were executed in sequence. Likewise, the compiler has no way to know which
path in an IF/ELSE block will be taken at run time, and thus cannot optimize across those statements. 

The BASIC Run-time Libraries

Microsoft compiled BASIC lets you create two fundamentally different types of programs. Those that
are entirely self-contained in one .EXE file are compiled with the /o command line switch. In this case,
the compiler creates translations such as those we have already discussed, and also generates calls to
the BASIC language routines contained in the library files supplied by Microsoft. When your compiled
program is  subsequently  linked,  only  those  routines  that  are  actually  used  will  be  added  to  your
program. 

When /o is not used, a completely different method is employed. In this case, a special .EXE file that
contains  support  for  every  BASIC statement  is  loaded  along  with  the  BASIC program when  the
program is  run from the  DOS command line.  As you are  about  to  see,  there  are  advantages  and
disadvantages to each method. For the purpose of this discussion I will refer to stand-alone programs as
BCOM programs, after the BCOMxx.LIB library name used in all versions of QuickBASIC. Programs
that instead require the BRUNxx.EXE library to be present at run time will be called BRUN programs. 
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Beginning with BASIC 7 PDS, the library naming conventions used by Microsoft have become more
obscure. This is because PDS includes a number of variations for each method, depending on the type
of "math package" that is specified when compiling and whether you are compiling a program to run
under DOS or OS/2. These variations will be discussed fully in Chapter 5, when we examine all of the
possible options that each compiler version has to offer. But for now, we will consider only the two
basic methods—BCOM and BRUN, which have the following primary differences: 

• BCOM programs  require  less  memory,  run  faster,  and  do  not  require  the  presence  of  the
BRUNxx. EXE file when the program is run. 

• BRUN programs occupy less disk space, and also allow subsequent chaining to other programs
that can share the common library code which is already resident. Chained-to programs also
load quickly because the BRUN library is already in memory. 

Stand-alone BCOM programs are always larger than an equivalent BRUN program because the library
code for PRINT, INSTR, and so forth is included in the final .EXE file. However, less memory will be
required when the  program runs,  since only  the code that  is  really  needed is  loaded into the  PC.
Likewise, a BRUN program will take less disk space, because it contains only the compiled code. The
actual  routines  to  handle  each BASIC statements  are  stored in  the  BRUNxx.LIB library,  and that
library is loaded automatically when the main program is run from DOS. 

You might think that since a BRUN program is physically smaller on disk it will load faster, but this is
not necessarily true. When you execute a BRUN program from the DOS command line, one of the first
things it does is load the BRUN.EXE support file. Since this support file is fairly large, the overall load
time will be much greater than the compiled BASIC program's file size would indicate. However, if the
main program subsequently chains to another BASIC program, that program will load quickly because
the BRUN file does not need to be loaded a second time. 

One  other  important  difference  between  these  two  methods  is  the  way  that  the  BASIC language
routines are accessed.  When a BCOM program is compiled and linked, the necessary routines  are
called in the usual fashion. That is, the compiler generates code that calls the routines in the BCOM
library directly. When the program is subsequently linked, the procedure names are translated by LINK
into the equivalent memory addresses.  That  is,  a call  to PRINT is  in effect translated from  CALL
B$PESD to CALL ####:####, where ####:#### is a segment and address. 
 
BRUN programs, on the other hand, instead use a system of interrupts to access the BASIC language
routines. Since there is no way for LINK to know exactly where in memory the BRUNxx.EXE file will
be ultimately loaded, the interrupt vector table located in low memory is  used to hold the various
routine addresses. Although many of these interrupt entries are used by the PC's system resources,
many others are available. Again, I will defer a thorough treatment of call methods and interrupts until
Chapter 11. But for now, suffice it to say that a direct call is slightly faster than an indirect call, where
the address to be called must first be retrieved from a table. 
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As an interesting  aside,  the  routines  in  the  BRUNxx.EXE file  in  fact  modify  the  caller's  code  to
perform a direct call, rather than an interrupt instruction. Therefore, the first time a given block of code
is executed, it calls the run-time routines through an interrupt instruction. Thereafter, the address where
the BRUN file has been loaded is known, and will be used the next time that same block of code is
executed. In practice, however, this improves only code that lies within a FOR/NEXT, WHILE, or DO
loop. Further, code that is executed only once will actually be much slower than in a BCOM program,
because of the added self-modification (the program changes itself) instructions. 

Notice that when BC compiles your program, it places the name of the appropriate library into the
object file. The name BC uses depends on which compiler options were given. This way you don't have
to specify the correct name manually, and LINK can read that name and act accordingly. Although
QuickBASIC provides only two libraries—one for BCOM programs and one for BRUN—BASIC PDS
offers a number of additional options. Each of these options requires the program to be linked with a
different library. That is, there are both BRUN and BCOM libraries for use with OS/2, for near and far
strings, and for using IEEE or Microsoft's alternate math libraries. Yet another library is provided for
8087-only operation. 

Granularity

Until now, we have examined only the actions and methods used by the BC compiler. However, the
process of creating an .EXE file that can be run from the DOS command line is not complete until the
compiled object file has been linked to the BASIC libraries. I stated earlier that when a stand-alone
program is created using the /o switch,  only those routines  in the BCOM library that  are actually
needed will be added to the program. Unfortunately, that is not entirely accurate. While it is true that
LINK is very smart and will bring in only those routines that are actually called, there is one catch. 

Imagine that you have written a BASIC program which is comprised of two separate modules. In one
file is the main program that contains only in-line code, and in the other are two BASIC subprograms.
Even if the main program calls only one of those subprograms, both will be added when the program is
linked. That is, LINK can resolve routines to the source file level only, but cannot extract a single
routine from an object module which contains multiple routines. Since an .LIB library file is merely a
collection of separate object modules, all of the routines that reside in a given module will be added to
a program, even if only one has been accessed. This property is called granularity, and it determines
how finely LINK can remove routines from a library. 

In the case of the libraries supplied with BASIC, the determining factor is which assembly language
routines were combined with which other  routines in  the same source file  by the programmers at
Microsoft. In QuickBASIC 4.5, for example, when a program uses the CLS statement, the routines that
handle COLOR, CSRLIN, POS(0), LOCATE, and the function form of SCREEN are also added. This
is true even if none of those other statements have been used. Fortunately, Microsoft has done much to
improve this situation in BASIC PDS, but there is still room for improvement. In BASIC PDS, CLS is
stored in a separate file, however POS(0), CSRLIN, and SCREEN are still together, as are COLOR and
LOCATE. 
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Obviously, Microsoft has their reasons for doing what they do, and I won't attempt to second guess
their expertise here. The BASIC language libraries are extremely complex and contain many routines.
(The QuickBASIC 4.5 BCOM45.LIB file contains 1,485 separate assembler procedures.) With such an
enormous number of assembly language source files to deal with, it no doubt makes a lot of sense to
organize  the  related  routines  together.  But  it  is  worth  mentioning that  Crescent  Software's  P.D.Q.
library can replace much of the functionality of the BCOM libraries, and with complete granularity. In
fact, P.D.Q. can create working .EXE programs from BASIC source that are less than 800 bytes in size.
 
Summary

In this chapter, you learned about the process of compiling, and the kinds of decisions a sophisticated
compiler such as Microsoft BASIC must make. In some cases, the BASIC compiler performs a direct
translation of your BASIC source code into assembly language, and in others it creates calls to existing
routines in the BCOM libraries. Besides creating the actual assembler code, BASIC must also allocate
space for all of the data used in a program. 

You also  learned some basics  about  assembly  language,  which  will  be  covered  in  more  detail  in
Chapter 12. However, examples in upcoming chapters will also use brief assembly language examples
to show the relative efficiency of different coding styles. In Chapter 2, you will learn how variables and
other data are stored in memory. 
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2
Variables and Data

Data Basics

In Chapter 1 you examined the role of a compiler, and learned how it translates BASIC source code
into the assembly language commands a PC requires. But no matter how important the compiler is
when creating a final executable program, it is only half of the story. This chapter discusses the equally
important  other  half:  data.  Indeed,  some form of  data  is  integral  to  the  operation  of  every  useful
program you will ever write. Even a program that merely prints "Hello" to the display screen requires
the data "Hello".

Data comes in many shapes and sizes, starting with a single bit, continuing through eight-byte double
precision variables, and extending all the way to multi-megabyte disk files. In this chapter you will
learn about the many types of data that are available to you, and how they are manipulated in a BASIC
program. You will also learn how data is stored and assigned, and how BASIC's memory management
routines operate.

Compiled BASIC supports two fundamental types of data (numeric and string), two primary methods
of storage (static and dynamic), and two kinds of memory allocation (near and far). Of course, the
myriad of data types and methods is not present to confuse you. Rather, each is appropriate in certain
situations. By fully understanding this complex subject, you will be able to write programs that operate
as quickly as possible, and use the least amount of memory.

I will discuss each of the following types of data: integer and floating point numeric data, fixed-length
and dynamic (variable-length) string data, and user-defined TYPE variables. Besides variables which
are  identified  by name,  BASIC supports  named constant  data  such as  literal  numbers  and quoted
strings.

I will also present a complete comparison of the memory storage methods used by BASIC, to compare
near versus far storage, and dynamic versus static allocation. It is important to understand that near
storage refers to variables and other data that compete for the same 64K data space that is often referred
to as Near Memory or Data Space. By contrast, far storage refers to the remaining memory in a PC, up
to the 640K limit that DOS imposes. 

The distinction between dynamic and static allocation is also important to establish now. Dynamic data
is allocated in whatever memory is available when a program runs, and it may be resized or erased as
necessary. Static data, on the other hand, is created by the compiler and placed directly into the .EXE
file. Therefore, the memory that holds static data may not be relinquished for other uses.
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Each type  of  data  has  its  advantages  and disadvantages,  as  does  each storage  method.  To use  an
extreme example, you could store all numeric data in string variables if you really wanted to. But this
would require using STR$ every time a value was to be assigned, and VAL whenever a calculation had
to be made. Because STR$ and VAL are relatively slow, using strings this way will greatly reduce a
program's performance. Further, storing numbers as ASCII digits can also be very wasteful of memory.
That is, the double precision value 123456789.12345 requires fifteen bytes, as opposed to the usual
eight.

Much of BASIC's broad appeal is that it lets you do pretty much anything you choose, using the style
of programming you prefer. But as the example above illustrates, selecting an appropriate data type can
have a decided impact on a program's efficiency. With that in mind, let's examine each kind of data that
can be used with BASIC, beginning with integers. 

Integers and Long Integers

An integer is the smallest unit of numeric storage that BASIC supports, and it occupies two bytes of
memory, or one "word". Although various tricks can be used to store single bytes in a one-character
string, the integer remains the most compact data type that can be directly manipulated as a numeric
value. Since the 80x86 microprocessor can operate on integers directly, using them in calculations will
be faster and require less code than any other type of data. An integer can hold any whole number
within the range of -32768 to 32767 inclusive, and it should be used in all situations where that range is
sufficient.  Indeed,  the  emphasis  on  using  integers  whenever  possible  will  be  a  recurring  theme
throughout this book.

When the range of integer values is not adequate in a given programming situation, a long integer
should be used. Like the regular integer, long integers can accommodate whole numbers only. A long
integer, however, occupies four bytes of memory, and can thus hold more information. This yields an
allowable range of values that spans from -2147483648 through 2147483647 (approximately +/- 2.15
billion).  Although the PC's  processor cannot  directly  manipulate  a  long integer  in  most  situations,
calculations using them will still be much faster and require less code when compared to floating point
numbers.

Regardless of which type of integer is being considered, the way they are stored in memory is very
similar. That is, each integer is comprised of either two or four bytes, and each of those bytes contains
eight bits. Since a bit can hold a value of either 0 or 1 only, you can see why a larger number of bits is
needed to accommodate a wider range of values. Two bits are required to count up to three, three bits to
count to seven, four bits to count to fifteen, and so forth.

A single byte can hold any value between 0 and 255, however that same range can also be considered
as spanning from -128 to 127. Similarly, an integer value can hold numbers that range from either 0 to
65535 or -32768 through 32767, depending on your perspective. When the range is considered to be 0
to 65535 the values are referred to as  unsigned,  because only positive values may be represented.
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BASIC does not,  however,  support unsigned integer  values.  Therefore,  that  same range is  used in
BASIC programs to represent values between -32768 and 32767. When integer numbers are considered
as using this range they are called signed.

If you compile and run the short program in the listing that follows, the transition from positive to
negative numbers will show how BASIC treats values that exceed the integer range of 32767. Be sure
not to use the /d debugging option,  since that will  cause an overflow error to be generated at  the
transition point. The BASIC environment performs the same checking as /d does, and it too will report
an error before this program can run to completion.

Number% = 32760
FOR X% = 1 TO 14
    Number% = Number% + 1
    PRINT Number%,
NEXT

Displayed result:

 32761     32762     32763     32764     32765
 32766     32767    -32768    -32767    -32766
-32765    -32764    -32763    -32762    -32761

As you can see, once an integer reaches 32767, adding 1 again causes the value to "wrap" around to
-32768. When Number% is further incremented its value continues to rise as expected, but in this case
by becoming "less negative". In order to appreciate why this happens you must understand how an
integer is constructed from individual bits. I am not going to belabour binary number theory or other
esoteric  material,  and  the  brief  discussion  that  follows  is  presented  solely  in  the  interest  of
completeness. 

Bits 'N' Bytes

Sixteen bits are required to store an integer value. These bits are numbered 0 through 15, and the least
significant bit is bit number 0. To help understand this terminology, consider the decimal number 1234.
Here,  4  is  the  least  significant  digit,  because  it  contributes  the  least  value  to  the  entire  number.
Similarly,  1  is  the  most  significant  portion,  because  it  tells  how  many  thousands  there  are,  thus
contributing  the  most  to  the  total  value.  The binary  numbers  that  a  PC uses  are  structured  in  an
identical manner. But instead of ones, tens, and hundreds, each binary digit represents the number of
ones, twos, fours, eights, and so forth that comprise a given byte or word.

To represent the range of values between 0 and 32767 requires fifteen bits, as does the range from
-32768 to  -1. When considered as signed numbers, the most significant bit is used to indicate which
range is being considered. This bit is therefore called the sign bit. Long integers use the same method
except that four bytes are used, so the sign bit is kept in the highest position of the fourth byte.

Selected portions of the successive range from 0 through  -1 (or 65535) are shown in Table 2-1, to
illustrate how binary counting operates. When counting with decimal numbers, once you reach 9 the
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number is wrapped around to 0, and then a 1 is placed in the next column. Since binary bits can count
only to one, they wrap around much more frequently. The Hexadecimal equivalents are also shown in
the table, since they too are related to binary numbering. That is, any Hex value whose most significant
digit is 8 or higher is by definition negative.

Signed
Decimal

Unsigned
Decimal

Binary Hex

0 0 0000 0000 0000 0000 00000

1 1 0000 0000 0000 0001 00001

2 2 0000 0000 0000 0010 00002

3 3 0000 0000 0000 0011 00003

4 4 0000 0000 0000 0100 00004

. . .

. . .

32765 32765 0111 1111 1111 1101 7FFD

32766 32766     0111 1111 1111
1110

7FFE

32767 32767 0111 1111 1111 1111 7FFF

-32768 32768 1000 0000 0000 0000 8000

-32767 32769 1000 0000 0000 0001 8001

-32766 32770 1000 0000 0000 0010 8002

. . .

. . .

-4 65531 1111 1111 1111 1100 FFFB

-3 65532 1111 1111 1111 1101 FFFC

-2 65533 1111 1111 1111 1110 FFFD

-1 65534 1111 1111 1111 1111 FFFE

0 65535 0000 0000 0000 0000 FFFF

Table 2-1: When a signed integer is incremented past 32767, its value wraps around and becomes
negative.

Memory Addresses and Pointers

Before we can discuss such issues  as  variable  and data  storage,  a  few terms must  be clarified.  A
memory address is a numbered location in which a given piece of data is said to reside. Addresses refer
to  places  that  exist  in  a  PC's  memory,  and they  are  referenced  by those  numbers.  Every  PC has
thousands of memory addresses in which both data and code instructions may be stored.
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A pointer is simply a variable that holds an address. Consider a single precision variable named Value
that has been stored by the compiler at memory address 10. If another variable—let's call it Address%
—is  then  assigned the  value  10,  Address% could  be considered  to  be  a  pointer  to  Value.  Pointer
variables are the bread and butter of languages such as C and assembler, because data is often read and
written by referring to one variable which in turn holds the address of another variable. 

MSBLSB

1011010001011001

X%

Address 10 Address 11 Address 12

Figure 2-1: An integer is stored in two adjacent memory locations, with the Least Significant Byte at
the lower address, and the Most Significant Byte at the higher.

Although BASIC shields you as the programmer from such details, pointers are in fact used internally
by the BASIC language library routines. This method of using pointers is sometimes called indirection,
because an additional, indirect step is needed to first go to one variable, get an address, and then go to
that address to access the actual data. Now let's see how these memory issues affect a BASIC program.

Integer Storage

When a conventional two-byte integer is stored in the PC's memory, the lower byte is kept in the lower
memory address. For example, if X% is said to reside at address 10, then the least significant byte is at
address 10 and the most significant byte is at address 11. Likewise, a long integer stored at address 102
actually occupies addresses 102 through 105, with the least significant portion at the lowest address.
This is shown graphically in Figure 2-1.

This arrangement certainly seems sensible, and it is. However, some people get confused when looking
at a range of memory addresses being displayed, because the values in lower addresses are listed at the
left and the higher address values are shown on the right. For example, the DEBUG utility that comes
with DOS will display the Hex number ABCD as CD followed by AB. I mention this only because the
order in which digits are displayed will become important when we discuss advanced debugging in
Chapter 4.

In  case  you  are  wondering,  the  compiler  assigns  addresses  in  the  order  in  which  variables  are
encountered. The first address used is generally 36 Hex, so in the program below the variables will be
stored at addresses 36, 38, 3A, and then 3C. Hex numbering is used for these examples because that's
the way DEBUG and CodeView report them.
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A% = 1         'this is at address &H36
B% = 2         'this is at address &H38
C% = 3         'this is at address &H3A
D% = 4         'this is at address &H3C

Floating Point Values

Floating point variables and numbers are constructed in an entirely different manner than integers.
Where integers  and long integers  simply use the  entire  two or  four  bytes  to  hold  a  single binary
number, floating point data is divided into portions. The first portion is called the mantissa, and it holds
the base value of the number. The second portion is the exponent, and it indicates to what power the
mantissa must be raised to express the complete value. Like integers, a sign bit is used to show if the
number is positive or negative.

The structure of single precision values in both IEEE and the original proprietary Microsoft Binary
Format (MBF) is  shown in Figure 2-2.  For IEEE numbers,  the sign bit  is  in the most  significant
position,  followed by eight exponent bits,  which are in  turn followed by 23 bits  for the mantissa.
Double precision IEEE values are structured similarly, except eleven bits are used for the exponent and
52 for the mantissa.

Double  precision  MBF numbers  use only  eight  bits  for  an exponent  rather  than eleven,  trading a
reduced absolute range for increased resolution. That is, there are fewer exponent bits than the IEEE
method uses, which means that extremely large and extremely small numbers cannot be represented.
However, the additional mantissa bits offer more absolute digits of precision.

Notice that with IEEE numbers, the exponent spans a byte boundary. This undoubtedly contributes to
the slow speed that  results  from using numbers in  this  format  when a coprocessor is  not  present.
Contrast that with Microsoft's MBF format in which the sign bit is placed between the exponent and
mantissa. This allows direct access to the exponent with fewer assembler instructions, since the various
bits don't have to be shifted around.
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The IEEE format:

MMMMMMMMMMMMMMMMEMMMMMMMSEEEEEEE

The MBF format:

MMMMMMMMMMMMMMMMSMMMMMMMEEEEEEEE

Figure 2-2: A single precision value is comprised of a Sign
bit,  eight  Exponent  bits,  and  23  bits  to  represent  the
Mantissa. Each letter shown here represents one bit, and the
bytes on the left are at higher addresses. 



The IEEE format is used in QuickBASIC 4.0 and later, and BASIC PDS unless the /fpa option is used.
BASIC PDS uses the /fpa switch to specify an alternate math package which provides increased speed
but with a slightly reduced accuracy. Although the /fpa format is in fact newer than the original MBF
used in interpreted BASIC and QuickBASIC 2 and 3, it is not quite as fast.

As was already mentioned, double precision data requires twice as many bytes as single precision.
Further, due to the inherent complexity of the way floating point data is stored, an enormous amount of
assembly language code is required to manipulate it. Common sense therefore indicates that you would
use single precision variables whenever possible, and reserve double precision only for those cases
where the added accuracy is truly necessary. Using either floating point variable type, however, is still
very much slower than using integers and long integers. Worse, rounding errors are inevitable with any
floating point method, as the following short program fragment illustrates.

FOR X% = 1 TO 10000
    Number! = Number! + 1.1
NEXT
PRINT Number!

Displayed result:

10999.52

Although the correct answer should be 11000, the result of adding 1.1 ten thousand times is incorrect
by a small amount. If you are writing a program that computes, say, tax returns, even this small error
will be unacceptable. Recognizing this problem, Microsoft developed a new Currency data type which
was introduced with BASIC PDS version 7.0.

The Currency data type is  a cross between an integer  and a floating point number.  Like a double
precision value, Currency data also uses eight bytes for storage. However, the numbers are stored in an
integer format with an implied scaling of 10000. That is, a binary value of 1 is used to represent the
value .0001, and a binary value of 20000 is treated as a 2. This yields an absolute accuracy to four
decimal places, which is more than sufficient for financial work. The absolute range of Currency data is
plus or minus 9.22 times 10 ^ 14 (± 9.22E14 or 922,000,000,000,000.0000), which is very wide indeed.
This type of storage is called Fixed-Point, because the number of decimal places is fixed (in this case
at four places).

Currency data offers the best compromise of all, since only whole numbers are represented and the
fractional portion is implied. Further, since a separate exponent and mantissa are not used, calculations
involving Currency data are extremely fast. In practice, a loop that adds a series of Currency variables
will run about half as fast as the same loop using long integers. Since twice as many bytes must be
manipulated, the net effect is an overall efficiency that is comparable to long integers. Compare that to
double  precision  calculations,  where  manipulating the  same eight  bytes  takes  more than  six times
longer.
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As you have seen, there is a great deal more to "simple" numeric data than would appear initially. But
this hardly begins to scratch the surface of data storage and manipulation in BASIC. We will continue
our tour of BASIC's data types with conventional dynamic (variable-length) strings, before proceeding
to fixed-length strings and TYPE variables. 

Dynamic Strings

One of  the  most  important  advantages  that  BASIC holds  over  all  of  the  other  popular  high-level
languages is its support for dynamic string data. In Pascal, for example, you must declare every string
that your program will use, as well as its length, before the program can be compiled. If you determine
during execution of the program that additional characters must be stored in a string, you're out of luck.

Likewise,  strings  in  C are treated internally  as  an array of single character  bytes,  and there is  no
graceful way to extend or shorten them. Specifying more characters than necessary will of course waste
memory,  and  specifying  too  few will  cause  subsequent  data  to  be  overwritten.  Since  C  performs
virtually no error checking during program execution, assigning to a string that is not long enough will
corrupt memory. And indeed, problems such as this cause untold grief for C programmers.

Dynamic string memory handling is built into BASIC, and those routines are written in assembly 
language. BASIC is therefore extremely efficient and very fast in this regard. Since C is a high-level 
language, writing an equivalent memory manager in C would be quite slow and bulky by comparison. I
feel it is important to point out BASIC's superiority over C in this regard, because C has an undeserved 
reputation for being a very fast and powerful language.

Compiled BASIC implements dynamic strings with varying lengths by maintaining a string descriptor
for each string. A string descriptor is simply a four-byte table that holds the current length of the string
as well as its current address. The format for a BASIC string descriptor is shown in Figure 2-3. In
QuickBASIC programs and BASIC PDS when far strings are not specified, all strings are stored in an
area of memory called the near heap. The string data in this memory area is frequently shuffled around,
as new strings are assigned and old ones are abandoned.

22



The lower two bytes in a string descriptor together hold the current length of the string, and the second
two bytes hold its address. The memory location at the bottom of Figure 2-3 is at the lowest address.
The short program below shows how you could access a string by peeking at its descriptor.

DEFINT A-Z

Test$ = "BASIC Techniques and Utilities"
Descr = VARPTR(Test$)
Length = PEEK(Descr) + 256 * PEEK(Descr + 1)
Addr = PEEK(Descr + 2) + 256 * PEEK(Descr + 3)

PRINT "The length is"; Length
PRINT "The address is"; Addr
PRINT "The string contains ";
FOR X = Addr TO Addr + Length - 1
  PRINT CHR$(PEEK(X));
NEXT

Displayed result:

The length is 17
The address is 15646 (this will vary)
The string contains BASIC Techniques and Utilities

Each time a string is assigned or reassigned, memory in the heap is claimed and the string's descriptor
is updated to reflect its new length and address. The old data is then marked as being abandoned, so the
space it occupied may be reclaimed later on if it is needed. Since each assignment claims new memory,
at some point the heap will become full. When this happens, BASIC shuffles all of the string data that
is currently in use downward on top of the older, abandoned data. This heap compaction process is
often referred to colorfully as garbage collection.

In practice, there are two ways to avoid having BASIC claim new space for each string assignment—
which takes time—and you should consider these when speed is paramount. One method is to use
LSET or RSET, to insert new characters into an existing string. Although this cannot be used to make a
string longer or shorter, it is very much faster than a straight assignment which invokes the memory
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Figure 2-3: Each string in a QuickBASIC program has
a  corresponding  string  descriptor,  which  holds  its
current length and address. The string in this example
has a length of ten characters (0A Hex) and its data is
presently at address 25778 (64B2 Hex).



management routines. The second method is to use the statement form of MID$, which is not quite as
fast as LSET, but is more flexible.

Microsoft BASIC performs some additional trickery as it manages the string data in a program. For
example,  whenever  a  string is  assigned,  an even number of  bytes  is  always requested.  Thus,  if  a
five-character string is reassigned to one with six characters,  the same space can be reused. Since
claiming new memory requires a finite amount of time and also causes garbage collection periodically,
this technique helps to speed up the string assignment process.

For example, in a program that builds a string by adding new characters to the end in a loop, BASIC
can reduce the number of times it must claim new memory to only every other assignment. Another
advantage to always allocating an even number of bytes is that the 80286 and later microprocessors can
copy two-byte words much faster than they can copy the equivalent number of bytes. This has an
obvious advantage when long strings are being assigned.

In most cases, BASIC's use of string descriptors is much more efficient than the method used by C and
other languages. In C, each string has an extra trailing CHR$(0) byte just to mark where it ends. While
using a single byte is less wasteful than requiring a four-byte table, BASIC's method is many times
faster. In C the entire string must be searched just to see how long it is, which takes time. Likewise,
comparing  and  concatenating  strings  in  C requires  scanning  both  strings  for  the  terminating  zero
character. The same operations in BASIC require but a single step to obtain the current length.

Pascal uses a method that is similar to BASIC's, in that it remembers the current length of the string.
The length is stored with the actual string data, in a byte just before the first character. Unfortunately,
using a single byte limits the maximum length of a Pascal string to only 255 characters. And again,
when a string is shortened in Pascal, the extra characters are not released for use by other data. But it is
only fair to point out that Pascal's method is both fast and compact. And since strings in C and Pascal
never move around in memory, garbage collection is not required.

Although a BASIC string descriptor uses four bytes of additional memory beyond that needed for the
actual data, this is only part of the story. An additional two bytes are needed to hold a special "variable"
called a back pointer. A back pointer is an integer word that is stored in memory immediately before
the actual string data, and it holds the address of the data's string descriptor. Thus, it is called a back
pointer because it points back to the descriptor, as opposed to the descriptor which points to the data.

Because of this back pointer, six additional bytes are actually needed to store each string, beyond the
number of characters that it contains. For example, the statement Work$ = "BASIC" requires twelve
bytes of data memory: five for the string itself, one more because an even number of bytes is always
claimed, four for the descriptor, and two more for a back pointer. Every string that is defined in a
program has a corresponding descriptor which is always present, however a back pointer is maintained
only while the string has characters assigned to it. Therefore, when a string is erased the two bytes for
its back pointer are also relinquished.
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I  won't  belabour  this  discussion  of  back  pointers  further,  because  understanding  them is  of  little
practical use. Suffice it to say that a back pointer helps speed up the heap compaction process. Since
the address portion of the descriptor must be updated whenever the string data is moved, this pointer
provides a fast link between the data being moved and its descriptor. By the way, the term "pointer"
refers to any variable that holds a memory address, regardless of what language is being considered. 

Far Strings in BASIC PDS

BASIC PDS offers an option to specify far strings, whereby the string data is not stored in the same
64K memory area that holds most of a program's data. The method of storage used for far strings is of
necessity much more complex than near strings, because both an address and a segment must be kept
track of. Although Microsoft has made it clear that the structure of far string descriptors may change in
the future, I would be remiss if this undocumented information were not revealed here. The following
description is valid as of BASIC 7.1 [it is still valid for VB/DOS too].

For each far string in a program, a four-byte descriptor is maintained in near memory. The lower two
bytes of the descriptor together hold the address of an integer variable that holds yet another address:
that of the string length and data. The second pair of bytes also holds the address of a pointer, in this
case  a  pointer  to  a  variable  that  indicates  the  segment  in  which  the  string  data  resides.  Thus,  by
retrieving the address and segment from the descriptor, you can locate the string's length and data,
albeit with an extra level of indirection.

It is interesting to note that when far strings are being used, the string's length is kept just before its
data, much like the way Pascal operates. Therefore, the address pointer holds the address of the length
word which immediately precedes the actual string data.

The short program that follows shows how to locate all of the components of a far string based on
examining its descriptor and related pointers. Notice that long integers are used to avoid the possibility
of an overflow error if the segment or addresses happen to be higher than 32767. This way you can run
the  program  in  the  QBX  [or  VB/DOS]  editing  environment.  Figure  2-4  in  turn  illustrates  the
relationship between the address and pointer information graphically.
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DEF FNPeekWord& (A&)
  FNPeekWord& = PEEK(A&) + 256& * PEEK(A& + 1)
END DEF

Work$ = "This is a test"

DescAddr& = VARPTR(Work$)
AddressPtr& = FNPeekWord&(DescAddr&)
SegmentPtr& = FNPeekWord&(DescAddr& + 2)
Segment& = FNPeekWord&(SegmentPtr&)

DEF SEG = Segment&
DataAddr& = FNPeekWord&(AddressPtr&)
Length% = FNPeekWord&(DataAddr&)
StrAddr& = DataAddr& + 2

PRINT "The descriptor address is:"; DescAddr&
PRINT "      The data segment is:"; Segment&
PRINT "            The length is:"; Length%
PRINT "The string data starts at:"; StrAddr&
PRINT "   And the string data is: ";

FOR X& = StrAddr& TO StrAddr& + Length% - 1
  PRINT CHR$(PEEK(X&));
NEXT

Displayed result (the addresses may vary):

The descriptor address is: 17220
      The data segment is: 40787
            The length is: 14
The string data starts at: 106
   And the string data is: This is a test
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Figure 2-4: A far string descriptor holds the addresses of other
addresses,  in  this  case  addresses  that  hold  a  far  string's
segment and its length and actual data.

This is a test

...................

000A

0070

..............03D4002E..............8F00

The string length

8F00:0070

Segment &H8F00

Segment &H8F00

The string data

8F00:002E
This is the "near" segment

Address 03D4 VARPTR(Work$)



DATA items in VB/DOS programs are still kept in near
memory, but quoted strings are now kept in a separate
segment.

Because two bytes are used to hold the segment, address, and length values, we must PEEK both of
them and combine the results. This is the purpose of the PeekWord function that is defined at the start
of the program. Note the placement of an ampersand after the number 256, which ensures that the
multiplication will not cause an overflow error. I will discuss such use of numeric constants and type
identifiers later in this chapter. 

Even in a far-string program, some of the string data will be near. For example, DATA items and quoted
string constants are stored in the same 64K DGROUP data segment that holds simple numeric and
TYPE variables. The same "indirect" method is used, whereby you must look in one place to get the
address of another  address.  In this  case,  however,  the "far"  segment  that is  reported is  simply the
normal near data segment. 

One final complication worth mentioning is that strings within a FIELD buffer (and possibly in other
special situations) are handled slightly differently. Since all of the strings in a FIELD buffer must be
contiguous, BASIC cannot store the length word adjacent to the string data.  Therefore,  a different
method must be used. This case is indicated by setting the sign bit (the highest bit) in the length word
as a flag. Since no string can have a negative length, that bit can safely be used for this purpose. When
a  string  is  stored  using  this  alternate  method,  the  bytes  that  follow the  length  word  are  used  as
additional pointers to the string's actual data segment and address.

Fixed-Length Strings

One  of  the  most  important  new  features  Microsoft  added  beginning  with  QuickBASIC  4.0  was
fixed-length  string  and  TYPE  variables.  Although  fixed-length  strings  are  less  flexible  than
conventional  BASIC  strings,  they  offer  many  advantages  in  certain  programming  situations.  One
advantage is that they are static, which means their data does not move around in memory as with
conventional  strings.  You can therefore obtain the address  of  a  fixed-length string just  once using
VARPTR, confident that this address will never change. With dynamic strings, SADD must be used
each time the address is needed, which takes time and adds code. Another important feature is that
arrays of fixed-length strings can be stored in far memory, outside of the normal 64K data area. We will
discuss near and far array memory allocation momentarily.

With every advantage,  however,  comes a disadvantage.  The most  severe limitation is  that  when a
fixed-length string is used where a conventional string is expected, BASIC must generate code to create
a temporary dynamic string, and then copy the data to it. That is, all of BASIC's internal routines that
operate on strings expect a string descriptor. Therefore, when you print a fixed-length string, or use
MID$ or INSTR or indeed nearly any statement or function that accepts a string, it must be copied to a
form that BASIC's internal routines can accept. In many cases, additional code is created to delete the
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temporary string afterward. In others, the data remains until the next time the same BASIC statement is
executed, and a new temporary string is assigned freeing the older one.

To  illustrate,  twenty  bytes  of  assembly  language  code  are  required  to  print  a  fixed-length  string,
compared to only nine for a conventional dynamic string. Worse, when a fixed-length string is passed
as an argument to a subprogram or function, BASIC not only makes a copy before passing the string,
but it also copies the data back again in case the subroutine changed it!  The extra steps the compiler
performs are shown as BASIC equivalents in the listing that follows.

'----- This is the code you write:

DIM Work AS STRING * 20
CALL TestSub(Work$)

'----- This is what BASIC actually does:

Temp$ = SPACE$(20)    'create a temporary string
LSET Temp$ = Work$    'copy Work$ to it
CALL TestSub(Temp$)   'call the subprogram
LSET Work$ = Temp$    'copy the data back again
Temp$ = ""            'erase the temporary data

As you can  imagine,  all  of  this  copying  creates  an  enormous  amount  of  additional  code  in  your
programs. Where only nine bytes are required to pass a conventional string to a subprogram, 64 are
needed  when  a  fixed-length  string  is  being  sent.  But  you  cannot  assume  unequivocally  that
conventional strings are always better or that fixed-length strings are always better. Rather, I can only
present  the facts,  and let  you decide based on the  knowledge of  what  is  really  happening.  In  the
discussion of debugging later in Chapter 4, you will learn how to use CodeView to see the code that
BASIC generates. You can thus explore these issues further, and draw your own conclusions.

User-Defined TYPE Variables

As I mentioned earlier, the TYPE variable is an important and powerful addition to modern compiled
BASIC.  Its  primary  purpose  is  to  let  programmers  create  composite  data  structures  using  any
combination of  native data  types.  C and Pascal  have  had such user-defined data  types  since their
inception, and they are called Structures and Records respectively in each language.

One immediately obvious use for being able to create a new, composite data type is to define the
structure of a random access data file. Another is to simulate an array comprised of varied types of data.
Obviously, no language can support a mix of different data types within a single array. That is, an array
cannot be created where some of the elements are, say, integer while others are double precision. But a
TYPE variable lets you do something very close to that, and you can even create arrays of TYPE
variables.
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In the listing that follows a TYPE is defined using a mix of integer, single precision, double precision,
and fixed-length string components. Also shown below is how a TYPE variable is dimensioned, and
how each of its components are assigned and referenced.

TYPE MyType
  I AS INTEGER
  S AS SINGLE
  D AS DOUBLE
  F AS STRING * 20
END TYPE

DIM MyData as MyType

MyData.I = 12       'assign the integer portion
MyData.S = 100.09   'and then the single part
MyData.D = 43.2E56  'and then the double
MyData.F = "Test"   'and finally the string

PRINT MyData.F      'now print the string

Once the TYPE structure has been established, the DIM statement must be used to create an actual
variable using that arrangement. Although DIM is usually associated with the definition of arrays, it is
also used to identify a variable name with a particular type of data. In this case, DIM tells BASIC to set
aside an area of memory to hold that many bytes. You may also use DIM with conventional variable
types. For example,  DIM LastName AS STRING or  DIM PayPeriod AS DOUBLE lets you
omit the dollar sign and pound sign when you reference them later in the program. In my opinion,
however, that style leads to programs that are difficult to maintain, since many pages later in the source
listing you may not remember what type of data is actually being referred to.

As you can see, a period is needed to indicate which portion of the TYPE variable is being referenced.
The base name is that given when you dimensioned the variable, but the portion being referenced is
identified using  the  name within the original  TYPE definition.  You cannot  print  a  TYPE variable
directly, but must instead print each component separately. Likewise, assignments to a TYPE variable
must also be made through its individual components, with two exceptions. You may assign an entire
TYPE variable from another identical TYPE directly, or from a dissimilar TYPE variable using LSET.

For example, if we had used DIM MyData AS MyType and then DIM HisData AS MyType,
the  entire  contents  of  HisData  could  be  assigned  to  MyData  using  the  statement  MyData =
HisData. Had HisData been dimensioned using a different TYPE definition, then LSET would be
required. That is, LSET MyData = HisData will copy as many characters from HisData as will fit
into MyData, and then pad the remainder, if any, with blanks.

It  is  important  to  understand that  this  behavior  can  cause strange results  indeed.  Since CHR$(32)
blanks are used to pad what remains in the TYPE variable being assigned, numeric components may
receive some unusual values. Therefore, you should assign differing TYPE variables only when those
overlapping portions being assigned are structured identically. 
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Arrays Within Types

With the introduction of BASIC PDS, programmers may also establish static arrays within a single
TYPE definition. An array is dimensioned within a TYPE as shown in the listing that follows. As with
a conventional DIM statement for an array, the number of elements are indicated and a non-zero lower
bound may optionally be specified. Please understand, though, that you cannot use a variable for the
number of elements in the array. That is, using PayHistory(1 TO NumDates) would be illegal.

TYPE ArrayType
  AmountDue AS SINGLE
  PayHistory(1 TO 52) AS SINGLE
  LastName AS STRING * 15
END TYPE

DIM TypeArray AS ArrayType

There are several advantages to using an array within a TYPE variable. One is that you can reference a
portion  of  the  TYPE  by  using  a  variable  to  specify  the  element  number.  For  example,
TypeArray.PayHistory(PayPeriod) = 344.95 will  assign the value 344.95 to element
number PayPeriod. Without the ability to use an array, each of the 52 components would need to be
identified by name. Further, arrays allows you to define a large number of TYPE elements with a single
program statement. This can help to improve a program's readability.

Static versus Dynamic Data

Preceding sections have touched only briefly on the concept of static and dynamic memory storage.
Let's  now explore  this  subject  in  depth,  and learn  which  methods  are  most  appropriate  in  which
situations.

By definition, static data is that which never changes in size, and never moves around in memory. In
compiled BASIC this definition is further extended to mean all data that is stored in the 64K near
memory area known as DGROUP. This includes all numeric variables, fixed-length strings, and TYPE
variables.  Technically  speaking,  the  string  descriptors  that  accompany  each  conventional  (not
fixed-length) string are also considered to be static, even though the string data itself is not. The string
descriptors  that  comprise  a  dynamic  string  array,  however,  are  dynamic  data,  because  they  move
around in memory (as a group) and may be resized and erased.

Numeric arrays that are dimensioned with constant (not variable) subscripts are also static, unless the
'$DYNAMIC  metacommand  has  been  used  in  a  preceding  program  statement.  That  is,  DIM
Array#(0 TO 100) will  create  a  static  array,  while  DIM Array#(0 TO MaxElements)
creates a dynamic array. Likewise, arrays of fixed-length strings and TYPE variables will be static, as
long as numbers are used to specify the size.

There are advantages and disadvantages to each storage method. Access to static data is always faster
than access to dynamic data, because the compiler knows the address where the data resides at the time
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it creates your program. It can therefore create assembly language instructions that go directly to that
address. In contrast, dynamic data always requires a pointer to hold the current address of the data. An
extra step is therefore needed to first get the data address from that pointer, before access to the actual
data is possible. Static data is also in the near data segment, thus avoiding the need for additional code
that switches segments.

The overwhelming disadvantage of static data, though, is that it may never be erased. Once a static
variable or array has been used in a program, the memory it occupies can never be released for other
uses. Again, it is impossible to state that static arrays are always better than dynamic arrays or vice
versa. Which you use must be dictated by your program's memory requirements, when compared to its
execution speed. 

Dynamic Arrays

You have already seen how dynamic strings operate, by using a four-byte pointer table called a string
descriptor. Similarly, a dynamic array also needs a table to show where the array data is located, how
many  elements  there  are,  the  length  of  each  element,  and  so  forth.  This  table  is  called  an  array
descriptor, and it is structured as shown in Table 2-2.

There is little reason to use the information in an array descriptor in a BASIC program, and indeed,
BASIC provides no direct way to access it anyway. But when writing routines in assembly language for
use with BASIC, this knowledge can be quite helpful. As with BASIC PDS far string descriptors, none
of  this  information is  documented,  and relying on it  is  most  certainly not endorsed by Microsoft.
Perhaps that's what makes it so much fun to discuss!

Technically speaking, only dynamic arrays require an array descriptor, since static arrays do not move
or change size. But BASIC creates an array descriptor for every array, so only one method of code
generation is necessary. For example, when you pass an entire array to a subprogram using empty
parentheses, it is the address of the array descriptor that is actually sent. The subprogram can then
access the data through that descriptor, regardless of whether the array is static or dynamic. 
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Offset Size Description

00 02 Address where array data begins

00 02 Segment where that address resides

04 02 Far heap descriptor, pointer

06 02 Far heap descriptor, block size

08 01 Number of dimensions in the array

09 01 Array type and storage method:
Bit 0 set = far array
Bit 1 set = huge (/ah) array
Bit 6 set = static array
Bit 7 set = string array

0A 02 Adjusted Offset

0C 02 Length in bytes of each element

0E 02 Number of elements in the last dimension (UBOUND - LBOUND + 1)

10 02 First element number in that dimension (LBOUND)

12 03 Number of elements in the second from last dimension

14 02 First element number in that dimension. Repeat number of elements and first 
element number as necessary, through the first dimension

Table 2-2: Every array in a BASIC program has an associated array descriptor such as the one shown
here. This descriptor contains important information about the array.

The first four bytes together hold the segmented address where the array data proper begins in memory.
Following  the  standard  convention,  the  address  is  stored  in  the  lower  word,  with  the  segment
immediately following.

The next two words comprise the Far Heap Descriptor, which holds a pointer to the next dynamic array
descriptor and the current  size of the array.  For static arrays  both of these entries are  zero.  When
multiple dynamic arrays are used in a program, the array descriptors are created in static DGROUP
memory in the order BC encounters them. The Far Heap Pointer in the first array therefore points to the
next array descriptor in memory. The last descriptor in the chain can be identified because it points to a
word that holds a value of zero.

The block size portion of the Far Heap Descriptor holds the size of the array, using a byte count for
string arrays and a "paragraph" count for numeric, fixed-length, and TYPE arrays. For string arrays—
whether near or far—the byte count is based on the four bytes that each descriptor occupies. With
numeric arrays the size is instead the number of 16-byte paragraphs that are needed to store the array.
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The  next  entry  is  a  single  byte  that  holds  the  number  of  dimensions  in  the  array.  That  is,  DIM
Array(1 TO 10) has one dimension and DIM Array(1 TO 10, 2 TO 20) has two.

The next item is also a byte, and it is called the Feature byte because the various bits it holds tell what
type of array it is. As shown in the table, separate bits are used to indicate if the array is stored in far
memory, whether or not /ah was used to specify huge arrays, if the array is static, and if it is a string
array. Multiple bits are used for each of these array properties, since they may be active in combination.
However, BASIC never sets the far and huge bits for string arrays, even when the PDS /fs option is
used and the strings are in fact in far memory. 

Of particular interest is the Adjusted Offset entry. Even though the segmented address where the array
data begins is the first entry in the descriptor, it is useful only when the first element number in the
array is zero. This would be the case with DIM Array(0 TO N), or simply DIM Array(N). To
achieve the fastest performance possible when retrieving or assigning a given element, the Adjusted
Offset is calculated when the array is dimensioned to compensate for an LBOUND other than 0.

For example, if an integer array is dimensioned starting at element 1, the Adjusted Offset is set to point
two bytes before the actual starting address of the data. This way, the compiler can take the specified
element number, multiply that times two (each element comprises two bytes), and then add that to the
Adjusted Offset to immediately point at the correct element in memory. Otherwise, additional code
would be needed to subtract the LBOUND value each time the array is accessed. Since the array's
LBOUND is simply constant information, it would be wasteful to calculate that repeatedly at run time.
Of  course,  the  Adjusted  Offset  calculation  is  correspondingly  more  complex  when  dealing  with
multi-dimensional arrays.

The remaining entries identify the length of each element in bytes, and the upper and lower bounds.
String arrays always have a 4 in the length location, because that's the length of each string descriptor.
A separate pair of words is needed for each array subscript, to identify the LBOUND value and the
number  of  elements.  The UBOUND is  not  actually  stored in  the array descriptor,  since  it  can  be
calculated very easily  when needed.  Notice that  for  multi-dimensional  arrays,  the last  (right-most)
subscript is identified first, followed by the second from the last, and continuing to the first one.
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One final note worth mentioning about dynamic array storage is the location in memory of the first 
array element. For numeric arrays, the starting address is always zero, within the specified segment. (A 
new segment can start at any 16-byte address boundary, so at most 15 bytes may be wasted.)  However,
BASIC sometimes positions fixed-length string and TYPE arrays farther into the segment. BASIC will 
not allow an array element to span a segment boundary under any circumstances. This could never 
happen with numeric data, because each element has a length that is a power of 2. That is, 16,384 long 
integer elements will exactly fit in a single 64K segment. But when a fixed-length string or TYPE array
is created, nearly any element length may be specified.

For example, if you use REDIM Array(1 TO 10) AS STRING * 13000, 130,000 bytes are
needed and element 6 would straddle a segment. To prevent that from happening, BASIC's dynamic
DIM routine fudges the first element to instead be placed at address 536. Thus, the last byte in element
5 will be at the end of the 64K segment, and the first byte in element 6 will fall exactly at the start of
the second 64K code segment. The only limitation is that arrays with odd lengths like this can never
exceed 128K in total size, because the inevitable split would occur at the start of the third segment.
Arrays whose element lengths are a power of 2, such as 32 or 4096 bytes, do not have this problem.
(Bear in mind that 1K is actually 1,024 bytes, so 128K really equals 131,072 bytes.) This is shown
graphically above in Figure 2-5.

Far Data Versus Near Data

We have already used the terms "near" and "far" to describe BASIC's data, and now let's see exactly
what  they  mean.  The  8086  family  of  microprocessors  that  are  used  in  IBM  PC and  compatible
computers use what is called a  segmented architecture. This means that while an 8086 can access a
megabyte of memory, it can do so only in 64K blocks at a time. Before you think this is a terrible way
to design a CPU, consider the alternative.

For example, the 68000 family used in the Apple Macintosh and Atari computers use linear addressing,
whereby any data anywhere may be accessed without restriction. But the problem is that with millions
of possible addresses, many bytes are needed to specify those addresses. Because the data segment is
implied when dealing with an 80x86, a single integer can refer to any address quickly and with very
little code.  Therefore,  assembler instructions for the 68000 that reference memory tend to be long,
making those programs larger.

Since being able to manipulate only one 64K segment is restrictive, the 8086's designers provided four
different segment registers. One of these, the DS (Data Segment) register, is set to specify a single
segment, which is then used by the program as much as possible. This data segment is also named
DGROUP, and it holds all of the static data in a BASIC program. Again, data in DGROUP can be
accessed much faster and with less code than can data in any other segment. In order to assign an
element in a far array, for example, BASIC requires two additional steps which generates additional
code. The first step is to retrieve the array's segment from the array descriptor, and the second is to
assign the ES (Extra Segment) register to access the data.
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Far data in a BASIC program therefore refers to any data that is outside of the 64K DGROUP segment.
Technically, this could encompass the entire 1 Megabyte that DOS recognizes, however the memory
beyond 640K is reserved for video adapters, the BIOS, expanded memory cards, and the like. BASIC
uses far memory (outside the 64K data segment but within the first 640K) for numeric, fixed-length
string, and TYPE arrays, although BASIC PDS can optionally store conventional strings there when the
/fs (Far String) option is used. Communications buffers are also kept in far memory, and this is where
incoming characters are placed before your program actually reads them.

Near memory is therefore very crowded, with many varied types of data competing for space. Earlier I
stated that all variables, static arrays, and quoted strings are stored in near memory (DGROUP). But
other BASIC data is also stored there as well.  This includes DATA items, string descriptors, array
descriptors, the stack, file buffers, and the internal working variables used by BASIC's run-time library
routines.

When you open a disk file for input, an area in near memory is used as a buffer to improve the speed of
subsequent reads. And like subprograms and functions that you write, BASIC's internal routines also
need their own variables to operate. For example, a translation table is maintained in DGROUP to
relate the file numbers you use when opening a file to the file handles that DOS issues.

One final note on the items that compete for DGROUP is that in many cases data is stored twice. When
you use READ to assign a string from a DATA item, the data itself remains at the DATA statement, and
is also duplicated in the string being assigned. There is simply no way to remove the original data.
Similarly, when you assign a string from a constant as in Message$ = "Press any key", the
original quoted string is always present, and Message$ receives a second copy. When string space is
very tight, the only purely BASIC solution is to instead store the data in a disk file.

Speaking of DATA, bear in mind that reading numeric variables is relatively slow and often even more
wasteful. Since all DATA items are stored as strings, each time you use READ the VAL routine is
called internally by BASIC. VAL is not a particularly fast operation, because of the complexity of what
it must do. Worse, by storing numbers as strings, even more memory can be wasted than you might
think. For example, storing an integer value such as -20556 requires six bytes as a string, even though it
will be placed ultimately into a two-byte integer.

Assessing Memory with FRE()

Since memory is very important to the operation of most programs, it is often useful to know how
much of it is available at any given moment. BASIC provides the FRE function to do this, however
there are a number of variations in its use. Let's take an inside look at the various forms of FRE, and
see how they can be put to good use.

There are no less than six different arguments that can be used with FRE. The first  to consider is
FRE(0), which reports the amount of free string space but without first compacting the string pool.
Therefore, the value returned by FRE(0) may be much lower than what actually could be available.
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FRE when used with a string argument, for example FRE("") or FRE(Temp$), also returns the amount
of  DGROUP memory  that  is  available,  however  it  first  calls  the  heap  compaction  routines.  This
guarantees that the size reported accurately reflects what is really available.

Although FRE(0) may seem to be of little value, it  is in fact much faster than FRE when a string
argument is given. Therefore, you could periodically examine FRE(0), and if it becomes unacceptably
low use FRE("") to determine the actual amount of memory that is available. With BASIC PDS far
strings, FRE(0) is illegal, FRE("") reports the number of bytes available for temporary strings, and
FRE(Any$)  reports  the  free  size  of  the  segment  in  which  Any$  resides.  Temporary  strings  were
discussed earlier,  when we saw how they are  used when passing  fixed-length  string arguments  to
procedures.

FRE(-1) was introduced beginning with QuickBASIC 1, and it reports the total amount of memory that
is currently available for use with far arrays. Thus, you could use it in a program before dimensioning a
large numeric array, to avoid receiving an "Out of memory" error which would halt your program.
Although there is a distinction between near and far memory in any PC program, BASIC does an
admirable job of making available as much memory as you need for various uses. For example, it is
possible to have plenty of near memory available, but not enough for all of the dynamic arrays that are
needed. In this case, BASIC will reduce the amount of memory available in DGROUP, and instead
relinquish it for far arrays.

FRE(-1) is also useful if you use SHELL within your programs, because at least 20K or so of memory
is needed to load the necessary additional copy of COMMAND.COM. It is interesting to observe that
not having enough memory to execute a SHELL results in an "Illegal function call" error, rather than
the expected "Out of memory".

FRE(-2) was added to QuickBASIC beginning with version 4.0, and it reports the amount of available
stack space. The stack is a special area within DGROUP that is used primarily for passing the addresses
of variables and other data to subroutines. The stack is also used to store variables when the STATIC
option  is  omitted  from  a  subprogram  or  function  definition.  I  will  discuss  static  and  non-static
subroutines later in Chapter 3, but for now suffice it to say that enough stack memory is necessary
when many variables are present and STATIC is omitted.

FRE(-3)  was added with  BASIC PDS,  mainly  for  use  within  the  QBX editing  environment.  This
newest variant reports the amount of expanded (EMS) memory that is available, although EMS cannot
be accessed by your programs directly using BASIC statements. However, QBX uses that memory to
store subroutines and optionally numeric, fixed-length, and TYPE arrays. The ISAM file handler that
comes with BASIC PDS can also utilize expanded memory, as can the PDS overlay manager.

SETMEM and STACK

Besides the various forms of the FRE function, SETMEM can be used to assess the size of the far heap,
as well as modify that size if necessary. The STACK function is available only with BASIC PDS, and it
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reports the largest possible size the stack can be set to. Let's see how these functions can be useful to
you.

Although SETMEM is technically a function (because it returns information), it is also used to re-size
the far heap. When given an argument of zero, SETMEM returns the current size of the far heap.
However, this value is not the amount of memory that is free. Rather, it is the maximum heap size
regardless of what currently resides there. The following short program shows this in context.

PRINT SETMEM(0)         'display the heap size
REDIM Array!(10000)     'allocate 40,000 bytes
PRINT SETMEM(0)         'the total size remains

Displayed result (the numbers will vary):

276256
276256

When a program starts, the far heap is set as large as possible by BASIC and DOS, which is sensible in
most cases. But there are some situations in which you might need to reduce that size, most notably
when calling C routines that need to allocate their own memory. Also, BASIC moves arrays around in
the  far  heap  as  arrays  are  dimensioned  and  then  erased.  This  is  much  like  the  near  heap  string
compaction that is performed periodically. If the far heap were not rearranged periodically, it is likely
that many small portions would be available, but not a single block sufficient for a large array.

In some cases a program may need to claim memory that is guaranteed not to move. Therefore, you
could ask SETMEM to relinquish a portion of the far heap, and then call a DOS interrupt to claim that
memory for your  own use.  (DOS provides  services  to allocate  and release memory,  which C and
assembly language programs use to dimension arrays manually.)  Unlike BASIC, DOS does not use
sophisticated heap management techniques, therefore the memory it manages does not move. I will
discuss using SETMEM this way later on in Chapter 12.

Finally, the STACK function will report the largest amount of memory that can be allocated for use as a
stack. Like SETMEM, it doesn't reflect how much of that memory is actually in use. Rather, it simply
reports how large the stack could be if you wanted or needed to increase it. Because the stack resides in
DGROUP, its maximum possible size is dependent on how many variables and other data items are
present.

When run in the QBX environment, the following program fragment shows how creating a dynamic
string array reduces the amount of memory that could be used for the stack. Since the string descriptors
are kept in DGROUP, they impinge on the potentially available stack space.

PRINT STACK
REDIM Array$(1000)
PRINT STACK
ERASE Array$
PRINT STACK
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Displayed result:

47904
43808
47904

Since BASIC PDS does not support FRE(0), the STACK function can be used to determine how much
near  memory  is  available.  The  only  real  difference  between  FRE(0)  and  STACK is  that  STACK
includes  the  current  stack  size,  where  FRE(0)  does  not.  The  STACK function  is  mentioned  here
because it relates to assessing how much memory is available for data. Sizing the stack will be covered
in depth in Chapter 3, when we discuss subprograms, functions, and recursion.

VARPTR, VARSEG, and SADD

One of the least understood aspects of BASIC programming is undoubtedly the use of VARPTR and its
related functions, VARSEG and SADD. Though you probably already know that VARPTR returns the
address of a variable, you might be wondering how that information could be useful. After all, the
whole  point  of  a  high-level  language  such  as  BASIC is  to  shield  the  programmer  from variable
addresses,  pointers,  and other messy low-level  details.  And by and large,  that is  correct.  Although
VARPTR is not a particularly common function, it can be invaluable in some programming situations.

VARPTR is a built-in BASIC function which returns the address of any variable. VARSEG is similar,
however it reports the memory segment in which that address is located. SADD is meant for use with
conventional (not fixed-length) strings only, and it tells the address where the first character in a string
begins. In BASIC PDS, SSEG is used instead of VARSEG for conventional strings, to identify the
segment in which the string data is kept. Together, these functions identify the location of any variable
in memory.

The primary use for  VARPTR in purely BASIC programming is  in  conjunction with BSAVE and
BLOAD, as well as PEEK and POKE. For example, to save an entire array quickly to a disk file with
BSAVE, you must  specify the address where the array is  located.  In most cases VARSEG is also
needed, to identify the array's segment as well. When used on all simple variables, static arrays, and all
string arrays, VARSEG returns the normal DGROUP segment. When used on a dynamic numeric array,
it instead returns the segment at the which the specified element resides.

The short example below creates and fills an integer array, and then uses VARSEG and VARPTR to
save it very quickly to disk.

REDIM Array%(1 TO 1000)

FOR X% = 1 TO 1000
  Array%(X%) = X%
NEXT

DEF SEG = VARSEG(Array%(1))
BSAVE "ARRAY.DAT", VARPTR(Array%(1)), 2000
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Here, DEF SEG indicates in which segment the data that BSAVE will be saving is located. VARPTR is
then used to specify the address within that segment. The 2000 tells BSAVE how many bytes are to be
written to disk, which is determined by multiplying the number of array elements times the size of each
element. We will come back to using VARPTR repeatedly in Chapter 11 when we discuss accessing
DOS and BIOS services with CALL Interrupt. However, it is important to point out here exactly how
VARPTR and VARSEG work with each type of variable.

When VARPTR is used with a numeric variable, as in Address = VARPTR(Value!), the address
of the first byte in memory that the variable occupies is reported. Value! is a single-precision variable
which spans four bytes of memory, and it is the lowest of the four addresses that is returned. Likewise,
VARPTR when used with static fixed-length string and TYPE variables reports  the lowest address
where the data begins. But when you ask for the VARPTR of a string variable, what is returned is the
address of the string's descriptor.

To obtain the address of the actual  data  in  a string requires the SADD (String Address)  function.
Internally, BASIC simply looks at the address portion of the string descriptor to retrieve the address.
Likewise, the LEN function also gets its information directly from the descriptor. When used with any
string, VARSEG always reports the normal DGROUP data segment, because that is where all strings
and their descriptors are kept. 

Beginning with BASIC PDS and its support for far strings, the SSEG function was added to return the
segment where the string's data is stored. But even when far strings are being used, VARSEG always
returns the segment for the descriptor, which is in DGROUP.

SADD is not legal with a fixed-length string, and you must instead use VARPTR. Perhaps in a future
version BASIC will allow either to be used interchangeably. SADD is likewise illegal for use with the
fixed-length string portion of a TYPE variable or array. Again, VARPTR will return the address of any
component in a TYPE, within the segment reported by VARSEG.

Another important use for VARPTR is to assist passing arrays to assembly language routines. When a
single  array  element  is  specified  using  early  versions  of  Microsoft  compiled  BASIC,  the  starting
address of the element is sent as expected. Beginning with QuickBASIC 4.0 and its support for far data
residing in multiple segments, a more complicated arrangement was devised. Here's how that works.

When an element in a dynamic array is passed as a parameter, BASIC makes a copy of the element into
a temporary variable in near memory, and then sends the address of the copy. When the routine returns,
the data in the temporary variable is copied back to the original array element, in case the called routine
changed the data. In many cases this behavior is quite sensible, since the called routine can assume that
the variable is in near memory and thus operate that much faster.

Further, BASIC subroutines require a non-array parameter (not passed with empty parentheses) to be in
DGROUP. That is, any time a single element in an integer array is passed to a routine, that routine
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would be designed to expect a single integer variable. This is shown in the brief example below, where
a single element in an array is passed, as opposed to the entire array.

REDIM Array%(1 TO 100)
Array%(25) = -14
CALL MyProc(Array%(25))      'pass one element
.
.
.
SUB MyProc(IntVar%) STATIC   'this sub expects a
  PRINT IntVar%              '  single variable
END SUB

Displayed result:

-14

Unfortunately, this copying not only generates a lot of extra code to implement, it also takes memory
from DGROUP to hold the copy, and that memory is taken permanently. Worse still, each occurrence of
an array element passed in a CALL statement reserves however many bytes are needed to store the
element. For a large TYPE structure this can be a lot of memory indeed!

So you won't think that I'm being an alarmist about this issue, here are some facts based on programs
compiled using BASIC 7.1 PDS. These examples document the amount  of  additional  code that  is
generated to pass a near string array element as an argument to a subprogram or function.

Passing a string array element requires 56 bytes when a copy is made, compared to only 17 when it is
not. The same operations in QuickBASIC 4.5 create 47 and 18 bytes respectively, so QB 4.5 is actually
better when making the copy, but a tad worse when not. The code used in these examples is shown
below, and Array$ is a dynamic near string array. (I will  explain the purpose of BYVAL in just a
moment.)  Again, the difference in byte counts reflects the additional code that BC creates to assign and
then delete the temporary copies.

CALL Routine(Array$(2))
CALL Routine(BYVAL VARPTR(Array$(2)))

Worse still, with either compiler 73 bytes of code are created to pass an element in a TYPE array the
usual way, compared to 18 when the copying is avoided. And this byte count does not include the
DGROUP memory required to hold the copy. Is that reduction in code size worth working for?  You bet
it is!  And best of all, hardly any extra effort is needed to avoid having BASIC make these copies—just
the appropriate knowledge. 

The key, as you can see, is VARPTR. If you are calling an assembly language routine that expects a
string and you want to pass an element from a string array, you must use BYVAL along with VARPTR.
CALL Routine(BYVAL VARPTR(Array$(Element))) is  functionally  identical  to  CALL
Routine(Array$(Element)), although they sure do look different.  In either case, the integer
address of a string is passed to the routine. 
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Unlike the usual way that BASIC passes a variable by sending its address, BYVAL instead sends the
actual data. In this case, the value of an address is what we wanted to begin with anyway. (Without the
BYVAL, BASIC would make a temporary copy of the integer value that VARPTR returns, and send the
address  of  that  copy.)  Best  of  all,  asking  for  the  address  directly  defeats  the  built-in  copying
mechanism. Although creating a copy of a far numeric array element is sensible as we saw earlier, it is
not clear to me why BC does this with string array data that is in DGROUP already.

Although you can't normally send an integer—which is what VARPTR actually returns—to a BASIC
subprogram that expects a string, you can if that subprogram is in a different file and the files are
compiled separately. This will also work if the BASIC code has been pre-compiled and placed in a
Quick Library.

But there is another, equally important reason to use VARPTR with array elements. If you are calling
an assembler routine that will sort an array, it must have access to the array element's address, and not
the address of a copy. All of the elements in any array are contiguous, and a sort routine would need to
know where in memory the first element is located. From that it can then access all of the successive
elements.  With  VARPTR we are  telling  BASIC that  what  is  needed  is  the  actual  address  of  the
specified element.

Bear  in  mind  that  this  relates  primarily  to  passing  arrays  to  assembly  language (and possibly  C)
routines only. After all, if you are designing a sort routine using purely BASIC commands, you would
pass and receive the array using empty parentheses. Indeed, this is yet another important advantage that
BASIC holds over C and Pascal, since neither of those languages have array descriptors. Writing a sort
routine in C requires that you do all of the work to locate and compare each element in turn, based on
some base starting address.

There is one final issue that we must discuss, and that is passing far array data to external assembly
language routines. I already explained that by making a copy of a far array element, the called routine
does  not  have to  be written to deal  with far  (two-word segmented)  addresses.  But  in  some cases,
writing a routine that way will be more efficient. Further, like C, assembly language routines thrive on
manipulating pointers to data. Although an assembler routine could be written to read the segment and
address from the array descriptor, this is not a common method. One reason is that if Microsoft changes
the format of the descriptor, the routine will no longer work. Another is that it is frankly easier to have
the caller simply pass the full segmented address of the first element.

This brings us to the SEG directive, which is a combination of BYVAL and VARPTR and also BYVAL
and VARSEG. As with BYVAL VARPTR, using SEG before a variable or array element in a call tells
BASIC  that  the  value  of  the  array's  full  address  is  needed.  A typical  example  would  be  CALL
Routine(SEG Array#(1)), and in this case, BASIC sends not one address word but two to the
routine.

You could also pass the full address of an array element by value using VARSEG and VARPTR, and
this next example produces the identical result: CALL Routine(BYVAL VARSEG(Array#(1)),
BYVAL VARPTR(Array#(1))).  Using  SEG  results  in  somewhat  less  code,  though,  because
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BASIC will obtain the segment and address in a single operation. In fact, this is one area where the
compiler does a poor job of optimizing, because using VARSEG and VARPTR in a single program
statement generates a similar sequence of code twice.

There is one unfortunate complication here, which arises when SEG is used with a fixed-length string
array. What SEG should do in that case is pass the segmented address of the specified element. But it
doesn't. Instead, BASIC creates a temporary copy of the specified element in a conventional dynamic
string, and then passes the segmented address of the copy's descriptor. Of course, this is useless in most
programming situations.

There are two possible solutions to this problem. The first is to use the slightly less efficient BYVAL
VARSEG and BYVAL VARPTR combination as shown above. The second solution is to create an
equivalent fixed-length string array by using a dummy TYPE that is comprised solely of a single string
component. Since TYPE variables are passed correctly when SEG is used, using a TYPE eliminates the
problem. Both of these methods are shown in the listing that follows.

'----- this creates more code and looks clumsy

REDIM Array(1 TO 1000) AS STRING * 50
CALL Routine(BYVAL VARSEG(Array(1)), BYVAL VARPTR(Array(1))) 

'----- this creates less code and reads clearly

TYPE FLen
  S AS STRING * 100
END TYPE
REDIM Array(1 TO 1000) AS FLen
CALL Routine(SEG Array(1))

Although SEG looks like a single parameter is being passed, in fact two integers are sent to the called
routine—a segment and an address. This is why a single SEG can replace both a VARSEG and a
VARPTR in one call. Chapter 12 will return to BYVAL, VARPTR, and SEG, though the purpose there
will be to learn how to write routines that accept such parameters. 

Constants

The final data type to examine is constants. By definition, a constant is simply any value that does not
change, as opposed to a variable that can. For example, in the statement I% = 10, the value 10 is a
constant. Similarly, the quoted string "Hello" is a constant when you write PRINT "Hello".

There are two types of constants that can appear in a BASIC program. One is simple numbers and
quoted strings as described above, and the other is the named constant which is defined using a CONST
statement. For example, you can write CONST MaxRows = 25 as well as CONST Message$ =
"Insert disk in drive", and so forth. It is even possible to define one CONST value based on
a previous one, as in CONST NumRows = 25, ScrnSize = NumRows * 80. Then, you could
use these meaningful names later in the program, instead of the values they represent.
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It is important to understand that using named constants is identical to using the numbers themselves.
The value of this will become apparent when you see the relative advantages and disadvantages of
using numbers as opposed to variables. Let's begin this discussion of numbers with how they are stored
by the compiler. Or rather, how they are sometimes stored.

When a CONST statement is  used in a BASIC program, BASIC does absolutely nothing with the
value,  other  than  to  remember  that  you defined it.  Therefore,  you could  have  a  hundred CONST
statements which are never used, and the final .EXE program will be no larger than if none had been
defined. If a CONST value is used as an argument to, say, LOCATE or perhaps as a parameter to a
subroutine, BASIC simply substitutes the value you originally gave it. When a variable is assigned as
in Value% = 100, BASIC sets aside memory to hold the variable. With a constant definition such as
CONST Value% = 100, no memory is set aside and BASIC merely remembers that any use of
Value% is to be replaced by the number 100. But how are these numbers represented internally?

When you create an integer assignment such as Count% = 5, the BASIC compiler generates code to
move the value 5 into the integer variable, as you saw in Chapter 1. Therefore, the actual value 5 is
never  stored as data  anywhere.  Rather,  it  is  placed into the code as part  of an assembly language
instruction.

Now, if you instead assign a single or double precision variable from a number—and again it doesn't
matter whether that number is a literal or a CONST—the appropriate floating point representation of
that number is placed in DGROUP at compile time, and then used as the source for a normal floating
point assignment. That is, it is assigned as if it were a variable.

There is no reasonable way to embed a floating point value into an assembly language instruction,
because  the  CPU cannot  deal  with  such values  directly.  Therefore,  assigning  X% = 3 treats  the
number 3 as an integer value, while assigning Y# = 3 treats it as a double precision value. Again, it
doesn't matter whether the 3 is a literal number as shown here, or a CONST that has been defined. In
fact, if you use CONST Three! = 3, a subsequent assignment such as Value% = Three! treats
Three! as an integer resulting in less resultant code. As you can see, the compiler is extremely smart
in how it handles these constants, and it understands the context in which they are being used.

In general, BASIC uses the minimum precision possible when representing a number. However, you
can coerce a number to a different precision with an explicit type identifier. For example, if you are
calling a routine in a separate module that expects a double precision value, you could add a pound sign
(#)  to  the  number  like  this:  CALL Something(45#).  Without  the  double  precision  identifier,
BASIC would treat the 45 as an integer, which is of course incorrect.

Likewise, BASIC can be forced to evaluate a numeric expression that might otherwise overflow by
placing a type identifier  after  it.  One typical situation is when constructing a value from two byte
portions. The usual way to do this would be Value& = LoByte% + 256 * HiByte%. Although
the result of this expression can clearly fit into the long integer no matter what the values of LoByte%
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and HiByte% might be, an overflow error can still occur. (But as we saw earlier, this will happen only
in the QB environment, or if you have compiled to disk with the /d debugging option.)

The problem arises when HiByte% is greater than 127, because the result of multiplying HiByte%
times 256 exceeds the capacity of a regular integer. Normally, BASIC is to be commended for the way
it minimizes overhead by reducing calculations to the smallest possible data type. But in this case it
creates a problem, because the result cannot be expressed as an integer.

The solution, then, is to add an ampersand after the 256, as in  Value& = LoByte% + 256& *
HiByte%.  By establishing the value 256 as a long integer, you are telling BASIC to perform the
calculation to the full precision of a long integer. And since the result of the multiplication is treated as
a long integer, so is the addition of that result to LoByte%. A single precision exclamation point could
also be used, but that would require a floating point multiplication. Since a long integer multiply is
much faster and needs less code, this is the preferred solution.

One final item worth noting is the way the QB and QBX editing environments sometimes modify
constants. For example, if you attempt to enter a statement such as Value! = 1.0, you will see the
constant changed to read 1! instead. This happens when you press Enter to terminate the line. Similarly,
if you write D# = 1234567.8901234, BASIC will add a trailing pound sign to the number. This
behavior is your clue that these numbers are being stored internally as single and double precision
values respectively.

Passing Numeric Constants to a Procedure

Normally, any constant that could be an integer is passed to a subprogram or function as an integer.
That is, calling an external procedure as in  CALL External(100) passes the 100 as an integer
value. If the called routine has been designed to expect a variable of a different type, you must add the
appropriate  type  identifier.  If  a  long  integer  is  expected,  for  example,  you  must  use  CALL
External(100&). If, on the other hand, the called routine is in the same module (that is, the same
physical source file), QB will create a suitable DECLARE statement automatically. This lets QB and
BC know what is expected so they can pass the value in the correct format. Thus, BASIC is doing you
a favor by interpreting the constant's type in a manner that is relevant to your program.

This  "favor"  has  a  nasty  quirk,  though.  If  you  are  developing  a  multi-module  program  in  the
QuickBASIC editor, the automatic type conversion is done for you automatically, even when the call is
to a different module. Your program uses, say, CALL Routine(25), and QB or QBX send the value
in the correct format automatically. But when the modules are compiled and linked, the same program
that had worked correctly in the environment will now fail.

Since each module in a multi-module program is compiled separately, BC has no way to know what the
called routine actually expects. In fact, this is one of the primary purposes of the DECLARE statement
—to  advise  BASIC  as  to  how  arguments  are  to  be  passed.  For  example,  DECLARE  SUB
Marine(Trident!)  tells  BASIC that  any constant  passed to  Marine is  to  be sent  as a  single
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precision  value.  You  could  optionally  use  the  AS  SINGLE  directive,  thus:  DECLARE  SUB
Marine(Trident AS SINGLE). In general, I prefer the more compact form since it conveys the
necessary information with less clutter.

Another important use for adding a type identifier to a numeric constant is to improve a program's
accuracy. Running the short program below will illustrate this in context. Although neither answer is
entirely accurate, the calculation that uses the double precision constant is much closer. In this case, a
decimal number that does not have an explicit type identifier is assumed to have only single precision
accuracy. That is, the value is stored in only four bytes instead of eight.

FOR X% = 1 TO 10000
  Y# = Y# + 1.1
  Z# = Z# + 1.1#
NEXT
PRINT Y#, Z#

Displayed result:

11000.00023841858     11000.00000000204

You have already learned that BASIC often makes a temporary copy of a variable when calling a
subprogram or function. But you should know that this also happens whenever a constant is passed as
an argument. For example, in a function call such as Result = Calculate!(Value!, 100),
where Calculate!  has  been declared as  a  function,  the  integer  value  100 is  copied  to  a  temporary
location. Since BASIC procedures require the address of a parameter, a temporary variable must be
created and the address of that  variable  passed.  The important  point to remember is  that  for each
occurrence of a constant in a CALL or function invocation, a new area of DGROUP is taken.

You might think that BASIC should simply store a 100 somewhere in DGROUP once, and then pass
the address of that value. Indeed, this would save an awful lot of memory when many constants are
being used. The reason this isn't done, however, is that subroutines can change incoming parameters.
Therefore,  if  a  single  integer  100 was  stored  and its  address  passed  to  a  routine  that  changed it,
subsequent calls using 100 would receive an incorrect value.

The ideal solution to this problem is to create a variable with the required value. For example, if you
are now passing the value 2 as a literal many times in a program, instead assign a variable, perhaps
named Two%, early in your program. That is,  Two% = 2.  Then, each time you need that value,
instead pass the variable. For the record, six bytes are needed to assign an integer such as Two%, and
four bytes are generated each time that variable is passed in a call.

Contrast that to the 10 bytes generated to create and store a temporary copy and pass its address, not
including the two bytes the copy permanently takes from near memory. Even if you use the value only
twice, the savings will be worthwhile (24 vs. 30 bytes). Because a value of zero is very common, it is
also an ideal candidate for being replaced with a variable. Even better, you don't even have to assign it!
That is,  CALL SomeProc(Zero%) will send a zero, without requiring a previous  Zero% = 0
assignment.
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String Constants

Like numeric constants, string constants that are defined in a CONST statement but never referenced
will not be added to the final .EXE file. Constants that are used—whether as literals or as CONST
statements—are always stored in DGROUP. If your program has the statement  PRINT "I like
BASIC",  then the twelve characters  in the string are placed into DGROUP. But since the PRINT
statement requires a string descriptor in order to locate the string and determine its length, an additional
four  bytes  are  allocated  by  BASIC  just  for  that  purpose.  Variables  are  always  stored  at  an
even-numbered address, so odd-length strings also waste one extra byte. 

Because string constants  have a  ferocious  appetite  for  near  memory,  BC has  been designed to  be
particularly intelligent in the way they are handled. Although there is no way to avoid the storage of a
descriptor for each constant, there is another, even better trick that can be employed. For each string
constant you reference in a program that is longer than four characters, BC stores it only once. Even if
you have the statement  PRINT "Press any key to continue" twenty-five times in your
program, BC will  store the characters just once,  and each PRINT statement will refer to the same
string.

In order to do this, the compiler must remember each string constant it encounters as it processes your
program, and save it in an internal working array. When many string constants are being used, this can
cause the compiler to run out of memory. Remember, BC has an enormous amount of information it
must deal with as it processes your BASIC source file, and keeping track of string constants is but one
part of the job.

To solve this problem Microsoft has provided the /s (String) option, which tells BC not to combine like
data. Although this may have the net effect of making the final .EXE file larger and also taking more
string  space,  it  may  be  the  only  solution  with  some  large  programs.  Contrary  to  the  BASIC
documentation, however, using /s in reality often makes a program smaller. This issue will be described
in detail in Chapter 5, where all of the various BC command line options are discussed.

Passing String Constants to a Procedure

As you have repeatedly seen, BASIC often generates additional code to create copies of variables and
constants. It should come as no surprise, therefore, to learn that this happens with string constants as
well. When you print the same string more than once in a program, BASIC knows that its own PRINT
routine will never change the data. But as with numeric constants, if you send a string constant to a
subprogram or function, there is no such guarantee.

For example, if you have a statement such as CALL PrintIt(Work$) in your program, it is very
possible—even likely—that the PrintIt routine may change or reassign its incoming parameter. Even if
you know that  PrintIt  will  not  change the string,  BASIC has no way to know this.  To avoid any
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possibility  of  that  happening,  BASIC  generates  code  to  create  a  temporary  copy  of  every  string
constant  that  is  used  as  an  argument.  And  this  is  done  for  every  call.  If  the  statement  CALL
PrintMessage("Press a key") appears in your program ten times, then code to copy that
message is generated ten times.

Beginning with BASIC 7.1 PDS, you can now specify that variables are to be sent by value to BASIC
procedures. This lets you avoid the creation of temporary copies, and this subject will also be explored
in more detail in Chapter 3.

With  either  QuickBASIC 4.5 or  BASIC PDS, calling  a  routine  with  a  single  quoted  string  as  an
argument generates 31 bytes of code. Passing a string variable instead requires only nine bytes. Both of
these byte counts includes the five bytes to process the call itself. The real difference is therefore 4
bytes vs. 26—for a net ratio of 6.5 to 1. (Part of those 31 bytes is code that erases the temporary string.)
So as with numeric constants that are used more than once, your programs will be smaller if a variable
is assigned once, and that variable is passed as an argument.

While we are on the topic of temporary variables, there is yet another situation that causes BASIC to
create them. When the result of an expression is passed as an argument, BASIC must evaluate that
expression, and store the result somewhere. Again, since nearly all procedures require the address of a
parameter rather than its value, an address of that result is needed. And without storing the result, there
can of course be no address.

When you use a statement such as CALL Home(Elli + Lou), BASIC calculates the sum of Elli
plus Lou, and stores that in a reserved place in DGROUP which is not used for any other purpose. That
address is then sent to the Home routine as if it were a single variable, and Home is none the wiser.
Likewise, a string concatenation creates a temporary string, for the same reason. Although the requisite
descriptor permanently steals four bytes of DGROUP memory, the temporary string itself is erased by
BASIC automatically after the call. Thus, the first example in the listing below is similar in efficiency
to the second.  The four-byte difference is  due to  BASIC calling a special  routine that  deletes the
temporary copy it created, as opposed to the slightly more involved code that assigns Temp$ from the
null string ("") to erase it.

CALL DoIt(First$ + Last$)  'this makes 41 bytes

Temp$ = First$ + Last$     'this makes 45 bytes
CALL DoIt(Temp$)
Temp$ = ""

Unusual String Constants

One final  topic  worth  mentioning  is  that  QuickBASIC also  lets  you embed  control  and extended
characters  into  a  string  constant.  Consider  the  program  shown  below.  Here,  several  of  the  IBM
extended characters  are  used  to  define  a  box,  but  without  requiring  CHR$ to  be  used  repeatedly.
Characters with ASCII values greater than 127 can be entered easily by simply pressing and holding the
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Alt key, typing the desired ASCII value on the PC's numeric key-pad, and then releasing the Alt key.
This will not work using the number keys along the top row of the keyboard. 

DIM Box$(1 TO 4)          'define a box

Box$(1) = "╔══════════════════╗"
Box$(2) = "║                  ║"
Box$(3) = "║                  ║"
Box$(4) = "╚══════════════════╝"

FOR X = 1 TO 4            'now display the box
  PRINT Box$(X)
NEXT

To enter control characters (those with ASCII values less than 32) requires a different trick. Although
the  Alt-keypad  method  is  in  fact  built  into  the  BIOS  of  all  PCs,  this  next  one  is  specific  to
QuickBASIC, QBX, and some word processor programs. To do this, first press Ctrl-P, observing the ^P
symbol that QB displays at the bottom right of the screen. This lets you know that the next control
character you press will be accepted literally. For example, Ctrl-P followed by Ctrl-L will display the
female symbol, and Ctrl-P followed by Ctrl-[ will enter the Escape character.

Bear in mind that some control codes will cause unusual behavior if your program is listed on a printer.
For example, an embedded CHR$(7) will sound the buzzer if your printer has one, a CHR$(8) will
back up the print head one column, and a CHR$(12) will issue a form feed and skip to the next page.
Indeed, you can use this to advantage to intentionally force a form feed, perhaps with a statement such
as REM followed by the Ctrl-L female symbol.

I should mention that different versions of the QB editor respond differently to the Ctrl-P command.
QuickBASIC 4.0 requires Ctrl-[ to enter the Escape code, while QBX takes either Ctrl-[ or the Escape
key itself. I should also mention that you must never embed a CHR$(26) into a BASIC source file. That
character is recognized by DOS to indicate the end of a file, and BC will stop dead at that point when
compiling your program. QB, however, will load the file correctly.

Wouldn't It Be Nice If...

No discussion of constants would be complete without a mention of initialized data. Unfortunately, as
of this writing BASIC does not support that feature.  The concept is simple, and it would be trivial for
BASIC's designers to implement. Here's how initialized data works.

Whenever a variable requires a certain value, the only way to give it that value is to assign it. Some
languages let you declare a variable's initial value in the source code, saving the few bytes it takes to
assign it later. Since space for every variable is in the .EXE file anyway, there would be no additional
penalty imposed by adding this capability. I envision a syntax such as DIM X = 3.9 AS SINGLE,
or perhaps simply DIM Y% = 3, or even DIM PassWord$ = "GuessThis". Where Y% = 3
creates a six-byte code sequence to put the value 3 into Y%, what I am proposing would have the
compiler place that value there at the time it creates the program.
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Equally  desirable  would  be  allowing  string  constants  to  be  defined  using  CHR$  arguments.  For
example,  CONST EOF$ = CHR$(26)  would  be  a  terrific  enhancement  to  the  language,  and
allowing code such as CONST CRLF$ = CHR$(13) + CHR$(10) would be even more powerful.
Again, we can only hope that this feature will be added in a future version.

Yet  another  constant  optimization  that  BASIC  could  do  but  doesn't  is  constant  string  function
evaluation. In many programming situations the programmer is faced with deciding between program
efficiency  and  readability.  A perfect  example  of  this  is  testing  an  integer  value  to  see  whether  it
represents a legal character. For instance, IF Char < 65 is not nearly as meaningful as IF Char
< ASC("A").

Clearly, BC could and should resolve the expression ASC("A") while it is compiling your program,
and generate simple code that compares two integers. Instead, it stores the "A" as a one-byte string
(which with its descriptor takes five bytes), and generates code to call the internal ASC function before
performing the comparison. The point here is that no matter how intelligent BC is, folks like us will
always find some reason to complain!

Bit Operations

The last important subject this chapter will cover is bit manipulation using AND, OR, XOR, and NOT.
These logical operators have two similar, but very different, uses in a BASIC program. The first use—
the one I will discuss here—is to manipulate the individual bits in an integer or long integer variable.
The second use is for directing a program's flow, and that will be covered in Chapter 3.

Each of the bit manipulation operators performs a very simple Binary function. Most of these functions
operate on the contents of two integers, using those bits that are in an equivalent position. The 
examples shown in Figure 2-6 use a single byte only, solely for clarity. In practice, the same operations 
would be extended to either the sixteen bits in an integer, or the 32 bits in a long integer.

The examples given here use the same decimal values 13 and 25, and these are also shown in their 
Binary equivalents. What is important when viewing Binary numbers is to consider the two bits in each
vertical column. In the first example, the result in a given column is 1 (or True) only when that bit is set
in the first number AND the same bit is also set in the second. This condition is true for only two of the 
bits in these particular numbers. The result bits therefore represent the answer in Binary, which in this 
case is 13 AND 25 = 9. What is important here is not that 13 AND 25 equals 9, but how the bits 
interact with each other.
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The second example shows OR at work, and it sets the result bits for any position where a given bit is
set in one byte OR that bit is set in the other. Of course, if both are set the OR result is also true. In this
case, four of the columns have one bit or the other (or both) set to 1. By the way, these results can be
proven easily in BASIC by simply typing the expression. That is, PRINT 13 OR 25 will display the
answer 29.

The third example is for XOR, which stands for Exclusive Or. XOR sets a result bit only when the two
bits being compared are different. Here, two of the bits are different, thus 13 XOR 25 = 20. Again,
it is not the decimal result we are after, but how the bits in one variable can be used to set or clear the
bits in another.

The NOT operator uses only one value, and it simply reverses all of the bits. Any bit that was a 1 is
changed to 0, and any bit that had been 0 is now 1. A full word is used in this example, to illustrate the
fact that NOT on any positive number makes it negative, and vice versa. As you learned earlier in this
chapter, the highest, or left-most bit is used to store the sign of a number. Therefore, toggling this bit
also switches the number between positive and negative. In this case, NOT 13 = -14.

All of the logical operators can be very useful in some situations, although admittedly those situations
are generally when accessing DOS or interfacing with assembly language routines. For example, many
DOS services indicate a failure such as "File not found" by setting the Carry flag. You would thus use

50

13 = 0000 1101
25 = 0001 1001

0000 1001 result when AND is used

both of the bits are set
In each column

13 = 0000 1101
25 = 0001 1001

0001 1101 result when OR is used

one or both bits are set
In each column

13 = 0000 1101
25 = 0001 1001

0001 0100 result when XOR is used

the bits are diffrent
In each column

13 = 0000 0000 0000 1101
1111 1111 1111 0010 result after using NOT

Figure 2-6 Bit functions



AND after a CALL Interrupt to test that bit. Another good application for bit manipulation is to store
True or False information in each of the sixteen bits in an integer, thus preserving memory. That is,
instead of sixteen separate Yes/No variables, you could use just one integer.

Bit operations can also be used to replace calculations in certain situations. One common practice is to
use division and MOD to break an integer word into its component byte portions. The usual way to
obtain the lower byte is LoByte% = Word% MOD 256, where MOD provides the remainder after
dividing.  While there is  nothing wrong with doing it  that  way,  Word% = LoByte% AND 255
operates slightly faster. Division is simply a slower operation than AND, especially on the 8088. Newer
chips such as the 80286 and 80386 have improved algorithms, and division is not nearly as slow as
with the older CPU. Chapter 3 will look at some other purely BASIC uses of AND and OR.

Summary

As you have seen in this chapter, there is much more to variables and data than the BASIC manuals
indicate. You have learned how data is constructed and stored, how the compiler manipulates that data,
and how to determine for yourself the amount of memory that is needed and is available. In particular,
you have seen how data is copied frequently but with no indication that this is happening. Because such
copying requires additional memory,  it  is  a frequent  cause of "Out of memory" errors that on the
surface appear to be unfounded.

You have also learned about BASIC's near and far heaps, and how they are managed using string and
array descriptors. With its dynamic allocation methods and periodic rearrangement of the data in your
program, BASIC is able to prevent memory from becoming fragmented. Although such sophisticated
memory management  techniques  require  additional  code  to  implement,  they  provide  an  important
service that programmers would otherwise have to devise for themselves.

Finally, you have learned how the various bit manipulation operations in BASIC work. This chapter 
will prove to be an important foundation for the information presented in upcoming chapters. Indeed, a 
thorough understanding of data and memory issues will be invaluable when you learn about accessing 
DOS and BIOS services in Chapter 11.
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3
Programming Methods

In Chapters 1 and 2 you learned how the BASIC compiler translates a source file into the equivalent
assembly  language  statements,  and  how  it  allocates  memory  to  store  variables  and  constants.  In
particular,  you  saw  that  the  BC  compiler  generates  assembly  language  code  directly  for  some
statements,  while  for  others  it  creates  calls  to  routines  in  the  BASIC libraries.  Most  of  the  code
examples presented in that chapter dealt with simple variable assignments and calculations.

Of course, the compiler must do much more than merely assign and manipulate variables and other
data. Equally important is controlling how your program operates, and determining which paths are to
be  taken  as  it  progresses.  In  this  chapter  we  will  delve  into  the  inner  workings  of  control  flow
structures, with an eye toward writing programs that are as efficient as possible. As with the earlier
chapters, this discussion includes numerous disassemblies of compiled BASIC code. Thus, you will see
exactly what the compiler does, and how each control flow statement is handled.

This chapter also discusses the design of both static and non-static subprograms and functions, and
compares the relative merits of each method. Many programmers do not fully understand the term
Static, and find the related subject of recursive subroutines especially difficult to grasp.

BASIC supports four types of subroutines, and each will be described in this chapter: GOSUB routines,
subprograms, DEF FN functions, and what I call "formal functions". You will notice that I use the
terms  subroutine  and  procedure  interchangeably,  to  indicate  a  single  block  of  code  that  may  be
executed more than once. You will also learn how parameters are passed to these procedures.

Finally, in this chapter I will discuss programming style. Programming in any language is arguably as
much of an art as it is a science. But unlike, say, music, where a composer can write any sequence of
notes and proclaim them acceptable, a computer program must at least work correctly. There are an
infinite number of ways to accomplish any programming task, and I can make recommendations only.
Which approach you choose will reflect both your own personal taste and style, as well as your current
level of competence and understanding of programming in general. 

Control Flow

All programs—regardless of the language in which they are written—require a mechanism for testing
certain conditions and then performing different actions based on those conditions. Although there are
many ways to perform tests and branches in a BASIC program, all of them do essentially the same
thing. The BASIC control flow statements are GOTO, DO/LOOP, WHILE/WEND, IF/THEN/ELSE,
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FOR/NEXT,  SELECT  CASE,  ON  GOTO,  and  ON  GOSUB.  Because  the  capabilities  of
WHILE/WEND are also available with a DO/LOOP construct, the two will be discussed together.

In almost all cases, the BASIC compiler directly generates the code that controls a program's flow. One
exception  is  when  floating  point  values  are  used  as  a  FOR counter,  or  as  a  WHILE or  UNTIL
condition. In those situations, calls are made to the floating point comparison routines in the BASIC
runtime library.  Another place is  when you have a statement such as  CASE ASC(X$), or IF
LEFT$(X$, 10) = Y$. ASC and LEFT$ are also subroutines in the BASIC language library, and
they too are invoked by calls.

It is important to reiterate that when dealing with integer test conditions, BC will in many cases create
assembly language code that is as good as a human programmer would write. In the short program
fragment that follows, all of the BASIC source code is shown translated to the equivalent assembly
language  statements.  This  listing  was  derived  by  compiling  and  linking  the  BASIC  program  for
Microsoft CodeView, and then using CodeView to display the resultant code.

This is what you write:

DO
  X% = X% + 1
LOOP WHILE X% < 100

This is the result after compilation:

30:
  INC  WORD PTR [X%]        ;X% = X% + 1
  CMP  WORD PTR [X%],64     ;compare X% to 100
  JL   30                   ;jump if less to 30

Here the variable X% is incremented, and then compared to the value 100. (64 is the Hex equivalent to
100, which is how CodeView displays values.)  If X% is indeed less than 100, the program jumps back
to address 30 and continues processing the loop. Notice that while this example does not use a named
label in the BASIC source code as the target for a GOTO, the equivalent assembly language code does.
In this case, the label is the code at address 30. Do not confuse the addresses that assembly language
must use as jump targets with the numbered labels that in BASIC are optional.

The Dreaded GOTO

Modern programming philosophy dictates that GOTO and GOSUB statements should be avoided at all
cost, in favor of DO and WHILE loops. However, all of these methods result in nearly identical code.
Indeed,  there  is  nothing  inherently  wrong  with  using  GOTO  when  circumstances  warrant  it.  By
examining the program listing below, you will see that BASIC generates code that is identical for a
GOTO as for a DO loop.

This is what you write:
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Label:
  X% = X% + 1
  IF X% < 100 THEN GOTO Label

This is the result after compilation:

30:
  INC  WORD PTR [X%]        ;X% = X% + 1
  CMP  WORD PTR [X%],64     ;compare X% to 100
  JL   30                   ;jump if less to 30

Since GOTO and DO/LOOP produce the same results, which one is better, and why?  In general, a DO/
LOOP is preferable for two reasons. First, it is a nuisance to have to create a new and unique label
name for every location that a program may need to branch to. Admittedly, in a short program this will
not be a problem. But in a large application with many small loops that test for keyboard input, you end
up creating many labels with names such as GetKey1, GetKey2, and so forth. And if you inadvertently
use the wrong label name, your program will not work correctly.

More  important,  however,  is  that  for  each  label  you define  in  a  program,  the  BC compiler  must
remember its name and the equivalent address in the object code that the label identifies. Since label
names can be as long as 40 characters and memory addresses require 2 bytes each to identify, a finite
number of label names can be accommodated. By avoiding unnecessary labels, you are giving BC that
much more memory to use for compiling your program.

There are several situations in which GOTO is preferable to a DO or WHILE loop. Indeed, one of my
personal pet peeves is when a programmer tries to shoehorn structure into a program no matter what
the cost. Consider the three different code fragments below; each waits for a key press and then assigns
it to the variable Ky$.

This approach is the worst:

Ky$ = ""
WHILE Ky$ = ""
  Ky$ = INKEY$
WEND

This method is better:

Label:
  Ky$ = INKEY$
  IF Ky$ = "" GOTO Label

And this is better still:

DO
  Ky$ = INKEY$
LOOP WHILE Ky$ = ""

54



In the first example, an extra step is needed solely to clear Ky$ to a null string, so the initial WHILE
will be true and execute at least once. Every string assignment adds 13 bytes to a program, and those 13
bytes can add up quickly in a large application.

The  second  example  avoids  the  unnecessary  assignment,  but  adds  a  label  for  GOTO to  jump to.
Although this label does require a small amount of additional memory while the program is being
compiled, it does not increase the size of the final executable program file.

The last example is better still, because it avoids the need for a line label and also avoids an extra string
assignment. Since a DO loop allows the test to be placed at either the top or bottom of the loop, you
can force the loop to be executed at least once by putting the test at the bottom as shown here.

However, even this can be improved upon by eliminating the string comparison that checks if Ky$ is
equal to a null string. If we replace LOOP WHILE Ky$ = "" with LOOP UNTIL LEN(Ky$), only
13 bytes of code are generated instead of 15. When two strings are compared (Ky$ and ""), each must
be passed to the string comparison routine. Since LEN requires only one argument, the code to pass the
second parameter is avoided. There are some situations for which the GOTO is ideally suited. In the
first two examples below, a complex expression is used as the condition for executing a DO WHILE
loop, and the same expression is then used again within the loop.

DO WHILE (X% + Y%) * Z% > 13
  IF (X% + Y%) * Z% = 100 THEN PRINT
  ...
  ...
LOOP

DO WHILE ASC(MID$(S$, A%, B%)) > 13
  IF ASC(MID$(S$, A%, B%)) > 100 THEN PRINT
  ...
  ...
LOOP

Label:
  Temp% = ASC(MID$(S$, A%, B%))
  IF Temp% > 13 THEN
    IF Temp% > 100 THEN PRINT
    ...
    ...
  GOTO Label
  END IF

In the first example, BASIC remembers the results of its test that checks if a (X% + Y%) * Z% is
greater  than  13,  and  it  uses  the  result  it  just  calculated  in  the  next  test  that  compares  the  same
expression to 100. This is one more example of the kinds of optimizations BC performs as it compiles
your programs. String expressions such as those used in the second example are of necessity more
complex, and require calls to library routines. With this added complexity, BASIC unfortunately cannot
retain the result of the earlier comparison, and it generates identical code a second time.

A more elegant solution in this case is therefore the GOTO as shown in the last example. Because the
result of evaluating the expression is saved manually, it may be reused within the loop. As proof, the
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second DO WHILE example above requires 73 bytes to implement,  as opposed to only 53 when  
Temp% and GOTO are used.

I should also point out that the most common and valuable use for GOTO is to get out of a deeply
nested series of IF or other blocks of code. It is not uncommon to have a FOR/NEXT loop that contains
a SELECT CASE block, and within that a series of IF/ELSE tests. The only way to jump out of all
three levels at once is with a GOTO.

FOR/NEXT Loops

Unlike WHILE and DO loops that can test for nearly any condition and at either the top or bottom of
the loop, a FOR/NEXT loop is intended to perform a block of statements a fixed number of times. A
FOR/NEXT loop could also be replaced with code that compares a value and uses GOTO to reenter the
loop if needed, but that is hardly necessary. My point is to yet again illustrate that all of BASIC's
seemingly fancy constructs are no more than tests and GOTOs deep down at the assembly language
level.

A FOR/NEXT loop determines the number of iterations that will  be executed once ahead of time,
before the loop begins. For example, the listing below shows a loop that changes the upper limit inside
the loop. However the loop still executes 10 times.

Limit% = 10
FOR X% = 1 TO Limit%
  Limit% = 5
  PRINT Limit%
NEXT

The code that BASIC produces for the FOR/NEXT loop in the previous example is translated to the
following equivalent during the compilation process. 

  Limit% = 10
  Temp% = Limit%
  X% = 1
  GOTO Next:
For:
  Limit% = 5
  PRINT Limit%
  X% = X% + 1
Next:
  IF X% <= Temp% THEN GOTO For

Please understand that changing a loop condition inside the loop is considered bad practice, because the
program becomes difficult to understand. If you really need to alter the limit inside a loop, the loop
should be re-coded to use WHILE or DO instead.  Another good reason for avoiding such code is
because it is possible that future versions of BASIC will behave differently than the one you are using
now. If Microsoft were to modify BASIC such that the limit condition were reevaluated at the NEXT
statement,  your code would no longer work. It  is  also considered bad practice to modify the loop
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counter variable itself (X% in the previous examples). However, this causes no real harm, and you
should not be afraid to do that if the situation warrants it. Of course, changing the loop counter will
affect the number of times the loop is executed. 

IF/THEN/ELSE and SELECT Case

BASIC provides two methods for testing conditions in a program, and executing different blocks of
code based on the result.  The most common method is the IF test,  which can be used on a single
variable, the result of an expression, the returned value from a function, or any combination of these. I
won't belabor the most common uses for IF here, but I do want to point out some of its less obvious
properties. Also, there are some situations where IF and ELSEIF are appropriate, and others where their
counterpart, SELECT CASE, is better.

As you have already learned, a  simple IF test  will  in  most cases be translated into the equivalent
assembler instructions directly. In some cases, however, the condition you specify is tested, while in
others the opposite condition is tested. If you say IF X > 10 THEN GOTO Label, BASIC may
change that to IF X <= 10 GOTO [next statement]. Which BASIC uses depends on what
you will do if the condition is true, and how far away in the generated code the statements that will be
executed are located. When a GOTO is to be performed if the test passes, then the relative position of
the target label is also a factor.

A jump to a location either ahead in the code or more than 128 bytes backwards requires BASIC to
generate  more  code.  The  128  byte  displacement  is  significant,  because  the  80x86  can  perform a
conditional jump to an address only a limited distance away. That is, after a comparison is made, the
target address for a conditional jump such as "Jump if Greater" must be no more than that many bytes
distant. However, an unconditional jump can be to any address within the same 64K code segment.
(Bear with me for a moment, because the significance of this will soon become apparent.)  This is
shown in the next listing:

IF X% = 100 THEN
  CMP  Word Ptr [X%],64   ;compare X% to 100
  JE   003A               ;jump ahead if equal
  JMP  Label              ;else, skip ahead
003A:                     ;BASIC made this label
Y% = 2
  MOV  Word Ptr [Y%],2
END IF

Label:
IF X > 8 GOTO Label
  CMP  Word Ptr [X%],8    ;compare X% to 8
  JG   Label              ;jump back if greater

In the first example above, BASIC compares the value of X% to 100 (64 Hex), and if equal jumps
ahead to a label it created at address 003A Hex. Otherwise, a jump is made to the next statement in the
program, which in this  case is  a named label.  Although using two jumps may seem unnecessarily
convoluted, it is necessary because BASIC has no way of knowing how many statements will follow at
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the time it compiles the IF test. Thus, it also cannot know whether the statement following the END IF
will end up being 128 or more bytes ahead.

By jumping to another, unconditional jump, BC is assured that the generated code will be legal. (When
BC finally encounters the END IF, it goes back to the code it created earlier, and completes the portion
of the unconditional jump instruction that tells how far to go.)  Some compilers avoid this situation and
create the longer, two-jump code on a trial basis, but then go back and change it to the shorter form if
possible. These are called two-pass compilers, because they process your source code in two phases.
Unfortunately, current versions of Microsoft BASIC do not use more than one pass.

In the second example Label has already been encountered, and BC knows that the label is within 128
bytes. Therefore, it can translate the IF statement directly, without having to conditionally jump to yet
another jump. Had the earlier label been farther away, though, an extra jump would have been needed.
It is important to understand that forward jumps are always handled with more code than is likely
necessary, because BASIC does not know how far ahead the jump must go. In fact, this same issue
must be dealt with when writing in assembly language, since the conditional jump distance limitation is
inherent in the 80x86 microprocessor.

The  bottom  line,  therefore,  is  that  you  can  in  many  cases  reduce  the  size  of  your  programs  by
controlling in which direction a conditional jump will be performed. For example, almost all programs
must at some point sit in a loop waiting until a key is pressed. The next listing shows two common
ways to do this, with one testing for a key press at the top of the loop, and the other doing the test at the
bottom.

DO UNTIL LEN(INKEY$)    ;this comprises 18 bytes
0030:
  CALL B$INKY           ;call INKEY$
  PUSH AX               ;pass the result to LEN
  CALL B$FLEN           ;AX now holds the length
  AND  AX,AX            ;see if it's zero
  JZ   0042             ;yes, jump to LOOP
  JMP  0044             ;no, jump out of loop
0042:
LOOP
  JMP  0030             ;jump back to DO

0044:
DO                      ;this is only 15 bytes
LOOP UNTIL LEN(INKEY$)
  CALL      B$INKY      ;call INKEY$
  PUSH      AX          ;as above
  CALL      B$FLEN
  AND       AX,AX
  JZ        0044        ;jump back if zero

Viewed from a purely BASIC perspective, these two examples operate identically. But as you can see,
the code that BASIC creates is more efficient for the second example. When BASIC encounters the
first DO statement, it has no idea how many more statements there will be until the terminating LOOP.
Therefore, it has no recourse but to create an extra jump. In the second example, the location of the DO
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is already known to be within 128 bytes, so the LOOP test can branch back using the shorter and more
direct method.

An ELSEIF statement block is handled in a similar fashion, with code that directly compares each
condition and branches accordingly. Because the code to be executed if the IF is true is always after the
IF test itself, the less efficient two-jump code must be generated. A simple IF/ELSEIF follows, shown
as a mix of BASIC and assembly language statements.

IF X% > 9 THEN
  CMP  Word Ptr [X%],9  ;compare X% to 9
  JG   003A             ;assign Y% if greater
  JMP  0043             ;else jump to next test
003A:
Y% = 1
  MOV  Word Ptr [Y%],1  ;assign Y%
  JMP  0066             ;jump out of the block
ELSEIF X% > 5 THEN
0043:
  CMP  Word Ptr [X%],5  ;as above
  JG   004D
  JMP  0066
004D:
Y% = 2
  MOV  Word Ptr [Y%],2
END IF
0066:
  ...
  ...

Aside from the additional jumping over jumps that are added to all forward address references, this
code is translated quite efficiently. In this situation, the compiled output is identical to that produced
had SELECT CASE been used. However, there is one important situation in which SELECT CASE is
more efficient than IF and ELSEIF.

For each ELSEIF test condition, code is generated to create a separate comparison. When a simple
comparison such as  X% > 9 is being made, only one assembly language statement is needed. But
when an expression is tested—for example,  ABS((X% + Y%) * Z%)) > 9—identical code is
generated repeatedly. This is illustrated in the listing that follows. 

IF ABS((X% + Y%) * Z%) = 5 THEN
  A% = 1
ELSEIF ABS((X% + Y%) * Z%) = 6 THEN
  A% = 2
ELSEIF ABS((X% + Y%) * Z%) = 7 THEN
  A% = 3
END IF

Each time BC encounters the expression ABS((X% + Y%) * Z%), it duplicates the same assembly
language statements. But when SELECT CASE is used, the expression is evaluated once, and used for
each subsequent test. The first example in the next listing shows how SELECT CASE could be used to
provide the same functionality as the preceding IF/ELSEIF block, but with much less code. The second
example then shows what SELECT CASE really does, using an IF/ELSEIF equivalent.
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You write it this way:

SELECT CASE ABS((X% + Y%) * Z%)
  CASE 5: A% = 1
  CASE 6: A% = 2
  CASE 7: A% = 3
  CASE ELSE
END SELECT

BASIC really does this:

Temp% = ABS((X% + Y%) * Z%)
IF Temp% = 5 THEN
  A% = 1
ELSEIF Temp% = 6 THEN
  A% = 2
ELSEIF Temp% = 7
  A% = 3
END IF

As you  can  see,  SELECT CASE evaluates  the  expression  once,  stores  the  result  in  a  temporary
variable, and then uses that variable repeatedly for all subsequent comparisons. Therefore, when the
same expression is to be tested multiple times, SELECT CASE will be more efficient than IF and
ELSEIF. This is also true for string expressions and other functions. For example,  SELECT CASE
LEFT$(Work$, 10) will result in less code and faster performance than using IF and ELSEIF with
that same expression more than once.

Another  important  feature  of  SELECT CASE is  its  ability  to  use  either  variable  or  constant  test
conditions, and to operate on a range of values. For example, the C language Switch statement which is
the equivalent of BASIC's SELECT CASE can use only constant numbers for each test.  BASIC is
particularly powerful in this regard, and allows any legal expression for each CASE condition. For
example,  CASE IS > (Y AND Z) is valid, and so is  CASE 0 TO Max.  CASE also accepts
multiple conditions separated by commas such as CASE 1, 3, 4 TO 100, -10 TO -1. In this
case,  the statements that  follow will  be executed if  the selected expression equals 1,  3,  any value
between 4 and 100 inclusive, or any value between -10 and -1 inclusive.

It is also worth mentioning here that QuickBASIC version 4.0 contains an interesting and irritating
quirk that requires a CASE ELSE in the event that none of the tests match. Had the CASE ELSE been
omitted  from  the  previous  example  and  the  value  of  the  expression  was  not  between  5  and  7,
QuickBASIC 4.0 would issue a "CASE ELSE expected" error at run time. Fortunately, this has been
repaired in QuickBASIC 4.5 and later versions.
Notice  that  this  is  not  a  bug  in  QuickBASIC.  Rather,  it  is  the  behavior  described  in  the  ANSI
(American National Standards Institute) specification for BASIC. At the time QuickBASIC 4.0 was
introduced,  Microsoft  mistakenly  believed  the  then-proposed ANSI  standard  for  BASIC would  be
significant. As that standard approached fruition, it became clear to Microsoft that the only standard
most programmers really cared about was Microsoft's.
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One  final  point  I  cannot  make  often  enough  is  the  inherent  efficiency  of  integer  operations  and
comparisons. This is especially true in the comparisons that are made in both IF and CASE tests. In the
first example below, each of the characters in a string is tested in turn. The second example shows a
much better way to write such a test, by obtaining the ASCII value once and using that for subsequent
integer comparisons. 

Not recommended:

FOR X = 1 TO LEN(Work$)
  SELECT CASE MID$(Work$, X, 1)
    CASE CHR$(9): PRINT "Tab key"
    CASE CHR$(13): PRINT "Enter key"
    CASE CHR$(27): PRINT "Escape key"
    CASE "A" TO "Z", "a" TO "z": PRINT "Letter"
    CASE "0" TO "9": PRINT "Number"
  END SELECT
NEXT

Much more efficient:

FOR X = 1 TO LEN(Work$)
  SELECT CASE ASC(MID$(Work$, X, 1))
    CASE 9: PRINT "Tab key"
    CASE 13: PRINT "Enter key"
    CASE 27: PRINT "Escape key"
    CASE 65 TO 90, 97 TO 122: PRINT "Letter"
    CASE 48 TO 57: PRINT "Number"
  END SELECT
NEXT

In the first program the SELECT itself generates 27 bytes, which is comprised of a call to the MID$
function and then a call to the string assign routine. A string assignment is needed to save the MID$
result in a temporary variable for the subsequent tests that follow. Each CASE test that uses CHR$ adds
27 bytes, and this includes the call to CHR$ as well as an additional call to the string comparison
routine. Testing for the letters adds 75 bytes, and testing for the numbers adds 39 more. This results in a
total code size of 222 bytes, not counting the FOR/NEXT loop.

Contrast that with only 131 bytes for the second example, in which the SELECT portion requires only
26 bytes. Although an extra call is needed to obtain the ASCII value of the extracted character, the lack
of a subsequent string assignment more than makes up for that. Further, the tests for 9, 13, and 27
require only 13 bytes each, compared to 27 when CHR$ values were used. The letters test requires 43
bytes, and the numbers test only 23.

Clearly this is a significant improvement, especially in light of the small number of tests that are being
performed here. In a real program that performs hundreds of string comparisons, replacing those with
integer comparisons where appropriate will yield a substantial size reduction. 

AND, OR, EQV, and XOR
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When you use AND or OR in an IF test, what is really being compared is either 0 or -1. That is, BASIC
evaluates the truth of each expression being tested on both sides of the AND or OR, and a truth in
BASIC always results in one or the other of these values. Once each expression has been evaluated, the
results are combined using an assembly language AND or OR instruction, and a branch is then made
accordingly. Remember that when integers are treated as unsigned, setting all of the bits to 1 results in a
value of -1.

In chapter 2 I showed how the various logical operators are used to manipulate bits in an integer or
long integer variable. The concept is identical when these operators are used for decision-making in a
BASIC program. The difference is really more a matter of semantics than definition. That is, the same
bit manipulation is performed, only in this case on the result of the truth of a BASIC expression. This is
shown in context below, where two test expressions are combined using AND. 

IF X > 1 AND Y < 2 THEN
  CMP  Word Ptr [X%],1   ;compare X% to 1
  MOV  AX,0              ;assume False
  JLE  003B              ;we assumed correctly
  DEC  AX                ;wrong, decrement to -1
003B:
  CMP  Word Ptr [Y%],2   ;now compare Y% to 2
  MOV  CX,0000           ;assume False
  JGE  0046              ;we assumed correctly
  DEC  CX                ;wrong, decrement to -1
0046:
  AND  CX,AX             ;combine the results
  AND  CX,CX             ;(this is redundant)
  JNZ  004F              ;if not 0 assign Z%
  JMP  0055              ;else jump past END IF
Z = 3
004F:
  MOV  Word Ptr [Z%],3   ;assign Z%
END IF
0055:
  ...
  ...

The result of the first comparison is saved in the AX register as either 0 or -1, and the second is saved
in CX using similar  code.  Once both tests  have been performed and AX and CX are holding the
appropriate values, the registers are then tested against each other using AND. The instruction  AND
CX,AX not only combines the results, but it also sets the CPU's Zero Flag to indicate if the result was
zero or not. Therefore, the second test that uses AND to compare CX against itself to check for a zero
result is redundant. At only 2 additional bytes, the impact on a program's size is not terribly significant.
However, this shows first-hand the difference between code written by a compiler and code written by
a person.

OR conditions are handled similarly, except the assembly language OR instruction is used instead of
AND. When multiple conditions are being tested using combinations of AND and OR and perhaps
nested parentheses as well, additional similar code is employed.
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There are many situations where all that is really necessary is to test for a zero or non-zero condition.
For example, it is common to use an integer variable as a True/False "flag" which can be set in one part
of a program, and tested in another. By understanding the underlying code that BASIC creates, you can
help BASIC to reduce the size of your programs enormously. In particular, avoiding a comparison with
an explicit value lets BASIC generate fewer comparison instructions. The listing below shows how you
can test multiple flags using AND, but with much less resulting code than using an explicit comparison.

IF Flag1% AND Flag2% THEN
  MOV  AX,[Flag2%]       ;move Flag2% into AX
  AND  AX,[Flag1%]       ;AND that with Flag1%
  AND  AX,AX             ;(this is redundant)
  JNZ  0063              ;if not zero assign Z%
  JMP  0069              ;else skip past END IF
Z% = 3
0063:
  MOV  Word Ptr [Z%],3
END IF
0069:
  ...
  ...

The key here is that zero is always used to represent False, and -1 to represent a True condition. That is,
instead of writing IF Flag1% = -1 AND Flag2% = -1, using IF Flag1% AND Flag2%
provides the same results. At only 20 bytes of generated code, this method is far superior to tests for an
explicit  -1 which require 37 bytes. If you recall,  in Chapter 2 I showed how the various bits in a
variable can be turned on or off with AND. Thus, 1111 AND 1111 equals 1111, while 1111 AND 0000
equals 0.

Notice that using 0 and -1 has many other benefits as well. For example, the NOT operator which was
also described in Chapter 2 can toggle a variable between those values. If all of the bits in a variable are
presently zero,  then  NOT Variable% results  in all  ones (-1).  This property can also be used to
enhance a  program's  readability,  by using NOT much like you would in an English sentence.  For
example, the code following the line IF NOT Flag% THEN will be executed if Flag% is 0 (False),
but it will not be executed if Flag% is -1 (True).

In fact, an explicit comparison is optional if you need to test only for a non-zero value. IF Variable
<> 0 THEN can  be  reduced to  IF Variable THEN,  and  the  statements  that  follow will  be
executed as long as Variable is not 0. Notice that the only saving here is in the BASIC source, since
either comparison creates ten bytes of assembler code. But when using long integers, the short form
saves five bytes—14 bytes versus 19 for an explicit comparison to zero.

NOT is equally valuable when toggling a flag variable between two values. If you have, say, an input
routine that keeps track of the Insert key status, then you could use Insert% = NOT Insert% each
time you detect that the Insert key was pressed. The first time the operator presses that Key, the Insert
flag  will  be  switched  from the  default  start-up  value  of  0  to  -1.  Then  using  Insert% = NOT
Insert% a second time will revert the bits back to all zeros. In fact, it is a common technique to
define True and False variables (or constants) in a program using this: 

63



   False% = 0
   True% = NOT False%

Most programmers understand how to use parentheses to force a particular order of evaluation. By
default,  BASIC performs multiplication and division before it does addition and subtraction. When
operators  of  the  same  precedence  are  being  used,  then  BASIC  simply  works  from  left  to  right.
However, the order in which logical comparisons are made is not always obvious. This can become
particularly tricky if you are using some of the shorthand methods I described earlier.

For example, consider the statements IF X AND Y > 12, IF NOT X OR Y, and IF X AND Y
OR Z. In the first example, the truth of the expression Y > 12 is evaluated first, with a result of either
0 or -1. Then, that result is combined logically with the value of X using AND. The resulting order of
evaluation is  performed as  if  you had used  IF X AND (Y > 12).  The  other  expressions  are
evaluated as IF (NOT X) OR Y and IF (X AND Y) OR Z. 

The last logical operators we will consider are EQV and XOR. These are used rarely by most BASIC
programmers, probably because they are not well understood. However, EQV can dramatically reduce
the size of a program in certain circumstances. It is not uncommon to test if two conditions are the
same, whether True or False. EQV stands for Equivalent, meaning it tests if the expressions are the
same—either  both true or  both false.  All  three program fragments  below serve the same purpose,
however the first generates 57 bytes, while the second and third create only 16 bytes. 

IF (X = -1 AND Y = -1) OR (X = 0 AND Y = 0) THEN
  ...
END IF

IF X EQV Y THEN
  ...
END IF

IF NOT (X XOR Y) THEN
  ...
END IF

Although these examples could be replaced with a simple comparison that tests if X equals Y, EQV can
reduce other, more elaborate AND and OR tests. For example, you could replace this:

   IF (X = 10 AND Y = 100) OR (X <> 10 AND Y <> 100)

with this:

   IF X = 10 EQV Y = 100

and gain a handsome reduction in code size. Notice that because of the way EQV works, the third
example in the listing above results in identical assembly language code as the second. XOR is true
only when the two conditions are different, thus NOT XOR is true when they are the same.
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One final point worth mentioning is that you can assign a variable based on the truth of one or more
expressions. As you saw earlier, every IF test that is used in a BASIC program adds a minimum of 3
extra bytes for a second, unconditional jump. That additional code can be avoided in many cases by
assigning a variable based on whether a particular condition is true or not. In the code examples that
follow, both program fragments do the same thing, except the first requires 25 bytes compared to only
14 for the second.

IF Variable = 20 THEN
  Flag = -1
ELSE
  Flag = 0
END IF

Flag = (Variable = 20)

In either case,  the truth of the expression  Variable = 20 must be evaluated.  However, the IF
method adds code to jump around to different addresses that assign either -1 or 0 to Flag. The second
example simply assigns Flag directly from the 0 or -1 result of the truth test. Other variants on this type
of programming are statements such as A = (B = C), and Flag = (LEN(Temp$) <> 0 AND
Variable < 50).  Note  that  the  surrounding  parentheses  are  shown here  for  clarity  only,  and
BASIC produces the same results without them.

Short Circuits

There is one important point regarding AND testing you should be aware of. Although the code that
BASIC creates to implement these logical tests is very efficient, in some cases a different approach can
yield even better results. When many conditions are tested, QuickBASIC creates assembly language
code to evaluate all of them before making a decision. This can be wasteful, because often one of the
conditions will be false, negating a need to test the remaining conditions. For example, this statement: 

IF Any$ = "Quit" AND IntVar% > 100 AND Float! <> 0 THEN PRINT "True" 

requires that all three conditions be tested before the program can proceed. But if Any$ is not equal to
"Quit", there is no need reason to spend time evaluating the other tests.

The solution is to instead use nested IF tests, preferably placing the most likely (or simplest) tests first,
as shown below.

IF Any$ = "Quit" THEN
  IF IntVar% > 100 THEN
    IF Float! <> 0 THEN
      PRINT "True"
    END IF
  END IF
END IF

Here, if the first test fails, no additional time is wasted testing the remaining conditions. Further, using
the nested IF tests with QuickBASIC also results in less code: 50 bytes versus 64. Note, however, that
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BASIC PDS, and VB/DOS, incorporate  a  technique known as  short  circuit  expression evaluation,
which  generates  slightly  more  efficient  code  when AND is  used.  With  the  newer  compilers,  each
condition is tested in sequence, and the first one that fails causes the program to skip over the code that
prints "True". But even with this improved code generation, you should still place the most likely tests
first.

ON GOTO and ON GOSUB Statements

The last non-procedural control flow statements I will discuss here—ON GOTO and ON GOSUB—are
used infrequently by many BASIC programmers. But when you need to test many different values and
those values are sequential, ON GOTO and ON GOSUB can reduce substantially the amount of code
that BASIC generates. For clarity, I will use ON GOTO for most of the examples that follow. Both
work in a similar fashion except with ON GOSUB, execution resumes at the next BASIC statement
when the subroutine returns.

You have already seen that IF/ELSEIF and SELECT CASE blocks are not as efficient as they could be,
because the compiler does not know how far ahead the END IF or END SELECT statements  are
located. Therefore, no matter how trivial the IF or CASE tests being performed are, a pair of jumps is
always created even when a single jump would be sufficient. Further, when many tests are necessary,
there is no avoiding at least some amount of code for each comparison. This is where ON GOTO can
help.

Rather than perform a series of separate tests for each value being compared, ON GOTO uses a lookup
table which is embedded in the code segment. This table is merely a list of addresses to branch to,
based on the value of the variable or expression being evaluated. If the value being tested is 1, then a
branch is taken to the first label in the list. If it is 2, the code at the second label is executed, and so
forth.

As many as 60 labels can be listed in an ON GOTO statement, although the number being tested can
range from 0 to 255. If the value is 0 or higher than the number of items in the list, the ON GOTO
command is ignored, and execution resumes with the statement following the ON GOTO. Negative
values or values higher than 255 cause an "Illegal function call" error. A simple example showing the
basic syntax for ON GOTO is shown below. 

INPUT "Enter a value between 1 and 3: ", X
ON X GOTO Label1, Label2, Label3
PRINT "Illegal entry!"
END

Label1:
  PRINT "You pressed 1"
  END

Label2:
  PRINT "You pressed 2"
  END
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Label3:
  PRINT "You pressed 3"
  END

Notice that the more labels there are, the bigger the savings in code size. ON GOTO adds a fixed
overhead of 70 bytes, 61 of which is the size of the library routine that evaluates the value and actually
jumps to the code at the appropriate label. The remaining 9 bytes are needed to load the value being
tested and pass that on to the ON GOTO routine. However, for each label in the list, only 2 bytes are
required in the lookup table to hold the address.

Compare that to SELECT CASE which requires 6 bytes of set-up code (when an integer is  being
tested), and 13 bytes more to process each CASE. Thus, the crossover point at which ON GOTO is
more efficient is when there are 6 or more comparisons. Notice that if ON GOTO is used in more than
one place in a program, the savings are even greater because the 61-byte library routine is added only
once.

Again, ON GOTO has the important restriction that all of the values must be sequential. However, this
limitation can also be turned into a feature by taking advantage of the inherent efficiency of lookup
tables.

Using a lookup table is a very powerful technique, because you can determine a result using an index
rather than actually calculating the answer. A lookup table is commonly used to determine log and
factorial functions, since those calculations are particularly tedious and time consuming. With a lookup
table you would calculate all of the values once ahead of time, and fill an array with the answers. Then,
to  determine  the  factorial  for,  say,  the  number  14,  you  would  simply  read  the  answer  from  the
fourteenth element in the array.

You can apply this same technique in BASIC using a combination of INSTR and ON GOTO or ON
GOSUB. Although INSTR is intended to find the position of one string within another, it is also ideal
for looking up characters in a table. Imagine you have written an input routine that must handle a
number of different keys, and branch according to which one was pressed. One way would be to use an
IF/ELSEIF or SELECT CASE block, with one section devoted to each possible key. But as you saw
earlier, once there are more than 5 keys to be recognized, either of those constructs are less efficient
than ON GOTO.

The approach I often use is to combine INSTR and ON GOSUB to branch according to which function
key was pressed. The beauty of this method is that a value of zero (or one that is out of range) causes
control to fall through to the next statement. Therefore any keys that are not explicitly being tested for
are simply ignored. This is shown in context below. 

DO

  DO                      'wait for a key press
    K$ = INKEY$
    Length% = LEN(K$)
  LOOP UNTIL Length%
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  IF Length% = 2 THEN     'it's an extended key
    Code$ = RIGHT$(K$, 1) 'isolate the key code and branch accordingly
    ON INSTR(";<=>?@ABCD", Code$) GOSUB ...
  END IF

LOOP UNTIL K$ = CHR$(27)  'until they press Esc

Here, extended keys are identified by a length of 2, and the key code is then isolated with RIGHT$.
The punctuation and letters within the quotes are characters 59 through 68, which correspond to the
extended codes for F1 through F10. (A list of all the extended key codes is in your BASIC owner's
manual.)  Of course, any arbitrary list of key codes could be used. Further, the key codes do not need to
be contiguous. For example, to branch on the Up arrow, Down arrow, Ins, Del, PgUp, and PgDn keys
you  would  use  "HPRSIQ"  as  the  source  string.  Any  other  mix  of  characters  could  also  be  used,
including Alt keys.

Another interesting and clever trick that combines INSTR and ON GOTO lets you test multiple keys
regardless of capitalization. The short program below accepts a character, and uses INSTR to look it up
in a table of upper and lower case character pairs.

PRINT "Yes/No/Load/Save/Retry/Quit? "; 
 
DO 
  K$ = INKEY$ 
LOOP UNTIL LEN(K$) = 1 
 
ON (INSTR("YyNnLlSsRrQq", K$) + 1) \ 2 GOTO ... 

After adding 1 and dividing that by 2, the result will indicate in which character pair the choice was
found.  This  technique  could  also  be  extended  to  include  3  or  4-character  groups,  or  any  other
combination of characters. Since any value between 0 and 255 is legal for an ASCII character, INSTR
can be used in other, more general lookup situations as well.

A Comparison of Subroutine Methods

There are four primary subroutine types that BASIC supports: GOSUB subroutines, DEF FN functions,
called  subprograms,  and what  I  refer  to  as  "formal  functions".  Each  has  its  own advantages  and
disadvantages, which I will describe momentarily. But I would first like to introduce several terms that
will be used throughout the discussion that follows.

Module

The first is module, which is a series of BASIC program statements kept in their own separate source
file. All modules have a main portion, and some also have procedures within a SUB or FUNCTION
block. The main portion of a program is that which receives control when the program is first run.
When  a  program is  comprised  of  multiple  modules,  each  additional  module  has  a  main  portion,
although code within that portion is rarely executed. In fact, there are only two ways to access code in
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the main portion of an ancillary module: One is to create a line label and use that as the target for ON
ERROR or another "ON" event. The other is to define a DEF FN function and invoke the function.

Variable Scope

The second term is  variable scope, which indicates where in a program a variable may be accessed.
Variables that are used in the main portion of a program are accessible anywhere else in the main, but
not  within  a  SUB  or  FUNCTION  block.  Likewise,  a  variable  that  is  defined  within  a  SUB  or
FUNCTION is by default private to that procedure. The overwhelming advantage of private variables
is that you do not have to worry about errors caused by inadvertently using the same variable name
twice.

SHARED

The third term is SHARED, and it overrides the default private scope of a variable used in a procedure.
SHARED may be used in either of two ways. If it is specified with a DIM statement in the main body
of  a  program—that  is,  DIM SHARED Variable—the  variable  is  established  as  being  shared
throughout the entire source file. Even though DIM is usually associated with arrays, it can be used this
way to extend a variable's scope.

SHARED may also be used within a subroutine to share one or more variables with the main portion. 
Notice that the statement SHARED Variable inside a procedure defines the variable as being shared 
with the main portion of the program only. SHARED used within a procedure does not share the named
variable with any other procedures. The only exception is when other procedures also use SHARED 
with the same variable name. In that case they are shared between procedures, as well as with the main 
program. 
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COMMON

The fourth term is COMMON, which is related to SHARED in that it also lets you share variables 
among procedures. However, COMMON has the additional property of allowing variables to be shared
by procedures that are not in the same physical source file. When BC compiles your program, it 
translates your variable names to memory addresses. Thus, those names are not available when the 
program is linked to other object files. Variables that are listed in a COMMON statement are placed in 
a separate portion of the data segment which is reserved just for that purpose. Therefore, other program
modules using COMMON can also access those variables in that portion of DGROUP.
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DEFINT A-Z
DIM SHARED Var1

Var1 = 100
Var2 = 200
CALL Sub1(Var2)
CALL Sub2(Var2)
END

SUB Sub1 (Param) STATIC
Var1 = Param
Var2 = Var1

END SUB

SUB Sub2 (Param) STATIC
SHARED Var2
Var1 = Param
Var2 = Var1

END SUB

Figure 3-1: How SHARED and DIM SHARED
affect variable scope. Variables that share the
same identity are shown connected.
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Figure  3-2:  How  COMMON  and  COMMON
SHARED affect  variable  scope.  Variables  that
share the same identity are shown connected.

MODULE1.BAS

MODULE2.BAS

DEFINT A-Z
COMMON Var1

Var1 = 100
Var2 = 200
CALL Sub1(Var2)
CALL Sub2(Var2)
END

SUB Sub1 (Param) STATIC
Var1 = Param
Var2 = Var1

END SUB

SUB Sub2 (Param) STATIC
SHARED Var2
Var1 = Param
Var2 = Var1

END SUB

DEFINT A-Z
DIM SHARED Var1

Var1 = 100
Var2 = 200
CALL Sub1(Var2)
CALL Sub2(Var2)
END

SUB Sub1 (Param) STATIC
Var1 = Param
Var2 = Var1

END SUB

SUB Sub2 (Param) STATIC
SHARED Var2
Var1 = Param
Var2 = Var1

END SUB



COMMON can also be combined with SHARED, to specify that one or more variables be shared 
throughout the main program as well as with other modules. That is, the statement COMMON SHARED 
Variable tells BASIC that Variable is to be both DIM SHARED and COMMON. To establish a 
TYPE variable as COMMON, you must state the type name as well: COMMON TypeVar AS 
MyType. In all cases, COMMON statements must precede the executable statements in a program. The
only statements that may appear before COMMON are other non-executable statements such as 
DECLARE, CONST, and '$STATIC.

Because the variable names listed in a COMMON statement are not stored in the final program, the
names used in one module do not need to be the same as the corresponding names in another module.
You could, for example, have COMMON X%, Y$, Z# in one file, and COMMON A%, B$, C# in
another. Here, X% refers to the same memory location as A%; Y$ is the same variable as B$, and so
forth. It is imperative, however, that the order and type of variables match. If one file has an integer
followed  by  a  string  followed  by  a  double  precision  variable,  then  all  other  files  containing  a
COMMON statement must have their COMMON variables in that same order.

This is one good reason for storing all COMMON statements in a single include file, which is included
by each module that needs access to the COMMON variables.

One or more arrays may also be listed as COMMON; however, the rules are different for static and
dynamic arrays. When a dynamic array is to made COMMON, it should be dimensioned in the main
program only, following the COMMON statement. (But you may use REDIM in another module if
necessary, to change the array's size.)  Static arrays must be dimensioned in each module, before the
associated COMMON declaration. Of course, all array types must match across modules—you may not
list a static array as the first COMMON item in one file, and then list a dynamic array in that same
position in another file.

There  are  actually  two  forms  of  COMMON  statement:  the  blank  COMMON  and  the  named
COMMON. The examples shown thus far are blank COMMON statements. A named COMMON block
lets you specify selected variable groups as COMMON, to avoid having to list many variables when all
of them are not needed in a given module. A COMMON block is named by preceding the variable list
with a name surrounded by slash characters. For instance, this line: 

COMMON /IntVars/ X%, Y%, Z%

establishes a named COMMON black called IntVars. By creating several such named blocks you may
share only those that are actually needed in a given module.

In this case, the block name is stored in the object file, and LINK ensures that the COMMON variables
in each module share the same addresses. One important limitation of a named COMMON block is that
it cannot be used to pass information between programs that use CHAIN.
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STATIC

The fifth term is STATIC, which I described in a slightly different context in the section about data in
Chapter 2. When you add the STATIC option to a SUB or FUNCTION definition, BASIC treats the
variables within that procedure very differently than when STATIC is omitted. With STATIC, memory
in DGROUP is allocated by the compiler for each variable, and that memory is permanently reserved
for use by those variables.

When STATIC is not specified, the variables in the routine are by default placed onto the system stack.
This means that sufficient stack memory must be available, although that memory can then be used
again later for variables in other procedures. An important side effect of using the stack for variable
storage is that the memory is cleared each time the subprogram or function is entered. Therefore, all
numeric  variables  are  initialized  to  zero,  and  strings  are  initialized  to  null.  Any  arrays  within  a
non-static procedure are by default dynamic, which means they are created upon entry to the routine
and erased when the routine exits.

STATIC also has an additional meaning in subprograms and functions; it  can establish variables as
being private to a procedure. If a variable has been declared as shared throughout a module by using
DIM SHARED in the main portion of the program, using the statement  STATIC Variable inside
the subroutine will override that property. Thus, Variable will be local to the procedure, and will not
conflict with a global shared variable of the same name. STATIC within a subprogram or function also
lets you use the same name for a variable that was already given to a named constant.

Many programmers find the use of the term STATIC for two very different purposes confusing, and
rightly so. It would have made more sense to use a different keyword, perhaps LOCAL, to limit a
variable's scope. And to further confuse the issue, the '$STATIC metacommand is used to establish the
memory storage method for arrays. None the less, STATIC always indicates that memory for a variable
is permanently allocated, and it may also specify that a variable is private to a procedure.

Recursion

The final term I want to introduce now is recursion. The classic definition of a recursive procedure is
that it may call itself. While this is certainly true, that doesn't really explain what recursion is all about,
or how it could be useful. I will cover recursion in depth momentarily, but for now suffice it to say that
recursion is often helpful when manipulating tree-structured information.

For example,  a program that lists  all  of the files on a hard disk would most likely be based on a
recursive subroutine. Such a program would first change to the root directory, and then call the routine
to read and display all of the file names it finds there. Then for each directory under the current one, the
routine would change to that directory and call itself again to read and display the files in that directory.
And if more directories were found at the next level down, the routine would call itself yet again to
process all of those files too. This continues until all of the files in all directories on the hard disk have
been processed.

73



Another application for recursion is a subroutine that sorts an array on more than one key. For example,
consider  a  TYPE array in  which each element has components for a first  name, a last  name, and
address fields. You might want to be able to sort that array first by last name, then by first name, and
then by Zip code. That is, all of the Smiths would be grouped together, and within that group Adam
would be listed before John. All of the John Smiths would in turn be sorted in Zip code order.

By employing recursion, the routine would first sort the entire array based on the last name only. Next,
it would identify each range of elements that contain identical last names. The routine would then call
itself to sort that subgroup, and call itself again to sort the subgroup within that group based on Zip
code.

Subroutines Versus Functions

There is a fundamental difference between subroutines and functions. A subroutine is accessed with
either a CALL or GOSUB statement, and a function is invoked by referencing its name. In general, a
subroutine  is  used  to  perform an action  such  as  opening  a  group of  files,  or  perhaps  updating  a
screen-full  of  information.  A function,  on  the  other  hand,  returns  a  value  such as  the  result  of  a
calculation. A string function also returns information, although in this case that information is a string.

Notice that the type of information returned by a function is independent of the type of parameters, if
any, that are passed to it. For example, BASIC's native STR$ function accepts a numeric argument but
returns a string. Likewise, a numeric function such as INSTR accepts two strings and returns a single
integer. This is also true for functions that you design using either DEF FN or FUNCTION.

Although a function is primarily used for calculations and a subroutine for performing one or more
actions, there is no hard and fast distinction between the two. You could easily design a subroutine that
multiplies three numbers and returns the answer in one of the parameters. Similarly, a function could be
written to clear the screen and then open a file. Which you use and when will depend on your own
programming style. However, there are definite advantages to using functions where appropriate.

One immediately obvious benefit of a function is that a value can be returned without requiring an
additional passed parameter. Each variable that is passed as a parameter requires 4 bytes of code for
setup, plus an additional 5 bytes within the subroutine each time it is accessed.

Another important advantage of using a function is BASIC's automatic type conversion. If you assign a
single precision variable from the result of an integer function, BASIC will convert the data from one
format to the other transparently. In fact, a simple assignment from a variable of one type to that of
another type is also handled for you by the compiler. But if a routine is written to pass the value back as
a parameter, then you must use whatever type of data the subprogram expects.

Although most high-level languages require the programmer to match explicitly the types of data being
assigned, Microsoft BASIC has done this automatically since its inception. When you write Var1! =
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Var2%, BASIC treats that as  Var1! = CSNG(Var2%). Object oriented programming languages
use the term polymorphism to describe such automatic type conversion. 

GOSUB Routines

The primary advantage a GOSUB routine holds over all of the other subroutine types is that it can be
accessed very quickly.  Translated to  assembly language a  GOSUB statement  is  but  three bytes  in
length, and its speed is surpassed only by a GOTO. When the only thing that matters is how fast a
subroutine  can  be  called,  GOSUB has  the  clear  advantage.  However,  there  are  many  limitations
inherent in a GOSUB.

The  most  important  restriction  is  that  arguments  cannot  be  passed  using  GOSUB.  Therefore,  any
variables must be assigned before invoking the routine, and possibly reassigned when it returns. For
example,  if  a  subroutine requires  two parameters—perhaps a  row and column at  which to  print  a
message—those variables must be assigned before the GOSUB can be used. And if a value is being
returned, your program must know the name of the variable that was assigned within the GOSUB
routine.

Another important limitation is that the target line label must be in the same block of code as the 
GOSUB. Although a GOSUB is legal within a SUB or FUNCTION, both the GOSUB and the routine 
it calls must be located in the same procedure. Likewise, a GOSUB in the main body of a program 
cannot access a subroutine inside a procedure, or vice versa. 

And of course you cannot invoke a GOSUB routine that is
located in a different source module.

Both of these problems restrict your ability to reuse a subroutine in more than one program. One of the
goals of modern structured programming is the ability to design a routine for one application, and also
use it again later in other programs. The only way to do that using GOSUB routines is to establish a
variable naming convention, and always use variables and line labels with those unique names.

Subprograms

Subprograms were introduced with QuickBASIC version 2.0, and they improve greatly on GOSUB
routines in many respects. The most important advantages of a subprogram are that it accepts passed
parameters, and that variables used within the subprogram are local by default. Besides the obvious
benefit of not having to worry about variable naming conflicts, these properties allow you to create
your own toolbox of useful subroutines, and use them repeatedly in different programming projects. I
will discuss this use of subprograms in detail later in this chapter.

A subprogram is accessed using the CALL statement, and any number of arguments may optionally be
passed  to  the  routine.  A subprogram  is  defined  with  a  statement  of  the  form  SUB SubName
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(Param1, Param2, ...) STATIC. The parameters and surrounding parentheses are optional, as
is the STATIC directive. Of course, the number of arguments passed to a subprogram must match the
number of parameters it expects.

As you can see, subprograms have many advantages over GOSUB routines. However, they are not a
magical  panacea  for  every  programming  problem.  Each  subprogram  includes  a  fixed  amount  of
overhead just to enter and exit it. Because of the complexities of accessing incoming parameters, a
stack frame must be created by the compiler upon entry. A stack frame is simply a fancy name for an
area of memory that holds the addresses of the incoming parameter. However, this requirement adds a
fair amount of code to each subprogram.

Eight bytes of code are needed to set up and call the internal BASIC routine that creates the stack
frame, and the routine itself comprises another 35 bytes. Eight more bytes are needed to call the routine
that exits a subprogram, and that routine adds contains 26 bytes. Finally, all but the last subprogram in
a source file needs a 3-byte jump to skip over the other subprograms that follow. Therefore, a total of
80 bytes are added to any program that uses a subprogram rather than a GOSUB routine. It is important
to point out, however, that the 61 bytes used by the library routines to enter and exit a subprogram are
added to the final .EXE file only once.

It  is  also worth mentioning that  BASIC PDS provides  the  /Ot  switch,  which  eliminates  the usual
overhead incurred from calling the routines needed to enter and exit a subprogram. Although using /Ot
avoids the code that is otherwise added, there is one important restriction: You may not use a GOSUB
within the subprogram. When a program performs a GOSUB, the address to return to is placed onto the
stack, for retrieval later when the subroutine returns. Likewise, when a subprogram is called, both a
segment and address to return to are put on the stack.

If a GOSUB were used inside the subprogram and an EXIT SUB was then encountered within the
GOSUBed subroutine, the return addresses on the stack would be out of order. Thus, the subprogram
would return to the wrong place, with undoubtedly disastrous consequences. To avoid this, BASIC by
default saves the address to return to when the subprogram is first entered, and uses that when it is
exited. Therefore, when the compiler sees that a GOSUB is being used, it does not use the abbreviated
method even if /Ot has been specified.

Although using /Ot makes a subprogram (and function) much faster by eliminating the overhead to call
the entry and exit routines, there is no actual savings in code size. A series of assembler NOP (No
Operation) instructions are placed where the entry and exit code would have been. However, those
empty  instructions  are  never  executed.  We can  only  hope  that  in  future  releases  of  BASIC PDS
Microsoft will improve BC's code generation to eliminate these unnecessary instructions.

Another problem with subprograms is that programmers tend to use them to excess. For example, I
have seen people create subprograms to increment and decrement integer variables even though it is far
more efficient to do that with in-line code. The statement X% = X% + 1 creates only 4 bytes of code,
compared to 9 for a single call to a subprogram to do the same thing!  However, incrementing long
integer or floating point  variables does take more code than invoking a subprogram with a  single
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parameter, so a subprogram could be useful in that case.  Only by counting the number of times a
subprogram will be used and comparing that to the overhead incurred can you determine whether there
will be any savings.

DEF FN Functions

Although a DEF FN function is designed to return a result, it is more closely related to a GOSUB
subroutine in actual operation. Like a GOSUB routine it is invoked with a 3-byte assembly language
"near" call, as opposed to the 5-byte "far" call that subprograms and formal functions require. And
while a DEF FN function can accept incoming parameters, variables within the function definition are
by default shared with the main portion of the program.

As I already explained, variables used in a DEF FN function can be made private to the function only
by explicitly declaring them as STATIC. However, at least it  is possible to employ local variables.
Further, a DEF FN function can return a result, which makes it an ideal replacement for GOSUB when
speed is paramount.

Internally, parameters are passed to a DEF FN function very differently than to a called subprogram or
formal function. Arguments are passed to a subprogram by placing their addresses on the stack. With a
DEF FN function, however, a copy of each parameter is created, and the function directly manipulates
those copies.  Therefore,  it  is impossible for a DEF FN function to modify an incoming parameter
directly. This behavior is neither good nor bad. Rather, it  is simply different and thus important to
understand. It is also important to understand that a DEF FN function can be used only in the module in
which  it  is  defined.  If  the  same function  is  needed  in  different  modules,  the  same code must  be
duplicated again and again.

In the manuals that come with QuickBASIC and BASIC PDS, Microsoft advises against using DEF FN
functions,  in  favor  of  the  newer,  more  powerful  formal  functions.  Because  of  this  favouritism,
Microsoft will probably never correct one disturbing anomaly that is present in all DEF FN functions.
When a string is passed as an argument to a DEF FN function, a copy is made for the function to
manipulate. Unfortunately, the copy is never deleted. Therefore, if you pass, say, a 10,000 byte string to
a DEF FN function, that amount of memory is permanently taken until the function is invoked again
later. The short listing below proves this behavior. 

DEF FnWaste (A$)
  FnWaste = ASC(A$)
END DEF

Big$ = SPACE$(10000)
PRINT FRE(Big$)
X = FnWaste(Big$)
PRINT FRE(Big$)

Notice that running this program in the QuickBASIC editing environment will not give the expected
(memory-wasting)  result.  However,  in  a  separately compiled  program the  10000 byte loss  will  be
evident.
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As with  subprograms,  there  is  a  fixed  amount  of  overhead required  to  enter  and exit  a  DEF FN
function. For each function that has been defined, 5 bytes are needed to call the Enter and Exit routines.
Further, these routines are 14 and 24 bytes in length respectively. But again, the routines themselves are
added to a program only once when it is linked.

There are two final limitations of DEF FN functions worth mentioning here. The first is that arrays and
TYPE variables may not be passed as parameters to them. Since by design a copy is made of every
incoming parameter, there is no reasonable way to do that with an entire array. The second limitation is
that the function definition must be physically positioned in the source file before any references are
made to it. 

Formal Functions

A formal function is nearly identical to a called subprogram, and it requires the exact same amount of
overhead to enter and exit. Also like subprograms, nearly any type of data may be passed to a function,
including TYPE variables and arrays. The only limitation is that a fixed-length string may not be used
directly as a parameter. If a fixed-length string is passed to a subprogram or function that expects a
string, a copy is made and assigned to a conventional string. This copying was described in detail in
Chapter 2.

Because a formal function is invoked by referencing its name in an assignment or PRINT statement, it
is  essential  that  it  be declared.  After  all,  how else  could  BASIC know that  the statement  PRINT
MyFunc means to call a function and display the result, as opposed to printing the variable named
MyFunc? When a BASIC function is  created in  the BASIC editing environment,  a  corresponding
DECLARE statement is generated automatically. But when a function is written in another language or
kept in a Quick Library, an explicit declaration is mandatory.

Like subprograms,  formal functions are ideally suited to modular,  reusable programming methods.
Furthermore, a function may be accessed from any module in an entire application, even those in other
source files. Indeed, the only difference between a subprogram and a function is that a function returns
a result. The assembly language code that BASIC generates is in all other respects identical.

Static Versus Non-static Procedures

As I stated earlier, when the STATIC keyword is appended to a SUB or FUNCTION declaration, all of
the variables within the routine are assigned a permanent address in DGROUP. And when STATIC is
omitted, the variables are instead stored on the stack and cleared to zeros or null strings each time the
routine is entered. There are several important ramifications of this behavior. Non-static procedures
allocate new stack memory each time they are invoked, and then release that memory when they exit. It
is therefore possible to exhaust the available stack space when the subroutine calls are deeply nested.
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For example,  if  you call  one subprogram that  then  calls  another  which  in  turns  calls  yet  another,
sufficient stack memory must be available for all of the variables in all of the subprograms. Besides the
memory needed for each variable in a subprogram or function, other data is also placed onto the stack
as part of the call. For each parameter that is passed, 2 bytes are taken to hold its address. Add to that 4
bytes to store the segment and address to return to in the calling program. Finally, temporary variables
that BASIC creates for its own purposes are also stored on the stack in a non-static subprogram or
function.

Another important consideration when STATIC is omitted is that every string variable must be deleted
before  the  subprogram  exits.  Because  of  the  way  BASIC's  string  management  routines  operate,
memory that holds string descriptors and string data cannot simply be abandoned. Every string must be
released explicitly by a called routine, at a cost of 9 bytes per string. Please understand that you do not
have to delete these strings. Rather, this is another case where BASIC creates additional code without
telling you.

Again, I would love to be able to tell you that using STATIC is always desirable, or that never using it
always makes sense. But unfortunately, it just isn't that simple. When a program becomes very large
and complex, only by counting variables can you be absolutely certain how much stack space is really
needed. Although the FRE(-2) function may be used to determine how much stack memory is currently
available, it does not tell how much memory is actually needed by each routine.

To summarize  the  trade-offs  between  static  and non-static  variables:  Static  variables  are  allocated
permanently by the compiler, and the memory they occupy can never be used for any other purpose.
Non-static variables are placed onto the stack, and exist only while the subprogram or function is in
use. Remember that you can also have a mix of static and non-static variables in the same procedure.
By omitting STATIC after the subroutine name, all variables will by default be non-static. You can then
override that property for selected variables by using the STATIC keyword. In the section on debugging
in Chapter 4, you will learn how to use CodeView to determine the stack requirements for a procedure's
variables. 

Controlling the Stack Size

There are several ways to control the amount of memory that is dedicated for use by the stack. All
versions of BASIC support the CLEAR command, which takes an optional argument that sets the stack
size. The statement CLEAR , , StackSize sets aside StackSize bytes for the stack. Unfortunately,
CLEAR also clears all of the data in a program, closes any open files, and erases all arrays. If you
know ahead of time how much stack memory will be needed, then using CLEAR as the first statement
in a program will not cause a problem.

Even when CLEAR is used as the first statement in a program, there is still one situation where that
will not be acceptable. When you use CHAIN to execute a subsequent program, a CLEAR statement in
that program will clear all of the variables that have been declared COMMON. Fortunately, there are
two solutions to this problem: BASIC PDS offers the STACK statement, which lets you establish the
size of the stack but without the side effects of CLEAR. For example, the statement STACK 5000 sets
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aside 5000 bytes for the stack. The other solution is to use the /STACK: link switch, which reserves a
specified number of bytes. All of the options that LINK supports are described in Chapter 5.

Recursion

I have already illustrated some of the situations in which a recursive subprogram or function could be
useful.  Now lets  look at  some actual  programming examples.  The Evaluate  function in  the listing
below uses recursion to reinvoke itself for each new level of parentheses it encounters.

DECLARE FUNCTION Evaluate# (Formula$)

INPUT "Enter an expression: ", Expr$
PRINT "That evaluates to"; Evaluate#(Expr$)

FUNCTION Evaluate# (Formula$)
  'Search for an operator using INSTR as a table lookup. If found,   
  'remember which one and its position in the string.
  FOR Position% = 1 TO LEN(Formula$)
    Operation% = INSTR("+-*/", MID$(Formula$, Position%, 1))     
IF Operation% THEN EXIT FOR
  NEXT

  'Get the value of the left part, and a tentative value for the   
  'right part.
  LeftVal# = VAL(Formula$)
  RightVal# = VAL(MID$(Formula$, Position% + 1))

  'See if there's another level to evaluate.
  Paren% = INSTR(Position%, Formula$, "(")

  'There is, call ourselves for a new RightVal#.
  IF Paren% THEN RightVal# = Evaluate#(MID$(Formula$, Paren% + 1)) 
  'No more to evaluate, do the appropriate operation and exit.   
SELECT CASE Operation%
    CASE 1                      'addition
      Evaluate# = LeftVal# + RightVal#
    CASE 2                      'subtraction
      Evaluate# = LeftVal# - RightVal#
    CASE 3                      'multiplication
      Evaluate# = LeftVal# * RightVal#
    CASE 4                      'division
      Evaluate# = LeftVal# / RightVal#
   END SELECT
END FUNCTION

When you run this program, enter an expression like 15 * (12 + (100 / 8)). To keep the code
to a minimum, Evaluate accepts only simple, two-number expressions. That is, it will not work with
more than one math operator within each pair of parentheses as in 10 * (3 + 4 + 5). However,
the parentheses may be nested to nearly any level.

This function begins by examining each character in the incoming formula string for a math operator. If
it finds one the operator number (1 through 4) is remembered, as well as its position in the formula
string. Next, VAL is used to obtain the value of the digits to the left of the operator, as well as the digits
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to the right. Notice that it was not necessary to use LEFT$ to isolate the left-most portion of the string,
because VAL stops examining the string when it encounters any non-digit character such as the "+" or
"(".

Once these values have been saved, the next test determines if any more parentheses follow in the
formula. If so, Evaluate calls itself, passing only those characters that are beyond the next parenthesis.
Thus, the same routine evaluates each new level, returning to the level above only after all levels have
been examined. I encourage you to run this program in the QuickBASIC editing environment, and step
through each statement one by one with the F8 Trace command. In particular, use the Watch Variable
feature  to  view  the  value  of  Position%  and  LeftVal#  as  the  function  recurses  into  subsequent
invocations.

It is important to understand the need for stack variables in this program, and why STATIC must not be
used in  the function definition.  When Evaluate  walks  through the incoming string and determines
which math operator  is  specified,  that  operator  must be remembered throughout  the course of  the
function. If a static variable were used for Operation%, then its previous value would be destroyed
when Evaluate calls itself. Likewise, LeftVal# cannot be overwritten either, or it would not hold the
correct value when Evaluate returns to itself from the level below. Therefore, as you step through this
program you will observe that each new invocation of Evaluate creates a new set of variables.

As you can see, stack variables are necessary for the proper functioning of a subprogram or function
that calls itself. They are also necessary when one procedure calls another procedure which in turn calls
the first one again. The key point is that each time a non-static routine is invoked, new and unique
variables  must  be  created.  Otherwise,  the  variable  contents  from  a  previous  level  above  will  be
overwritten.

Although recursion is a powerful and necessary technique,  it  should be used only when necessary.
There is a substantial amount of overhead needed to allocate stack memory and clear it to zeros, so
invoking a  non-static  routine is  relatively slow.  And as  I  described earlier,  every  non-static  string
variable must be deleted when the routine exits, at a cost of 9 bytes apiece.

Some programmers use recursion even when there are other, more efficient ways to solve a problem.
For  example,  the  QuickBASIC  manual  shows  a  recursive  function  that  calculates  a  factorial.  (A
factorial is derived by multiplying a number by all of the whole numbers less than itself. That is, the
factorial of 4 equals 4 * 3 * 2 * 1.) However, a factorial can be calculated faster and with less code
using a simple FOR/NEXT loop as shown below. This version of Factorial is 20 percent faster than the
example given in the QuickBASIC manual.

FUNCTION Factorial#(Number%) STATIC
  Seed# = 1
  FOR X% = 1 TO Number%
    Seed# = Seed# * X%
  NEXT
  Factorial# = Seed#
END FUNCTION
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Passing Parameters To Procedures

As you have already learned, BASIC normally passes data to a subprogram or function by placing its
address on the stack. And when an entire array is specified, the address of the array descriptor is sent
instead. But there are some cases where BASIC imposes restrictions on how variables and arrays may
be passed to a procedure. Let's look now at some of the ways to get around those restrictions.

When using versions of BASIC earlier than PDS 7.1, it is not legal to pass an array of fixed-length
strings. In fact, it is also impossible to pass a single fixed-length string directly. As you saw in Chapter
2, BASIC copies every fixed-length string argument to a regular string, which adds a lot of code and
also wastes string memory.

The simplest solution for fixed-length strings is to define an equivalent TYPE that is comprised of a
single string component. Since a TYPE variable or array can legally be passed, this is the easiest and
most direct approach, as shown here.

TYPE FLen
  S AS STRING * 100
END TYPE
DIM MyString AS Flen
CALL Subprogram(MyString)

SUB Subprogram(FLString AS FLen)
  ...
  ...
END SUB

If the subprogram being called is in a separate module, then the TYPE definition must also be present
in that file. However, the DIM statement is needed only in the program that passes the string. This also
works  with  fixed-length  string  arrays,  except  that  the  DIM  would  have  to  be  changed  to  DIM
MyArray(1 TO NumElements) AS FLen, and the subprogram's definition would be changed to
SUB Subprogram(FLString() AS FLen).

BASIC PDS 7.1 supports passing a fixed-length string array directly, so this work-around is not needed
with that version. Curiously, a single fixed-length string may not be passed as a parameter in BASIC
7.1. Since a fixed-length string is closely related to a TYPE variable, this limitation seems arbitrary at
best.

BASIC  7.1  also  supports  the  use  of  BYVAL  (By  Value)  when  passing  numeric  arguments  to
procedures. This is a particularly powerful feature, because it can greatly reduce the amount of code
needed to access those values within the routine. It also eliminates the need to make copies when a
constant is passed as an argument. To take advantage of this feature, you simply specify BYVAL in
both the calling and receiving argument list, as shown below.

DECLARE SUB Subroutine(BYVAL Arg1%, BYVAL Arg2%)
CALL Subroutine(Var1%, Var2%)

SUB Subroutine(BYVAL X%, BYVAL Y%)
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  ...
  ...
END SUB

Because the actual value of the argument is being passed, there is no way to return information back to
the caller. But in those situations where an assignment to the original variable from within the routine is
not needed, BYVAL can eliminate a lot of compiler-generated code when dealing with integers. Of
course, you may use a mix of BYVAL and non-BYVAL parameters if you need the benefits of both
methods  in  a  single  call.  As  proof  of  this  savings,  disassemblies  of  a  one-statement  subprogram
designed both ways is presented below, to show how an integer parameter is accessed when it is passed
by address and by value.

SUB ByAddress(Param%) STATIC
LocVar% = Param%
  MOV  SI,[Param%]   ;get the address of Param%
  MOV  AX,[SI]       ;then read the value there
  MOV  LocVar%,AX    ;assign that to LocVar%
END SUB

SUB ByValue(BYVAL Param%) STATIC
LocVar% = Param%
  MOV  AX,Param%     ;read Param% directly
  MOV  LocVar%,AX    ;and assign it to LocVar%
END SUB

Note that the savings are only within the subroutine, and not when it is called. That is, 4 bytes are
needed to pass an integer variable whether by address or by value. In fact, passing larger data types
requires  more  code  to  pass  by  value.  Any  variable  can  be  passed  by  address  with  4  bytes  of
compiler-generated code,  because what  is  sent  is  a  single address.  But  to  pass a  double precision
number by value requires 16 bytes, since 4 bytes of code are needed for each 2-byte portion of the
number.

In general, passing variables as parameters to a subprogram or function is preferable to sharing them.
When many variables are shared throughout a program, you run the risk of introducing bugs caused by
accidentally  using  the  same  variable  name  more  than  once.  However,  sharing  has  some  definite
advantages in at least two situations.

The first is when a procedure must be accessed as quickly as possible. Since a finite amount of code is
needed to pass each parameter, some amount of time is also required to execute that code. Therefore,
sharing a few, carefully selected variables can improve the speed of your programs and reduce their
size as well. Another important use for SHARED is to conserve data memory. Nearly all programs use
at least  a few temporary scratch variables, perhaps as FOR/NEXT loop counters. By dimensioning
several  such  variables  as  being  shared  throughout  a  program,  the  same  variables  can  be  used
repeatedly. I often begin programs with a DIM SHARED statement such as DIM SHARED X, Y, Z,
and then use those variables as often as possible.

One final trick I want to share is how to pass a large number of parameters using less code than would
normally be necessary. Each argument that is passed to a procedure requires 4 bytes of code. In a
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complicated routine that needs many parameters, this can quickly add up. Worse, these bytes are added
for every call. Therefore, a subprogram that accepts 10 parameters and is called 20 times will add 800
bytes to the final executable file just to handle the parameters!

One solution is to use an array, which is ideal when all of the parameters are the same type of data. An
entire array can be passed as a single parameter since only the array descriptor's address is needed.
Even better, however, is to create a TYPE variable, and then assign all of the parameters to it. A TYPE
variable can hold nearly any amount and type of data, and it too can be passed using only 4 bytes.
Although this does require a separate assignment for each TYPE component, you simply use the TYPE
where the regular variables would have been assigned. By eliminating the added code to pass many
parameters, programs that use a TYPE this way will also be much faster.

Modular Programming

QuickBASIC versions 4.0 and later let you load subprograms and functions from multiple files into the
editing  environment  at  the  same  time.  This  further  enhances  their  reusability,  since  the  different
modules can be treated as "black boxes" whose purpose is already known. Once a routine has been
developed and debugged, it can be used again and again, without further regard for the names of the
variables within the routines. Indeed, many of the utility routines included with this book are provided
as separate modules, intended to be loaded along with your programs. Any variable name can be passed
as an argument to a procedure, even if a different name is used to represent the same variable within the
procedure. If you have defined a subprogram such as SUB MySub(X%, Y!, Z$), then you could
call it using CALL MySub(A%, B!, C$). Of course, the variables you pass must be of the same
data type as the subroutine expects.

Because reusability is an important consideration in the design of any procedure, it generally makes
sense to store it in its own source file. This lets you combine the same module repeatedly with any
number of programs. The alternative would be to merge the file into each program that needs it. But
maintaining multiple copies of the same code wastes disk space.  Further,  if  a bug is  found in the
routine, you will have to identify all of the programs that contain it, and manually correct each one of
them.

Another important advantage of using separate files is that you can exceed the usual 64K code size
barrier. Unlike the data segment which is comprised of the sum of all data in all modules, an .EXE file
can contain multiple code segments. Each BASIC module has a single code segment, and each of these
can be as large as 64K. In fact, dividing a program into separate files is the only way to exceed the
usual 64K code size limitation.

Although using a separate source file for each subprogram makes sense in many situations, there is one
slight  disadvantage.  When  all  of  the  various  program modules  are  linked  together,  each  separate
module adds approximately 100 bytes of overhead. None the less, for all but the smallest programming
projects, the advantages of using separate modules will probably outweigh the slight increase in code
size.
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Include Files

Another useful BASIC feature that can help you to create modular programs is the Include file. An
Include file is a separate file that is read and processed by BASIC at a specified place in your program.
The statement '$INCLUDE: 'filename' tells QB or BC to add the statements in the named file to
your source code, as if that code had been entered manually. If a file extension is not given, then .BAS
is assumed. Many of the files that Microsoft provides with QuickBASIC use a .BI extension, which
stands  for  "BASIC  Include".  Some  programmers  use  .INC,  and  you  may  use  whatever  seems
appropriate to the contents of the file.

Include files are ideal for storing DECLARE, CONST, TYPE, and COMMON statements. Except for
COMMON, none of these statements add to the size of your program, and none of them create any
executable code. Therefore, you could create a single include file that is used for an entire project, and
add  an  appropriate  '$INCLUDE  directive  to  the  beginning  of  each  program  source  file.  Unused
DECLARE and  CONST statements  and TYPE definitions  are  ignored  by BASIC if  they  are  not
referenced. However, they do impinge slightly on available memory within the QuickBASIC editor,
since BASIC has no way to know that they are not being used. Similarly, BC must keep track of the
information in these statements as it compiles your program. But again, there is no impact on the size
of your final executable program.

In general, I recommend that you avoid placing any executable statements into an include file. Because
the code in an include file is normally hidden from your view, it is easy to miss a key statement that is
causing a bug. Likewise, a '$DYNAMIC or '$STATIC command hidden within an include file will
obscure the true type of any arrays that are subsequently dimensioned. Perhaps worst of all is placing a
DEFINT or other DEFtype statement there, for the same reason.

Quick Libraries

Quick  Libraries  contribute  to  modular  programming  in  two  important  ways.  Perhaps  the  most
important use for a Quick Library is to allow access to subprograms and functions that are not written
in BASIC. All DOS programs and subroutines—regardless of the language they were originally written
in—end up as .OBJ files suitable for LINK to join together. But the QB and QBX editing environments
manipulate BASIC source code, and interpret the commands rather than truly compile them. Therefore,
the only way you can access a routine written in assembly language or C within QuickBASIC is by
placing the routine into a Quick Library.

Quick Libraries also let you store completed BASIC subprograms and functions out of the way from
the rest of your program. If you have a large number of subroutines in one program, the list of names
displayed when F2 is pressed can be very long and confusing. Since QuickBASIC does not display the
routines in a Quick Library, there will be that many fewer names to deal with. Another advantage of
placing pre-compiled BASIC routines into a Quick Library is that they can take less memory than when
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the BASIC source code is loaded as a module. This is true especially when you have many comments
in the program, since comments are of course not compiled.

Be aware that there are a few disadvantages to placing BASIC code into a Quick Library. One is that
you cannot step and trace through the code, since it is not in its original BASIC source form. Another is
that Quick Libraries are always stored in normal DOS memory, as opposed to expanded memory which
QBX [and VB/DOS] can use. When a BASIC subprogram or function is less than 16K in size and EMS
is present,  QBX and VB/DOS will  place its source code in expanded memory to free up as much
conventional memory as possible.

Error and Event Handling

As a BASIC programmer, there are several types of errors that you must deal with in a program. These
errors fall into two general categories: compile errors and runtime errors. Compile errors are those that
QB or  BC issue,  such as  "Syntax error"  or  "Include  file  not  found".  Generally,  these are  easy to
understand  and  correct,  because  the  QuickBASIC  editor  places  the  cursor  beneath  the  offending
statement. In some cases, however, the error that is reported is incorrect. For example, if your program
uses a function in a Quick Library that expects a string parameter and you forgot to declare it, BASIC
reports a "Type mismatch" error. After all, with a statement such as X = FuncName%(Some$), how
could BASIC know that FuncName% is not simply an integer array? Assuming that it  is an array,
BASIC rejects Some$ as being illegal for an element number.

Runtime errors are those such as "File not found" which are issued when your program tries to open a
file that doesn't exist, or is not in the specified directory. Other common runtime errors are "Illegal
function call", "Out of string space", and "Input past end". Many of these errors can be avoided by an
explicit test. If you are concerned that string space might be limited you can query the FRE("") function
before dimensioning a dynamic string array. However, some errors are more difficult to anticipate. For
example, to determine if a particular directory exists you must use CALL Interrupt to query a DOS
service.

The conventional way to handle errors is to use ON ERROR, and design an error handling subroutine.
There are a number of problems with using ON ERROR, and most professional programmers try to
avoid using it whenever possible. But ON ERROR does work, and it is often the simplest and most
direct  solution in  many programs.  The short  listing below shows the minimum steps  necessary to
implement an error handler using ON ERROR. 

ON ERROR GOTO HandleErr
FILES "*.XYZ"
END

HandleErr:
SELECT CASE ERR
  CASE 53: PRINT "File not found"
  CASE 68: PRINT "Device unavailable"
  CASE 71: PRINT "Disk not ready"
  CASE 76: PRINT "Path not found"
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  CASE ELSE: PRINT "Error number"; ERR
END SELECT
RESUME NEXT

The statement  ON ERROR GOTO HandleErr tells BASIC that if an error occurs,  the program
should jump to the HandleErr label. Without ON ERROR, the program would display an error message
and then end. Since it is unlikely that you have any files with an .XYZ extension, BASIC will go to the
error handler when this program is run. Within the error handling routine, the program uses the ERR
function  to  determine  the  number  of  the  error  that  occurred.  Had line  numbers  been used  in  the
program, the line number in which the error occurred would also be available with the ERL function.

In this brief program fragment, the most likely error numbers are filtered through a SELECT CASE
block, and any others will be reported by number. Regardless of which error occurred, a RESUME
NEXT statement is used to resume execution at the next program statement. 

RESUME can also be used with an explicit line label or number to resume there; if no argument is
given BASIC resumes execution at the line that caused the error. In many cases a plain RESUME will
cause the program to enter an endless loop, because the error will keep happening repeatedly.

In this case, the file will not exist no matter how many times BASIC tries to find it. Therefore, a plain
RESUME is not appropriate following a "File not found" or similar error. Had the error been "Disk not
ready", you could prompt the user to check the drive and then press a key to try again. In that case,
then,  RESUME would make sense.  Although BASIC's ON ERROR can be useful,  it  does  have a
number of inherent limitations.

Perhaps the worst problem with ON ERROR is that it often increases the program's size. When you use
RESUME NEXT, you must also use the /x compile switch. Unfortunately, /x adds internal address
labels to show where each statement begins, so the RESUME statement can find the line that caused
the error. These labels are included within the compiled code and therefore increases its size.

Another  problem with  ON ERROR is  that  it  can  hide  what  is  really  happening  in  a  program.  I
recommend strongly that you REM out all ON ERROR statements while working in the QuickBASIC
editing environment. Otherwise, an Illegal function call or other error may cause QuickBASIC to go to
your error handler, and that handler might ignore it if the error is not one you were expecting and
testing for. If that happens and your program uses RESUME NEXT, you might never even know that
an error occurred!

Yet another problem with ON ERROR is that it's frankly a clumsy way to program. Most languages let
you test for the success or failure of the most recent operation, and act on or ignore the results at your
discretion. Pascal, for example, uses the IOResult function to indicate if an error occurred during the
last input or output operation.

Finally, BASIC generates errors for many otherwise proper circumstances, such as the FILES statement
above. You might think that if no files were found that matched the .XYZ extension given, then BASIC
would simply not display anything. Indeed, an important part of toolbox products such as Crescent
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Software's QuickPak Professional are the routines that replace BASIC's file handling statements. By
providing replacement routines that let you test for errors without an explicit ON ERROR statement, an
add-on library can help to improve the organization of your programs.

As I mentioned earlier, some errors can be avoided by using CALL Interrupt to access DOS directly.
(One important DOS service lets you see if a file exists before attempting to open it.)  But critical errors
such as those caused by an open drive door require assembly language. In Chapter 11 you will learn
how to bypass BASIC and access DOS directly using CALL Interrupt.

Event Handling here

BASIC includes several forms of event handling, and like ON ERROR, these too are avoided when
possible by many professional programmers. Event handling lets your programs perform a GOSUB
automatically and without any action on your part, based on one or more conditions. Some of the more
commonly used event statements are ON KEY, ON TIMER, and ON COM. With ON KEY, you can
specify that a particular key or combination of keys will temporarily halt the program, and branch to a
GOSUB routine  designated  as  the  ON KEY handler.  ON TIMER is  similar,  except  it  performs a
GOSUB at  regular  intervals  based on BASIC's  TIMER function.  Likewise,  ON COM performs a
GOSUB whenever a character is received at the specified communications port.

The concept of event handling is very powerful indeed. For example, ON COM allows your program to
go about its business, and also handle characters as they arrive at the communications port. ON TIMER
lets you simulate a crude form of multi-tasking, where control is transferred to a separate subroutine at
one  second intervals.  Unfortunately,  BASIC's  event  handling  is  not  truly interrupt  driven,  and the
resulting code to implement it adds considerably to a program's size.

When  any  of  the  event  handling  methods  are  used,  BASIC  calls  an  interval  event  dispatcher
periodically  in  your  program. These  calls  add five bytes  apiece,  and one is  added at  either  every
statement,  or  at  every  labelled  statement  depending  on  whether  you  compiled  using  /v  or  /w
respectively. This can increase your program's size considerably. Even worse, the repeated calls have an
adverse effect on the speed of most programs. Like ON ERROR, BASIC's event handling statements
provide a simple solution that is effective in many programming situations. And also like ON ERROR,
they are best avoided in important programming projects.

Using purely BASIC techniques, the only alternative to event trapping is polling. Polling simply means
that  your  program manually  checks  for  events,  instead  of  letting  BASIC do it  automatically.  The
primary  advantage  of  polling  is  that  you  can  control  when  and  where  this  checking  occurs.  The
disadvantage is that it requires more effort by you.

To see if any characters have been received from a communications port but are still waiting to be read
you would use the LOF function. And to see if a given amount of time has elapsed you must query the
TIMER function periodically. If true interrupt driven event handling were available in BASIC, that
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would clearly be preferable to either of the two available methods. However,  only with Crescent's
P.D.Q. product can such capability be added to a BASIC program.

Programming Style

Programming style  is  a  personal  issue,  and every  programmer  develops  his  or  her  own particular
methods over time. Some aspects of programming style have little or no impact on the quality of the
final result. For example, the number of columns you indent a FOR/NEXT loop will not affect how
quickly a sort routine operates. But there are style factors that can help or harm your programs. One is
that clearly commenting your code will help you to understand and improve it later. Another is when
more than one programmer is working on a large project simultaneously. If neither programmer can
figure out what the other is doing, the program's quality will no doubt suffer.

Clearly, no one can or even should try to force a particular style or ideology upon you. However, I
would like to share some of the decisions that I have made over the years, and explain why they make
sense to me. Of course, you are free to use or not use these opinions as you see fit. Programmers are as
unique  and varied  as  any other  discipline,  and no one set  of  rules  could possibly  serve everyone
equally. Whatever conventions you settle upon, be consistent above all else.

The most important convention that I follow is to use  DEFINT A-Z as the first statement in every
program. For me, using integers verges on religion, and my fingers could type DEFINT even if I were
asleep.  As I have stated repeatedly,  integers should be used whenever possible,  unless you have a
compelling reason not to. Integers are much faster and smaller than any other variable type BASIC
offers.  Nearly  all  of  the  available  third  party  add-on  products  use  integers  parameters  wherever
possible, and so should the routines you write. The only reasonable exception to this is when writing
financial or scientific programs, or other math-intensive applications.

Equally  important  is  adding  sufficient  and  appropriate  comments.  Some  programmers  like  to  use
comment  headers  that  identify each related  block of  code;  others  prefer  to  comment  every line.  I
recommend doing both, especially if other people will be reading your programs. I also prefer using an
apostrophe as a comment delimiter, rather than the more formal REM. There are only so many columns
available for each comment line, and it seems a shame to waste the space REM requires.

When writing a subprogram or function that you plan to use again in other projects, include a complete
heading comment that shows the purpose of the routine and the parameters it expects. If each parameter
is listed neatly at the beginning of the file, you can create a hard copy index of routines by printing that
section of each file.

Avoid comments that are obvious or redundant, such as this: 

   Count = Count + 1 'increment Count
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If Count is keeping track of the number of lines read from a file, a more appropriate comment would
be: 'show that another line was read. Also avoid comments that are too cute or flip. Simply
state clearly what is happening so you will know what you had in mind when you come back to the
program next month or next year.

Selecting meaningful variable names is equally valuable in the overall design of a program. If you are
keeping track of the current line in a file, use a variable name such as CurLine. Although BASIC in
some cases lets you use a reserved word as a variable name, I recommend against that. Over the years,
different  versions  of  BASIC  have  allowed  or  disallowed  different  keywords  for  variables.  While
QuickBASIC 4.5 lets you use Name$ as a variable, there is no guarantee that the next version will.
Also,  be  aware  that  variables  names  which  begin  with  the  letters  Fn are  illegal,  because  BASIC
reserves that for user-defined functions. Using the variable FName$ to hold a file name may look legal,
but it isn't.

Don't be ashamed to use GOTO when it is appropriate. There are many places where GOTO is the most
direct way to accomplish something. As I showed earlier in this chapter, GOTO when used correctly
can sometimes produce smaller and faster code than any other method.

Use line labels instead of line numbers. The statement GOSUB 1020 doesn't provide any indication as
to what happens at line 1020.  GOSUB OpenFile, on the other hand, reads like plain English. The
only exception to this is when you are debugging a program that crashes with the message "Illegal
function call at line no line number". In that case, you should add line numbers to your program and
run it again. A program that reads a source file and prints each line to another file with sequential
numbers is trivial to write. I will also discuss debugging in depth in Chapter 4.

Even though using DEFINT is supposed to force all subsequent CONST, DEF FN, and FUNCTION
declarations to be integer, a bug in QuickBASIC causes untyped names to occasionally assume the
single precision default. Therefore, I always use an explicit percent sign (%) to establish each function's
type. In fact, I use whatever type identifier is appropriate for functions and CONST statements, to make
them easily distinguishable in the program listing.  For example,  in  the statement  IF CurRow >
MaxRows% THEN CurRow = MaxRows%, I know that MaxRows% has been defined as a constant.
Some people prefer to use all upper-case letters for constants, though I prefer to reserve upper case for
BASIC keywords.

Although BASIC supports the optional AS INTEGER and AS SINGLE directives when defining a
subprogram or function,  that  wastes a lot  of screen space.  I  greatly  prefer  using the variable type
identifiers. That is, I will use SUB MySub(A%, B!) rather than SUB MySub(A AS INTEGER,
B AS SINGLE). The same information is conveyed but with a lot less effort and screen clutter.

A well-behaved subroutine will restore the PC to the state it was when called. If you have subprogram
that prints a string centred on the bottom line of the screen, use CSRLIN and POS(0) to read the current
cursor location before you change it. Then restore the cursor before you exit.

90



I like to indent two spaces within FOR/NEXT and IF/THEN blocks. Although some people prefer
indenting four or even eight columns for each level, that can quickly get out of hand when the blocks
are deeply nested. Nothing is harder to read than code that extends beyond the edge of the screen. But
whatever you do, please do not change the tab stop settings in the QuickBASIC editor, unless you are
the only one who will ever have to look at your code. Even though the program may look fine on your
screen, the indentation will be completely wrong on everyone else's PC.

When creating a dynamic array I  prefer REDIM to a previous '$DYNAMIC statement.  REDIM is
clearer because it shows at the point in the source where the array is dimensioned that this is a dynamic
array. Otherwise you have to scan backwards through your source code looking for the most recent
'$DYNAMIC  or  '$STATIC,  to  see  what  type  of  array  it  really  is.  By  the  same  token,  using
ever-changing DEFtype statements throughout your code is poor practice. Further, if a variable is a
string, always include the dollar sign ($) suffix when you reference it. If you use DEFSTR S or even
worse,  DIM xxx AS STRING and then omit  the dollar  sign,  nobody else will  understand your
program.

I also prefer to explicitly dimension all arrays, and not let BC create them with the 11-element default
(including element zero). If you need less than 11 elements, the memory is wasted. And if you need
more,  then  your  program  will  behave  unpredictably.  Not  dimensioning  every  array  is  sloppy
programming. Period.

Avoid repeated calls to BASIC's internal functions if possible. In the listing below, the first example
creates 61 bytes of code, while the second generates only 46 bytes.

Not recommended:

IF CSRLIN = 1 OR CSRLIN = 6 OR CSRLIN = 12 THEN
  ...
END IF

Much better:

Temp = CSRLIN
IF Temp = 1 OR Temp = 6 OR Temp = 12 THEN
  ...
END IF

As I stated earlier in this chapter, using SELECT CASE instead of IF will also eliminate this problem.
Many BASIC statements are translated into calls, and each call takes a minimum of five bytes.

Your programs will be easier to read if you evaluate temporary expressions separately. Even though
BASIC lets you nest parentheses to nearly any level, nothing is gained by packing many expressions
into a single statement. In the examples below that strip the extension from a file name, the first creates
only a few bytes less code. Although this may seem counter to the other advice I have given, a slight
code increase is often more than offset by a commensurate improvement in clarity. 

File$ = LEFT$(File$, INSTR(File$, ".") - 1)
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Dot = INSTR(File$, ".")
File$ = LEFT$(File$, Dot - 1)

The last issue I want to discuss is how to pronounce BASIC keywords and variable names. Don't laugh,
but many programmers have no idea how to communicate the words LEFT$ or VARSEG over the
telephone. Some people say "X dollar" for X$ even though "X string" is so much easier to say. Another
keyword that's  hard to verbalize is  VARPTR. I  prefer  "var  pointer"  since it  is,  after  all,  a  pointer
function.  CHR$(13) is pronounced "character string thirteen",  again because that's the clearest  and
most straight forward interpretation. Likewise, INSTR is pronounced "in string" and LEFT$ would be
said as "left string". If you're not sure how to pronounce something, use the closest equivalent English
wording you can think of. 

Summary

In this chapter you have learned how BASIC's control flow statements are constructed, and how the
compiler-generated code is similar regardless of which statements are used. You also learned where
GOSUB and GOTO should be used, and when subprograms and functions are more appropriate. The
discussion on logical operations showed how AND, OR, EQV, and XOR operate, and how they can be
used to advantage in your programs.

I  have  explained  in  detail  exactly  what  recursion  is,  and  how  recursive  subroutines  can  perform
services that are not possible using any other technique. You have also learned about the importance of
the  stack  in  recursive  and  other  non-static  subroutines.  Passing  parameters  to  subprograms  and
functions has also been described in detail, along with some of the principles of modular program and
event handling.

Finally, I have shared with you some of my own personal preferences regarding programming style,
and when and how such conventions can make a difference. Although this is a personal issue, I firmly
believe it is important to develop a consistent style and stick with it.

In Chapter 4 you will learn debugging methods using both the QuickBASIC editing environment and
Microsoft's CodeView debugger. The successful design of a program is but one part of its development.
Once it has been written, it must also be made to work correctly and reliably. As you will learn, there
are many techniques that can be used to identify and correct common programming errors.
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PART 2
Programming Hands On



4
Debugging Strategies

There are many individual components which contribute to a completed application. The logical flow
of the program must be determined, the user interface must be designed, and appropriate algorithms
must be selected. But no matter how much effort you devote to the design and implementation of a
program, the bottom line is it must also work correctly.

In an ideal scenario, you would begin writing a program by first jotting down some notes that describe
its operation. Next, you would create an outline listing each of the program's major components. You
would then determine all of the subroutines and functions that are needed, and perhaps even create a
flow chart showing each of the paths that could be taken. Properly prepared for any situation that might
arise, you finally write the actual code and find that it works perfectly. Now, what's wrong with this
picture?  Few people actually program that way!

In practice, many programmers simply start coding with little forethought and no detailed plan. They
begin with the first statement and continue to the last, occasionally reworking portions into subroutines
as necessary. After all, planning is not nearly as much fun as programming, and everyone knows that
fun is the most important part. Believe it or not, I agree. There's nothing really wrong with plodding
through a program, stabbing here and there until it works. Indeed, some great algorithms developed out
of aimless doodling. I have personally never drawn a flow chart, and I have no plans to start now.

What I will address here is how to find and correct problems when they do occur. There are more
things that can go wrong with a program than can go right,  and tracking down an elusive "Illegal
function call" error that appears only occasionally is definitely not much fun. How quickly you can
solve these problems is directly related to your understanding of programming in general, and to your
familiarity with the tools available.

In this chapter you will learn how to identify problems in your programs, and also how to solve them.
Programming errors, or bugs, can be as simple as a misspelled variable name, and as complex and
ornery as  an internal  flaw in BASIC itself.  The BASIC editing environment  provides a  wealth of
powerful debugging features, and understanding how to use them will help you produce programs that
are reliable and error free. 

Common Programming Errors

There are three distinct types of programming errors: simple misspellings and other naming or syntax
errors,  incorrect  logic  such as  misunderstanding or incorrectly  coding an algorithm, and failing to
understand some of the finer points of the BASIC language. No matter how carefully you type, no
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matter how much forethought you apply to a particular problem, and no matter how often you read the
BASIC manuals, it is impossible to completely avoid making mistakes.

The first category includes those errors caused by simple mistakes such as misspelling a variable or
procedure name. Trying to call a subprogram that doesn't exist will be immediately obvious, because
BASIC gives you an error message before the program can be run. But an incorrect variable name will
return the wrong results with no warning.

Passing the wrong number of arguments to a procedure may or may not be reported, depending on
whether  the  routine  has  been  declared.  Assembly  language  routines  in  a  Quick  Library  can  be
particularly pesky in this regard. Although BASIC automatically generates a DECLARE statement for
BASIC subprograms and functions you have loaded in source form, it does not do this for routines in a
Quick Library. If you call an assembly language routine incorrectly, you will probably crash the PC.
However, it is also possible to corrupt string memory and not know it. Worse, a "String space corrupt"
error is often not reported until much later in the program. If you run the short program below in the
QuickBASIC 4.5 editor, it will appear to operate correctly.

X$ = SPACE$(1000)       'create a string
POKE SADD(X$) - 2, 100  'corrupt string memory
PRINT "Testing"
X% = 1
PRINT "More testing"
X% = 2
PRINT "Yet more testing"
X% = 3

Here, the POKE statement is overwriting the back pointer that belongs to X$, which is one type of
string corruption that can occur. But QuickBASIC doesn't know that this has happened, because it has
no reason to check the integrity of its string memory until another string assignment is made. However,
adding the statement PRINT FRE("") anywhere after the POKE command causes BASIC to check
string memory, and report the error. Even if your program does not use POKE, calling a procedure
incorrectly can cause it to overwrite memory in this fashion.

Another  simple  error  is  inadvertently  using  the  same  variable  name  twice,  or  omitting  a  type
declaration character from a variable name. For example, if you are using a variable named Bytes& to
track how many bytes of a file have been read, accidentally using Bytes later on will give the wrong
results. If a DEFINT statement is in effect, then Bytes will be an integer variable. Otherwise, it will be
single precision which is also incorrect. Unless you use the DIM...AS statement to declare a variable
explicitly, BASIC lets you have different variables with the same name. That is, Var%, Var!, and Var#
can all coexist in the same program, and each is a unique variable.

Similarly, using the wrong variable entirely will cause your program to operate incorrectly, and again
with no error message displayed. More than once I have had a program with one FOR loop nested
within another, and used the outer loop counter variable when I meant to use the inner one.

Another common situation is caused by changing the name of a variable during the course of writing a
program. For example, you may have a variable named BPtr that tracks where you are reading within a
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buffer. If you later decide to change that name to BufPointer because it is more meaningful, you must
also remember to change all occurrences of the name. Of course, BASIC's search and replace feature
minimizes that problem. More important, though, you must make a mental note to use the new name as
you continue to develop the program.

Forgetting to declare a function can also lead to incorrect results that produce no warning. If an integer
function is not declared, then BASIC will dimension an array with that name if the function expects a
numeric argument. When BASIC encounters the statement  X = FuncName%(Y%) it assumes that
FuncName% is an integer array, and create an array containing the default 11 elements. In this case X
will be assigned a value of zero, or you will receive a "Subscript out of range" error if Y% is not
between 0 and 11. I once observed an unexplainable "Out of string space" error that was caused by the
statement  Size = ScreenSize%(ULRow, ULCol, LRRow, LRCol).  ScreenSize% was a
function  present  in  a  Quick  Library,  but  without  a  DECLARE  statement  BASIC  created  a
4-dimensional integer array. 

Logic Errors

The second cause of bugs is logic errors, and these include adding when you meant to subtract, or using
the wrong variable altogether. Programs that manipulate pointers (variables that hold the addresses of
other variables) are particularly prone to errors in logic. Another common logic error is forgetting to
trim the leading or trailing blanks from a file or directory name before using it. If the operator enters
"  c:\thisfile.dat" and you try to open that file, BASIC will report a "Bad file name" error.

Another cause of logic errors is failing to consider all of the things a user may enter. An inexperienced
operator is likely to enter data that you as the programmer would never consider, or select menu items
in an order that makes no sense. Indeed, never underestimate the value of beta testers. After you have
exhausted all of the possibilities you can think of, give the program to a 4 year old child, and ask him
or her to try it while you watch. Your uncle Ernie would be a good beta tester too, and the less he
knows about your program, the more valuable his contribution will be. People who know absolutely
nothing about computers have an uncanny knack for creating "Illegal function call" errors in a program
that you just know is perfect.

Similarly, you must consider all of the possible error conditions that could happen in a program. In an
error handler that has a CASE statement for each possibility you anticipate, also include a CASE ELSE
clause for those you haven't thought of. The short listing that follows shows a typical error handler that
incorporates this added safety measure. 

ON ERROR GOTO HandleErr
  ...
  ...
HandleErr:
  SELECT CASE ERR
    CASE 7, 14
      PRINT "Out of memory"
    CASE 24, 25, 27
      PRINT "Fix the printer"
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    CASE 53
      PRINT "File not found"
    CASE ELSE
      PRINT "Error number"; ERR
  END SELECT
  ...
  ...

The CASE ELSE clause lets you accommodate any possibility, and your user can then at least report to
you what the error number was. This simple example doesn't include all of the possibilities, but you can
certainly see the general concept.

Another common logic error is using the same file number twice. When a file has been opened as #1,
that number remains in use until the file is closed. This can be problematical when writing reusable
modules,  since  there  is  no  way to  know which  files  may  be  in  use  by  the  main  program.  Some
programmers use #99 or another unlikely number in a routine that will be reused in many programs.
But even that approach is flawed, because you have to remember which numbers are used by which
routines.

BASIC's FREEFILE function is intended to solve this problem, and it returns the next available file
number. Be sure to save the results FREEFILE returns, however, since the value will change as soon as
the next file is opened. The code below shows both the wrong and right ways to use FREEFILE.

Wrong:

OPEN "accounts.dat" FOR INPUT AS #FREEFILE
INPUT #FREEFILE, X$    'FREEFILE has changed! 
CLOSE #FREEFILE

Right:

FileNum = FREEFILE    'get and save the number
OPEN "accounts.dat" FOR INPUT AS #FileNum
INPUT #FileNum, X$
CLOSE #FileNum

In the first example if FREEFILE returns, say, a value of 2, then it will return 3 at the INPUT statement
which is of course incorrect. Therefore, you must save the value FREEFILE returns, and use that for all
subsequent file accesses. This situation also occurs with INKEY$, because once a character has been
returned it is no longer available unless you saved it.

Two other frequent problems are attempting to use LSET to assign characters into a string that does not
exist, and failing to clear a counter variable within a static subprogram or function. The second problem
can be especially frustrating, because the routine will work correctly the first time it is invoked. In the
function below, a counter returns the number of embedded control characters it finds in a string. 

FUNCTION CtrlCount%(Work$) STATIC
  FOR X% = 1 TO LEN(Work$)
    IF ASC(MID$(Work$, X%, 1)) < 32 THEN
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      Count% = Count% + 1
    END IF
  NEXT

  CtrlCount% = Count%    'return the count
END FUNCTION

The problem here is that Count% retains its value between function invocations. Therefore, each time
CtrlCount% is used it will return ever higher values. One solution is to add the statement Count% =
0 at the beginning of the function. Another is to omit the STATIC option from the function definition.

Understanding BASIC's Quirks

The third type of error is caused by not understanding some of BASIC's finer points and quirks. For
example, some people do not realize that omitting the third argument from MID$ causes it to return all
of the remaining characters in a string. To see if a drive letter was given as part of a file name and if so
extract it, you might use a statement such as IF MID$(FileName$, 2) = ":" THEN Drive$
= LEFT$(FileName$, 1).  But  since the number of characters  was not specified to MID$, it
returned all but the first character in the string. Unless the string was a drive letter and colon only
("C:"), the test for a colon could never work. The solution, of course, is to use MID$(FileName$,
2, 1).

Another instance in which an intimate knowledge of BASIC's idiosyncrasies comes into play can affect
the earlier example of a file name that contains leading blanks. Most programmers do not use INPUT to
accept information, unless the program is very simple and it will be used only occasionally. However,
asking for a file name with INPUT is one way to avoid that problem, because INPUT strips all leading
and trailing blank spaces, as well as CHR$(9) tab characters. The more useful LINE INPUT, on the
other hand, does not strip leading blanks and tabs. Most programmers would never be so foolish as to
enter a file name with leading blanks. So this is yet another situation where it is important to consider
all of the possibilities.

It is also possible to crash a program by using the ASC function when the string might be null. Again,
you  would  never  press  Enter  alone  in  response  to  a  prompt  for  a  file  name  or  other  mandatory
information, but someone else might.

Another BASIC quirk is caused by rounding errors. As you saw in Chapter 2, adding or multiplying
many numbers in succession can produce results that are not precisely correct. Instead of checking to
see if a value is zero, it is often better to compare it to a very small number. That is, instead of  IF
Value# = 0 you would use  IF Value# < .000001 or IF Value# < .000001 AND
Value# > -.000001 or something similar. Also, some numbers simply cannot be represented at
all. If you try to enter the statement X# = .00000000001 in the QuickBASIC 4.5 editor, the value
will be converted to 9.999999999999999D-12 as soon as you press Enter.

Although not technically a BASIC quirk, many programmers forget that variables within a DEF FN
function are by default global. Unless you include an explicit STATIC statement listing each variable

98



that is to be local to the function, it is likely that an unexpected change will be made to a variable in the
main program.

Some programming situations require that you obtain the address of a string variable using SADD.
However, SADD is not legal for use with a fixed-length string or the string portion of a TYPE variable.
More important, when using BASIC PDS far strings you must also remember to use SSEG to get the
string's data segment. Using VARSEG will not create an error; however, the program will not work
correctly.

Related to that, it is important to remember that strings and dynamic arrays move around in memory—
often at unexpected times. The program below appends a zero character to one string for each zero that
is found in another string. Since BASIC may move Work$ during the course of assigning Zero$, this
code will fail eventually:

Address = SADD(Work$)
FOR Y = Address TO Address + LEN(Work$) - 1
  IF PEEK(Y) = 48 THEN Zero$ = Zero$ + "0"
NEXT

Another particularly insidious bug can result if you inadvertently add parentheses around a variable that
is passed to a subprogram or function. In the example below, a subprogram that intentionally modifies a
parameter has been declared and is then called without the CALL keyword. 

DECLARE SUB Square(Param%)
Square (Value%)

SUB Square(Value%) STATIC
  Value% = Value% * Value%
END SUB

Because of the unnecessary and incorrect use of parentheses, a copy of the argument is sent to Square
instead of the argument itself, with the result that Value% is never actually changed. The fix is to either
remove the parentheses,  or add the word CALL. Another,  related issue is  placing a DEFINT after
DECLARE statements. In the example below, the parameters X, Y, and Z are assumed by BASIC to be
single precision, even though this is clearly not what was intended.

DECLARE SUB (X, Y, Z)  'X, Y, and Z are singles!
DEFINT A-Z
 .
 .

The final issue I want to address here is potential overflow errors. The statement IF IntVar% * 14
> 1000000 can never be true, because BASIC performs integer math assuming an integer range only.
Unless you compile your program using the /d debug option, the error will be unreported in a compiled
program. If this statement is executed within the QB environment,  BASIC will  report an overflow
error, even though the instruction certainly appears to be legal. But since integer math assumes an
integer result, the product of IntVar% times 14 will overflow the range of integer values if IntVar% is
greater than 2,340.
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One solution is to use a long integer for IntVar, and BASIC will then use the range of long integers for
the comparison. Using a long integer wastes memory, however, and calculations on long integers are
slower and require more code to implement. A much better solution is to use CLNG (Convert to Long),
which tells BASIC to assume a long integer result.

The statement  IF CLNG(IntVar%) * 14 > 1000000 will  create a  long integer version of
IntVar%, and then multiply the result times 14 and use that for the subsequent comparison. Unlike the
copies that BASIC makes which steal DGROUP memory, the long integer conversion in this instance is
handled within the CPU's registers. CLNG when used this way is really just a compiler directive, as
opposed to a called library routine. Another solution is to add an ampersand after the constant 14, thus:
IF IntVar% * 14& > 1000000. Again, no additional DGROUP memory is used to handle 14 as
a long integer value.

Another interesting use of CLNG and CINT—unrelated to debugging but worth mentioning none the
less—is  to  reduce  the  size  of  comparison  code.  When  you  use  a  statement  such  as  IF X% >
VAL(Some$), a floating point comparison is performed even if Some$ holds an integer value. By
replacing that example with  IF X% > CINT(VAL(Some$)) 6 bytes of code can be saved. The
CINT tells BASIC that it will not have to perform any floating point rounding when it compares the
two values.

Debugging and Testing Techniques

When you are developing a large application that is comprised of many individual modules, there are
several useful debugging techniques you can employ. One is to create short test-bed programs that
exercise  each  subprogram  and  function.  Finding  an  error  in  a  complex  program  with  many
interdependencies between subroutines can be a tedious prospect at best. If you instead create a small
program whose sole purpose is to test a particular subprogram, you will be better able to focus on just
that routine.

Another useful technique for detecting and preventing sporadic errors is to test your code on "boundary
conditions". If you have a routine that reads and processes a file in 4K (4096 byte) increments, test it
with a file that is exactly 4096 bytes long, as well as with other test files that are 4095 and 4097 bytes
long.

Perhaps nothing is more frustrating than having a program fail with the message "xxx at line No line
number". This message is a throw-back to the days when all BASIC programs had to use line numbers.
Now that line numbers are not required in modern compiled BASIC, most programmers do not use
them, opting instead for more descriptive line labels when labels are needed at all. When an error does
occur and the program has been compiled with /d, BASIC reports the number of the nearest numbered
line preceding the line in which the error occurred.
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A good solution to track down the cause of such errors is to use a variant on a hardware debugging
technique known as the cut in half method. In a complex electronic circuit that does not work, using
this technique means that the circuit is first checked at its mid-point for the correct signal. If the circuit
tests correctly at that point, then the error is in the second half. Therefore, the test engineer would cut
in half again, and test at a point halfway between the middle and the end. If the test fails there, then the
problem must lie between the middle of the circuit and that point.

In a purely software situation, you would add a line number to a line that falls approximately half-way
through the program. If that number is reported, then the problem is occurring in the second half of the
program. An enhancement to this technique that I recommend is to add, say, ten line numbers in evenly
spaced increments throughout the program. This will let you quickly isolate the problem to a much
smaller portion of the program.

Besides the line number (or lack of line number) that BASIC reports, the segment and address at which
the error occurred is also reported. This information is frankly useless in a purely BASIC environment.
You must  either  use  CodeView to  identify  the  line  that  is  associated  with  the  error,  or  view the
assembly language output that BC can optionally generate. These will be described in the section on
advanced debugging later in this chapter.

Finally, it is important to point out that you should never use ON ERROR while a program is being
developed. ON ERROR can hide programming errors that you need to know about. As an example, a
LOCATE statement  with incorrect  values  will  generate  an  "Illegal  function  call"  error.  But  if  ON
ERROR is in effect and your program uses RESUME NEXT for errors it is not expecting, you may
never even know that an error occurred. If you run the complete program below you can see that there
is no indication that an error occurred at the obviously illegal LOCATE statement.

CLS
ON ERROR GOTO HandleErr
LOCATE 100, -90
PRINT "My program seems to work fine."
END

HandleErr:
RESUME NEXT

Using the QB and QBX Editing Environments

The single most powerful debugging feature that is available to you is the BASIC editing environment.
More than just an editor that you can use to enter program statements, the QB environment is exactly
that: a complete editing environment for developing and testing BASIC programs. The BASIC editor
lets you enter program statements, single-step through a program, examine variable values, and much
more.  Besides  being  able  to  execute  commands  singly  and  in  sequence,  you  can  also  trace  into
subroutines and functions, and even run your program in reverse.
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The primary advantage of using the QB environment  instead of  a separate  editor  is  the enhanced
debugging capabilities. In most high-level languages, you first write a program using an editor, and
then compile and run it to see if it works correctly. If an error occurs, you must start the editor again,
load your program, and study the code to see what went wrong. In contrast, QB lets you run your
program at the same time it is being edited. You can even modify the program while it is running and
then resume execution, view and change variable values, and change the order in which statements are
executed.

Further, BASIC can be instructed to stop and return to the edit mode when the program reaches a
certain  statement,  or  when a  particular  logical  condition  becomes true.  For  example,  you can  tell
BASIC to halt the program when a variable takes on a specified value. These are extremely powerful
debugging tools which have no equal in any other language. In the sections that follow, I will describe
each of these capabilities in detail.

Step and Trace Debugging

Early versions of Microsoft BASIC offered a very primitive trace capability that displayed the line
numbers of the currently executing statements. Although this was better than nothing, interpreting a
blur  of  line  numbers  flashing  by  on  the  screen  required  a  lot  of  mental  effort.  When  Microsoft
introduced QuickBASIC version 3.0 they added greatly improved debugging in the form of a step and
trace feature. To activate step and trace you would enter a STOP statement at a selected point in the
source code. When the program reached that point you could then execute each statement in sequence
by pressing a function key. QuickBASIC 3 also provided the ability to display continuously the value
of a single variable in a window at the top of the screen.

QuickBASIC 4.0 offered an improved version of this feature, using additional function keys to control
how a program proceeds. This method has been continued with little change through current versions
of QuickBASIC and BASIC PDS. Of course, the primary reason you would want to step through a
program one statement at a time is to determine why it is not working. For example, if you have code
that opens a file for output but the file is never created, you would step through that portion of the code
to  see  which  statements  are  being  executed  and  which  are  not.  In  particular,  stepping  through  a
program lets you see which path an IF or CASE test is taking.

Two function keys are used to single-step through a program, and four additional options are available
to assist program debugging. Each time the F10 key is pressed, the current statement is executed and
the program advances to the next statement. If you have just loaded the program being tested, you will
press F10 once to get to the first instruction. Pressing F10 again executes that statement, and continues
to the next one. If the current statement is related to screen activity, the screen is switched momentarily
to display the program's output rather than the source code. The screen is also switched during a CALL
statement or function invocation, in case that routine performs screen output. You can optionally toggle
between viewing the output and edit screens manually by pressing F4.
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In some cases you may want to treat a subroutine as a single statement, which is what F10 does. That
is,  CALL MySub is  handled  as  single  statement,  and all  of  the  statements  within  the  routine  are
executed as one operation. In other cases, however, you may need to trace into a subprogram, GOSUB
routine, DEF FN, or function, to step through its statements as well. This is what F8 is for. When F8 is
pressed at a CALL or GOSUB statement or function invocation, BASIC traces into the procedure and
lets you watch as it executes each statement individually.

Two additional  capabilities  let  you navigate  a  program more  quickly.  Pressing  F7 tells  BASIC to
execute all of the statements up to the current cursor location. This way, you are spared from having to
watch a long sequences of commands that you know are working correctly. For example, stepping
through a FOR/NEXT loop that initializes 1000 elements in an array is usually pointless. Therefore,
when  you reach  that  spot  in  the  program you  would  manually  move  the  cursor  to  the  statement
following the NEXT, and press F7.

It is also possible to force execution to a particular point in the program using the "Set next statement"
option of the Debug menu. Unlike F7, though, the statements that precede the selected line will not be
executed. Therefore, this option is equivalent to adding a temporary GOTO to the program, causing it
to jump to the specified line.

One of the most powerful features of the BASIC editor is that you can actually modify your program,
then resume execution.  In earlier  versions of QuickBASIC, making even the slightest  change to  a
program—even if only to a single comment—the entire program would have to be recompiled. BASIC
can now preserve variable values and indeed the entire program state during most types of editing
operations.

The last  important step operation I  want  to  mention now is  the History feature.  This too must be
selected from a menu, and using it will slow your program's operation considerably. When the History
option is selected from the Debug menu, BASIC remembers the last 25 program statements, and lets
you step through your program in reverse. For example, if a variable has taken on an incorrect value,
you can walk backwards through the program to see what statements caused that to happen. Where F8
steps forward through your program, Shift-F8 instead steps backward.

Watch Variables and Breakpoints

As powerful as BASIC's single-step feature is, it is only half of the story. Equally important is the
Watch capability that lets you view a program's variables in real time. One or more variables may be
placed into a special Watch window at the top of the editing screen, and their values will be displayed
and updated after each statement is executed. Between the Step and Watch features, you can observe all
aspects of your program's operation as it is executing.

Besides watching variable values, you can also monitor complex expressions and function results. For
example, you could watch the value of X% * Y% + Z%, ASC(Work$), or the result of a function
such as  StrFunction$(Array$(), Count%). Because each variable or expression is updated
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after every program statement, your program will run more slowly when many items are displayed in
the watch window. However, this is seldom a problem in a debugging situation, and the ability to see
precisely what is happening far outweighs the minor speed penalty.

Being able to watch the results  of expressions as well  as simple variables  offers some useful and
interesting techniques. As an example, suppose you are watching a string variable named Buffer$. If
Buffer$  is  very  long,  you can  use  LEFT$ or  MID$ to  watch  just  a  portion  of  the  string:  MID$
(Buffer$, CurPointer%, 70). This expression displays the 70-character portion of Buffer$
that is currently pointed to by CurPointer% (assuming, of course, you are using variables with those
names).

Likewise, if you are observing a string but nothing is showing in the watch window, you could watch
"{" + Work$ + "}". This displays "{}" if the string is null, and shows if there are leading or
trailing blanks or CHR$(0) bytes. Adding braces also lets you see if the string contains characters that
begin past the edge of the visible window.

One  particularly  powerful  use  of  BASIC's  Watch  capability  is  related  to  the  fact  that  all  of  the
expressions are evaluated anew at each statement. Earlier I mentioned how insidious "String space
corrupt" errors can be, because BASIC checks the integrity of its string memory only when a string is
being  assigned.  Therefore,  watching  the  expression  FRE(Any$)  tells  BASIC  to  evaluate  string
memory after every source line. Thus, as soon as string memory is corrupted it will be immediately
reported. This technique can be extended to identify a "Far heap corrupt" error as well, by watching the
expression FRE(-1).

Besides the Step and Watch capabilities, there are two additional features you should understand: Break
Points and Watch Points. When a program is very large and complex, it becomes impractical to step
and trace through every statement. Also, in some cases you may not know at which statement an error
is occurring.

Pressing F9 sets up a Break Point which tells BASIC to halt when it reaches that point in the program,
regardless  of  how it  arrived  there.  You can have  multiple  break points,  and the  program will  run
normally until the specified statement is about to be executed. Simply place the cursor on the line at
which the program is to stop, and press F9. That line will be highlighted to show that it is currently a
Break Point. Pressing F9 again removes the Break Point.

A Watch Point tells  BASIC to execute the program, until  a certain condition becomes true.  Some
examples of Watch Points are X% = 100, ABS(Total#) > 1000, and FRE("") < 1000. In
the first example you are telling BASIC to stop the program and return to the editor when X% equals
100. The second example will stop the program when the absolute value of Total# exceeds 1000, and
the third halts it when there are less than 1000 bytes of string space remaining.

Considered together, these debugging features are extremely powerful. You can tell BASIC, in effect,
Run until the value of Count% hits 14; then stop the program, and let me walk backwards through the
program to see how that happened.
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Using /d to Detect Errors

Another very powerful debugging solution at your disposal is to compile your program with the /d
debug option. When creating an .EXE file in the BASIC environment from the Run menu, you would
select the "Produce debug code" option. Compiling with /d tells BC to add three important safeguards
to the code it generates. Some of these debugging issues were described in Chapter 1, but they deserve
elaboration here.

The first code addition is a call to a central event handler prior to every BASIC program statement, to
detect  if  Ctrl-Break was pressed.  Normally,  a  compiled BASIC program is immune from pressing
Ctrl-Break and Ctrl-C,  unless  the  program is  processing  an INPUT statement.  BASIC adds  break
checking to let you get out of an endless loop or other similar situation, without having to reboot your
computer.

The second addition is an overflow test following each integer and long integer addition, subtraction,
and multiplication, to detect results that exceed the range of legal values. If you have a statement such
as X% = Y% * Z% and the result after multiplying is greater than 32767, the overflow test will detect
that and produce an error message. Otherwise, X% would be assigned an erroneous value and your
program would have no way to detect it. Floating point operations do not need any additional testing,
because overflows are detected and reported whether or not /d is used.

The last additional code that BASIC adds when /d is used is array element bounds checking. If you
have dimensioned an array and attempt to assign an element that doesn't exist,  a compiled BASIC
program will normally ignore the error. For example, if an array has been dimensioned using  DIM
Array%(1 TO 100) and you then have the statement Array%(200) = 12, BASIC will store the
value 12 at what would have been the 200th element. This can lead to disastrous consequences such as
overwriting an element in another array, or corrupting string memory. When /d is used BASIC adds
additional code to check every array element referenced, and reports an error if that element does not
exist.

Because of the added checking for overflow errors and illegal element numbers, a program compiled
with /d will be larger and run more slowly than one in which /d is not used. Therefore, you should not
release a program for general use that has been compiled with the debug option. One exception worth
noting is that QuickBASIC versions 4.0 and 4.5 contain a bug that generates incorrect code for certain
long integer array operations. The only solution when that happens is to use /d. This way, the routine
that  calculates  element  addresses  and checks  for  illegal  element  numbers  is  used,  rather  than  the
incorrect in-line code that BC produces directly.

You could also compile with the /ah (huge array) switch, which uses the same routine to calculate and
check array element addresses. Using /ah has an advantage over /d in this case, because your program
will not be halted if Ctrl-Break is pressed. Using /ah also avoids the extra code and time to check for
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overflow errors. However, /ah affects dynamic arrays only, and errors with static arrays will not be
prevented.

When a program is run in the BASIC editor, the same protection that /d provides is employed. This
added debug testing within the editor is one more contributor to its slowness when compared to a fully
compiled program. 

Advanced Debugging

Although  being  able  to  step  through your  program and watch  its  variables  in  the  BASIC editing
environment is very powerful, there are still some limitations inherent in that process. For example, it is
possible that a program will work perfectly in the editor, but not when it has been compiled to an .EXE
program. Microsoft has tried to make the BASIC editor as compatible with BC as possible, but the
editor is an interpreter and not a true compiler. There are bound to be some differences in how the
program runs. Another limitation is that some programs are just too large to be run within the editor.
Finally, if you receive an error message from an executable program that lists only a segment and
address, there is no way to determine where the error occurred using the editor.

In these cases you will need to work with the actual compiled program. To relate an error address to the
original  BASIC  source  statement  you  must  be  able  to  see  the  assembly  language  code  that  BC
generates, along with the original BASIC source. One way to do this is with the Microsoft CodeView
debugger.  CodeView comes  with BASIC PDS and VB/DOS Professional  Edition,  as  well  as  with
Microsoft's Macro Assembler. CodeView provides a debugging environment that is similar to the QB
editor, except it is intended for tracing through a program that has already been compiled.

Another way is to instruct BC to generate an assembly language source listing as it compiles your
program. This listing shows a mix of BASIC source statements and the resultant assembly language
code and addresses. However, the listing is not as clear or easy to follow as the display that CodeView
presents. But if you do not have CodeView, this is your only choice. I will describe this method first.

Creating an Assembly Language Source Listing

To create an assembly language list file you use the compiler's /a switch, and then specify a list file
name. The syntax is shown below, followed by a sample list file that is generated.

You enter this:

bc program /a [/other options] , , listfile;

LISTFILE.LST contains this:
                                       PAGE   1
                                       25 June 91
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                                       14:28:08
  Microsoft (R) QuickBASIC Compiler Version 4.50

Offset Data  Source Line

 0030  0006  CLS
 0030  0006  INPUT Count%
 0030   **     I00002: mov   ax,0FFFFh
 0033   **             push  ax
 0034   **             call  B$SCLS
 0039   **             mov   ax,offset <const>
 003C   **             push  ax
 003D   **             call  0000h
 0040   **             pop   ax
 0041   **             add   ax,000Dh
 0044   **             push  cs
 0045   **             push  ax
 0046   **             call  B$INPP
 004B   **             jmp   $+04h
 004D   **             dw    0002h
 004F   **             db    00h
 0050   **             db    02h
 0051   **             mov   bx,offset COUNT%
 0054   **             push  ds
 0055   **             pop   es
 0056   **             push  es
 0057   **             push  bx
 0058   **             call  B$RDI2
 005D  0008  IF Count% < 100 THEN
 005D  0008     Count% = 100
 005D  0008  END IF
 005D   **             call  B$PEOS
 0062   **             cmp   word ptr COUNT%,64h
 0067   **             jl    $+03h
 0069   **             jmp   I00003
 006C   **             mov   COUNT%,0064h
 0072  0008  PRINT Count%
 0072  0008  END
 0072  0008
 0072  0008
 0072   **     I00003: push  COUNT%
 0076   **             call  B$PEI2
 007B   **             call  B$CEND
 0080   **             call  B$CENP
 0085  0008

43981 Bytes Available
43643 Bytes Free

    0 Warning Error(s)
    0 Severe  Error(s)

Here, the list file shows the original BASIC source code, as well as the generated assembly language
instructions. The column at the left holds the code addresses, and these correspond to the addresses that
BASIC  displays  when  a  program  crashes  with  an  error  message.  Unfortunately,  several  BASIC
statements are grouped together,  so it  is  not immediately apparent which address goes with which
source statement.  For example,  after  the BASIC statement  INPUT Count%,  the earlier  assembly
language instructions that clear the screen are shown. Similarly, the call to B$PEOS is actually part of
the INPUT code, although it is listed following the IF test.
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When BASIC displays an error message and ends your program by displaying a segmented address,
only the address portion is meaningful. The segment in which a program is running will depend on
many  factors,  including  the  DOS version  (and thus  its  size),  the  FILES= and BUFFERS= values
specified in CONFIG.SYS, and whether TSR programs and device drivers are loaded. Each of these
factors cause the program to be loaded at a higher segment, although the addresses within that segment
never change. Also, in a multi-module program, a different segment is used for each module's source
file. Therefore, if the message is "Illegal function call in module XYZ at address 3456:1234", you
would compile XYZ.BAS to create a list file instead of the main program. The code in the vicinity of
address 1234 will be where the error occurred.

Using Microsoft CodeView

Although compiling with the /a switch lets you view the assembly language code that BASIC creates,
there is little you can actually do with that information. CodeView is a much more powerful debugging
tool,  and it  lets you step through an .EXE file as it  is running. This lets you follow the compiled
program's execution path, and also view its assembly language instructions. Further, CodeView can
trace into BASIC's library routines, as well as calls to C or assembly language routines that you have
written.

CodeView can also be used to see how many bytes of code are generated for each BASIC statement.
This is a good way to compare the relative efficiency of different programming methods, to see which
ones produce less code.  It  is  important to understand that  the size of the assembly language code
generated for  a given BASIC statement  is  a  combination of  two factors:  the number of bytes  the
compiler  generates for each occurrence of the statement,  and the size of  the called routine within
BASIC's runtime library. Of course, the called routine is added to your program only once. However,
the code that sets up and calls the routine is added each time the statement is encountered.

Compiling a program for use with CodeView is very simple, and merely requires the addition of special
compiler and linker option switches. Note that you cannot compile a program for CodeView from
within the QuickBASIC editor; you must compile and link manually from the DOS command line, as
shown below. Also notice that the BASIC program must be saved as ASCII text, and not with the
special "Fast Load" method that QB optionally uses. 

bc program /zi [/other options];
link program /co [/other options];
cv program

The /zi option tells BC to write additional information into the object file, which is used by LINK and
CodeView  to  relate  each  line  of  BASIC  source  code  to  its  resultant  assembly  code.  The  more
meaningfully named /co switch is required so LINK will know to do likewise. You may be interested to
know that /zi is named after Microsoft legend Mark Zibikowski, whose initials (MZ) also appear as the
first two bytes in every DOS .EXE file.
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Once the program has been compiled and linked, start CodeView by entering CV followed by the file's
first name (that is, without the .BAS or .EXE extension). You will then be presented with a screen very
similar to that of the QB editor. Most versions of CodeView initially show the BASIC source code. In
other versions, you must press Alt-R-R to "restart" the program and bring it to the first source line. I
should point out that CodeView is a quirky program, and it is often referred to as the program that
people love to hate. It has some glaring omissions, many aspects of its interface are inconsistent and
downright obnoxious, and I personally would be lost without it.

When the BASIC source is displayed, you may press F4, F7, F8, and F10, which perform the same
functions as their BASIC editor counterparts. One important difference, however, is that you may also
press F3 to show a mix of BASIC and assembly language code. Stepping through the program with F8
and F10 will execute either a single BASIC statement or a single assembler command, depending on
the context. That is, if you are in the BASIC view mode, then you will step through the BASIC code. If
the assembly language code is being displayed, then you will step through that instead. 

Figure 4-1 shows a screen snapshot of a short sample program as displayed by CodeView when it is 
first started in the BASIC view mode. Figure 4-2 shows the same program after pressing F10 to execute
up to the first statement, followed by F3 to view a mix of BASIC and assembly language. This screen 
is in a 50-line mode to allow the entire program to be displayed. Although it is not shown here, 
CodeView can continuously display the processor's registers in a small window at the right side of the 
screen. The register display is alternately activated and deactivated by pressing F2.
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Figure 4-2: The CodeView display for the same program, but using the assembly language view mode.



Notice in Figure 4-2 that CodeView displays each BASIC statement indented and with a line number. 
This lets you identify where each BASIC command starts, and also which block of assembly language 
code it is associated with. The numbers at the left edge of the display show the segment and address of 
each instruction in hexadecimal notation. The segment value never changes within a single program 
module, although the addresses increase based on the number of bytes in each assembly language 
instruction. As you can see, some assembly language commands are as short as one byte, and others are
as long as six.

In the first instruction, CLS, a value of -1 (FFFF hex) is passed to the CLS routine as a flag to show
that no argument was given. Had the BASIC statement been CLS 2, then a value of 2 would have been
moved into AX instead. Nine bytes of code are generated each time CLS is used, not counting the code
within B$SCLS. Besides showing the B$SCLS routine name, CodeView also shows the segment and
address  at  which  B$SCLS resides.  Knowing  the  routine's  address  is  of  little  practical  use  in  this
situation, and it is displayed solely for informational purposes.

The  INPUT statement  is  fairly  complicated  to  set  up,  and  I  won't  belabor  what  every  assembly
language instruction does, but several items are worth discussing. The first is that CodeView attempts
to relate every number it encounters to a variable or procedure address. In many cases this is confusing,
because some numbers are simply that, and have no relationship to a variable or procedure address.

For  example,  at  address  39  the  assembly  language  command  MOV AX,40 is  shown  as  MOV
AX,b$STRTAB_END+10 (0040), as if there was some significance to the fact that the value 40 is
an address ten bytes past the end of an internal string table. Likewise, two instructions later the value
40 is represented as being 31 bytes past the beginning of the B$LENDRW procedure. Two instructions
past that the value 13 (0D hex) is added to AX, and again CodeView tries to establish a significance
where none exists.

In not one of these cases are the values shown related to the named address, and you should therefore
treat those named labels with skepticism. The only symbolic names that are meaningful in most cases
are variable and procedure names that do not have an extra value added to them. In the instruction MOV
Word Ptr [COUNT% (0036)],b$HEAP_FIRST (0064) at address 6C, the address for Count
% (36)  is  valid,  while  the  value  64  named b$HEAP_FIRST is  meaningless.  In  this  case,  64  hex
represents the value 100 in the BASIC statement Count% = 100. Whatever b$HEAP_FIRST may
represent, it has no meaning here.

I suggest that you enter this short program and then step through it one statement at a time, just to get a
feel for how CodeView operates. You should also try tracing into some of the BASIC library calls, as
well as into a simple subprogram or two of your own. Again, you may use either F10 or F8 to step
through the code, but only F8 will trace into code that is being called. You can also use F8 to trace into
some BIOS interrupts, but you should never try to trace through a DOS interrupt (21 hex). Many DOS
services never return, or return in a non-standard manner, and a locked-up PC is the likely result. You
will not hurt anything if you do trace into a DOS interrupt, but be prepared to press Ctrl-Alt-Del.
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Besides being able to view and step through the assembly language code that BASIC creates, you can
also  view and modify  your  program's  data  directly.  If  you have  pressed F2 to display  the  CPU's
registers,  CodeView  will  show  the  value  currently  in  every  memory  address  that  is  about  to  be
accessed. For example, if the next statement to be executed is  MOV Word Ptr [COUNT%],10,
CodeView will show the current contents of the variable COUNT%.

A range of memory addresses may be displayed by entering commands into the immediate window at
the bottom of the screen. When CodeView is first started, the cursor is placed at the bottom line in that
window.  As  with  the  BASIC  editor,  the  F6  key  is  used  to  toggle  between  the  code  output  and
immediate windows. Unlike the BASIC editor, however, you may type commands regardless of which
window is active.

The three primary commands you will find useful are D, U, and R. The D (Dump) command tells
CodeView to display a range of memory, starting at a given address. For example, D 0 means to show
the 32 bytes that start at address 0 in the default data segment. Likewise, D ES:100 means to start at
address 100 in the segment held in the ES register. Unfortunately, CodeView is particularly obtuse in
this regard, because in some cases the numbers you enter are assumed to be decimal while in others it
assumes hexadecimal. Which is which depends on your view perspective (selected with F3), and I
won't even begin to offer a reason or explain the confusing rules. If you don't get what you expect, try
adding an "&H" prefix to the number. And if you start by using &H and CodeView reports a syntax
error, then try it without the &H.

When the contents of memory are displayed, they are shown as individual bytes, rather than as integer
words which is generally more useful. In the listing below, two string constants have been displayed in
response to the command D &H40. 

5676:0040 02 00 44 00 48 69 23 00 4A 00 41 42 43 44 45 46
5676:0050 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52 53 54 55 56

As you learned in Chapter 2, BASIC near strings have a 4-byte descriptor, with the first two bytes
holding the string's current length, and the second two bytes its current address. Beginning with the
first two numbers displayed, the 02 00 represents the length of a 2-character string, and the 44 00
indicates the address  which is  44.  The data  itself  is  a CHR$(&H48) followed by a  CHR$(&H69)
("Hi"), and it immediately follows the string descriptor. When two bytes are used to store an integer
word, the least significant byte is kept in the lower memory address. Therefore,  the value 0002 is
actually listed as 02 00 (CodeView adds an extra blank between bytes for clarity).

Immediately following the six bytes for the string "Hi" and its descriptor is another descriptor. This one
shows that the string has a length of 23 Hex bytes, and its data starts at address 4A Hex. Again, the
value 0023 is shown as 23 00, and the address 004A is displayed as 4A 00. This string contains the
data "ABCDEFGHIJKLMNOPQRSTUV".

The U (Unassemble) command can be used to show the assembly language source code at any arbitrary
segment and address. The command U 2000:1000 will unassemble the code at address 2000:1000,
though again you may need to use U &H2000:&H1000 in some view modes. The U command is not
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used that frequently, since CodeView is used most often to step through code in sequence, rather than
to examine an arbitrary block of instructions.

The R command lets you change the contents of a register, and this might be useful when debugging
your own assembly language subroutines.  When you type,  for example,  RCX and press  Enter,  the
current value of the CX register is displayed and you are prompted for a new value. Pressing Enter
alone cancels the command and leaves the current register contents intact. Otherwise, the value you
enter will be assigned to CX. This is similar to BASIC's immediate window, in which you can assign
new values to a variable.

The last CodeView features worth describing here are Watch Variables and Watch Points, which are
similar to the same features in QB. Unlike QB, though, you cannot use an expression as the target of a
Watch; it must be a simple variable name, array element, or address. Watch Variables may be added
using the pull-down menu, or by pressing Alt-W and then typing the variable name. If you are in the
BASIC view mode you may add only BASIC variables; in the assembly language view mode you can
add only assembly language variables. To monitor the contents of a memory address requires the W
command. For example, W 40 will set up address 40 as the target of a Watch.

Although CodeView does support Watch points, whereby the program will run continuously until a
given expression is true, you won't want to use that feature. Asking CodeView to stop when, say, CX
becomes greater than 100 will cause your program to run at less than one thousandth its normal speed.
Therefore, I have never found using Watch Points effective in any situation—it is always too slow.

I have avoided discussing the latest versions of CodeView, in favor of focusing on those features which
are  common to  all  versions.  CodeView 3.10 which  is  included  with  BASIC 7.1  has  several  new
convenience features, and a few new bugs as well. Many of the commands that in earlier versions have
to be entered manually are now available by simply typing new values onto the display. For instance,
where older versions of CodeView required you to enter Dump commands repeatedly, the new version
updates the displayed values in a range of addresses constantly. And to change the address range, you
may now simply move the cursor to the segment and address numbers and type new ones. An option to
display memory values as words or even single and double precision values is also present in version
3.10.

Now that you have seen what CodeView is all about and how to use it, I want to conclude this chapter
with a practical example. As I mentioned in Chapter 3, the amount of stack memory that is needed in a
non-static subprogram or function can be difficult to determine. The calculation itself is trivial: simply
add up the number of bytes needed by every variable in the routine. Each integer requires two bytes,
single  precision,  long integer,  and string variables  need four  bytes,  and so forth.  The problem, of
course, is who wants to do all that counting, especially when there may be hundreds of variables.
Counting is what computers are for, no?

The solution is that BASIC knows how many bytes are needed for the subprogram, and the very first
thing a subprogram does when it is invoked is to call another routine that allocates the necessary stack
space. So rather than use trial and error methods to increase the stack in small increments, you can use
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CodeView to directly see how many bytes of stack space are being requested. Here's how that's done,
using the example program shown below.

DEFINT A-Z
DECLARE SUB StackTest (Dummy)
Test = 10
CALL StackTest(Test)
END

SUB StackTest(AnyVar)
  X = 100
  Y = 10
  Z = AnyVar
END SUB

Save this program as an ASCII file using the name TEST.BAS, and then compile it with the /o and /zi 
options. Next, link TEST.OBJ for CodeView using the /co option. Then start CodeView by entering CV
TEST. Once you are in CodeView and viewing the BASIC source, press F10 to skip past BASIC's 
start-up code. At this point the cursor should be on the first statement, Test = 10. Finally, press F3 
to show a mix of BASIC and assembly language source code. The display should look similar to that 
shown in Figure 4-3.
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Notice the first statement within the TestStack subprogram at line 7, where the value 6 (erroneously 
labelled b$STRTAB+6) is assigned to the CX register. This is the number of bytes of stack space being 
requested from the B$ENRA routine which is called in the next instruction. B$ENRA is the routine that
actually allocates the stack memory, and it uses the value BASIC sends in CX to know how many bytes
are needed. TestStack has three local variables and each is a two-byte integer, hence six bytes are 
required to store them on the stack.

For a very large program, the value assigned to CX will of course be much larger. Further, if one
subprogram calls another, it will be up to you to add up all of the CX values to determine the total stack
memory requirements. But this is very much easier than counting variables. 
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Summary

In this chapter you have learned how to identify and correct common programming errors. You have
also learned the importance of understanding BASIC's various quirks, and how some statements do not
always do exactly what you thought they would. I have shown several debugging strategies, including a
software adaptation of the "cut in half" hardware technique.

Perhaps your most powerful debugging ally is the QuickBASIC and QBX editing environments. These
powerful editors let you single step through a program, monitor variable values and function results,
and halt your program when a specified condition occurs.

When BASIC terminates a program prematurely with an error message and a segmented address, you
can either use the BC compiler's /a option to generate a source listing, or use CodeView to see where
the error occurred. CodeView can also be used to step and trace through a program at the assembly
language source level, and to determine the number of bytes of stack memory a non-static procedure
requires.

In Chapter 5 you will learn about compiling and linking BASIC programs. I will present a complete 
overview of the many BC and LINK options that are available, and discuss the relative merits of each.
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5
Compiling and Linking

The final step in the creation of any program is compiling and linking, to produce a stand-alone .EXE
file. Although you can run a program in the BASIC editing environment, it cannot be used by others
unless they also have their own copy of BASIC. In preceding chapters I explained the fundamental role
of  the  BASIC  compiler,  and  how  it  translates  BASIC  source  statements  to  assembly  language.
However, that is only an intermediate action. Before a final executable program can be created, the
compiled code in the object file must be joined to routines in the BASIC language library. This process
is called linking, and it is performed by the LINK program that comes with BASIC.

In this chapter you will learn about the many options and features available with the BASIC compiler
and LINK. By thoroughly understanding all of the capabilities these programs offer, you will be able to
create applications that are as small and fast as possible. Many programmers are content to let the
BASIC editor create the final program using the pull-down menu selections. And indeed, it is possible
to create a program without invoking BC and LINK manually—many programmers never advance
beyond BASIC's  "Make .EXE" menu.  But  only by understanding fully  the  many options  that  are
available will you achieve the highest performance possible from your programs.

I'll  begin  with  a  brief  summary  of  the  compiling  and  linking  process,  and  explain  how  the  two
processes interact. I will then move on to more advanced aspects of compiling and linking. BC and
LINK are very complex programs which possess many features and capabilities, and all of their many
options  will  be  described  throughout  this  chapter.  You  may  also  refer  back  to  Chapter  1,  which
describes compiling in more detail. 

An Overview of Compiling and Linking

When you run the BC.EXE compiler, it reads your BASIC source code and translates some statements
directly into the equivalent assembly language commands. In particular, integer math and comparisons
are  converted  directly,  as  well  as  integer-controlled  DO,  WHILE,  and FOR loops.  Floating  point
arithmetic and comparisons, and string operations and comparisons are instead translated to calls to
existing routines written by the programmers at Microsoft. These routines are in the BCOM and BRUN
libraries that come with BASIC.

As BC compiles your program, it creates an object file (having an .OBJ extension) that contains both
the translated code as well as header information that LINK needs to create a final executable program.
Some examples of the information in an object file header are the name of the original source file,
copyright  notices,  offsets  within  the  file  that  specify  external  procedures  whose addresses  are  not
known at compile time, and code and data segment names. In truth, most of this header information is
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of little or no relevance to the BASIC programmer; however, it is useful to know that it exists. All
Microsoft-compatible  object  files  use  the  same  header  structure,  regardless  of  the  original  source
language they were written in.

The LINK program is responsible for combining the object code that BC produces with the routines in
the BASIC libraries. A library (any file with a .LIB extension) is merely a collection of individual
object files, combined one after the other in an organized manner. A header portion of the .LIB file
holds the name of each object file and the procedure names contained therein, as well as the offset
within the library where each object module is located. Therefore, LINK identifies which routines are
being accessed by the BASIC program, and searches the library file for the procedures with those
names. Once found, a copy of that portion of the library is  then appended to the .EXE file being
created.

LINK can also join multiple object files compiled by BC to create a single executable program, and it
can produce a Quick Library comprised of one or more object files. Quick Libraries are used only in
the editing environment, primarily to let BASIC access non-BASIC procedures. Because the BASIC
editor is really an interpreter and not a true compiler, Quick Libraries were devised as a way to let you
call compiled (or assembled) subroutines during the development of a program.

When LINK is invoked it reads the header information in each object file compiled by BC, and uses
that to know which routines in the specified library or libraries must be added to your program. Since
every external routine is listed by name, LINK simply examines the library header for the same name.
It is worth mentioning that BASIC places the name of the default library in the object file, so you don't
have to specify it when linking. For example, when you compile a stand-alone program (with the /o)
switch) using BC version 4.5, it places the name BCOM45.LIB in the header.

BASIC is not responsible for determining where external routines are located. If your program uses a
PRINT statement, the compiler generates the instruction CALL 0000:0000, and identifies where in
the object file that instruction is located. BASIC knows that the print routine will be located in another
segment, and so leaves room for both a segment and address in the Call instruction. But it doesn't know
where in the final executable file the print routine will end up. The absolute address depends on how
many other modules will be linked with the current object file, and the size of the main program.

In fact, LINK does not even know in which segment a given routine will ultimately reside. While it can
resolve all of the code and data addresses among modules, the absolute segment in which the program
will be loaded depends on whether there are TSR programs in memory, the version of DOS (and thus
its size), and the number of buffers specified in the host PC's CONFIG.SYS file, among other factors.
Therefore,  all  .EXE files  also have a  header  portion to identify segment  references.  DOS actually
modifies the program, assigning the final segment values as it loads the program into memory. Figure
5.1 shows how DOS, file buffers, and device drivers are loaded in memory, before any executable
programs.
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It is important to understand that library routines are added to your program only once, regardless of 
how many times they are called. Even if you use PRINT three hundred times in a program, only one 
instance of the PRINT routine is included in the final .EXE file. LINK simply modifies each use of 
PRINT to call the same memory address. Further, LINK is generally smart enough to not add all of the 
routines in the library. Rather, it just includes those that are actually called.

However, LINK can extract only entire object files from a library. If a single object module contains,
say, four routines, all of them will be added, even if only one is called. For BASIC modules that you
write, you can control which procedures are in which object files, and thus how they are combined. But
you have no control over how the object modules provided with BASIC were written. If the routines
that handle POS(0), CSRLIN, and SCREEN are contained in a single assembly language source file
(and they are),  all  of them are added to your program even if  you use only one of those BASIC
statements.

Now  that  you  understand  what  compiling  and  linking  are  all  about,  you  may  wonder  why  it  is
necessary to know this, or why you would ever want to compile manually from the DOS command
line. The most important reason is to control fully the many available compile and link options. For
example, when you let the BASIC editor compile for you, there is no way to override BC's default size
for the communications receive buffer. Likewise, the QuickBASIC editor does not let you specify the /s
(string) option that in many cases will reduce the size of your programs.
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LINK offers many powerful options as well, such as the ability to combine code segments to achieve
faster performance during procedure calls. Another important LINK option lets you create an .EXE file
that can be run under CodeView. Again, these options are not selectable from within the QuickBASIC
environment [but PDS and VB/DOS Pro Edition let you select more options than QuickBASIC], and
they can be specified only by compiling and linking manually. All of these options are established via
command line switches, and each will be discussed in turn momentarily.

Finally, BASIC PDS includes a number of stub files which reduce the size of your programs, although
at the expense of decreased functionality. For example, if your program does not use the SCREEN
statement to enable graphics mode, a stub file is provided to eliminate graphics support for the PRINT
statement. BASIC PDS, and the VB/DOS Pro Edition, also support program overlays, and to use those
requires linking manually from DOS. 

Compiling

To compile a program you run BC.EXE specifying the name of the BASIC program source file. BC
accepts several optional parameters, as well as many optional command line switches. The general
syntax for BC is as follows, with brackets used to indicate optional information. 

bc program [/options] [, object] [, listfile] [;]

In most cases you will simply give the name of the BASIC source file, any option switches, and a
terminating semicolon. A typical BC command is as follows:

bc program /o;

Here, a BASIC source file named PROGRAM.BAS is being compiled, and the output object file will
be called PROGRAM.OBJ. The /o option indicates that the program will be a stand-alone .EXE file
that  does  not  require  the BRUN library to  be present  at  runtime.  If  the semicolon is  omitted,  the
compiler will prompt for each of the file name parameters it needs. For example, entering bc program 
/o invokes the compiler, which then prompts you for the output and listing file names. Pressing Enter in
response to any prompt tells BC to use the source file's first name. You may also start BC with no
source file name, and let it prompt for that as well.

In most cases the default file names are acceptable; however, it is not uncommon to want the output file
placed into a different directory. This is done as follows:

bc program, \objdir\ /o;
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Note that if the trailing backslash were omitted from \
objdir\ above, BC would create an output file named
OBJDIR.OBJ in the root directory. Of course, that is
not what is intended. Therefore, a trailing backslash
is  added  to  tell  BC  to  use  the  default  name  of
PROGRAM.OBJ, and to place that file in the directory
named \OBJDIR.

If you are letting BC prompt you for the file names, you would enter the output path name at that
prompt position. You may also include a drive letter as part of the path, or a drive letter only to use the
default directory on the specified drive. The listing that follows shows a typical BC session that uses
prompting.

C>bc program /o

Microsoft (R) QuickBASIC Compiler Version 4.50
(C) Copyright Microsoft Corporation 1982-1988.
All rights reserved.
Simultaneously published in the U.S. and Canada.
Object Filename [PROGRAM.OBJ]: d:\objects\ <Enter>
Source Listing [NUL.LST]: <Enter>

43965 Bytes Free
43751 Bytes Available

    0 Warning Error(s)
    0 Severe Error(s)
C>

Although you can override the default file extensions, this is not common and you shouldn't do that
unless you have a good reason to. For example, the command BC source.txt , output.out; will compile a
BASIC source file named SOURCE.TXT and create an object module named OUTPUT.OUT. Since
there are already standard default file extension conventions, I recommend against using any others you
devise.

The optional list file contains a source listing of the BASIC program showing the addresses of each
program statement, and uses a .LST extension by default. There are a number of undocumented options
you can specify to control how the list file is formatted, and these are described later in this chapter in
the section Compiler Metacommands. A list file may also include the compiler-generated assembly
language instructions,  and you specify that with the /a option switch.  All  of the various command
options will be discussed in the section following.

Notice that the positioning of the file name delimiting commas must be maintained when the object file
name is omitted. If you plan to accept the default file name but also want to specify a listing file, you
must use two commas like this:

bc source , , listfile;
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The Bytes Available and Bytes Free messages indicate how much working memory the compiler has at
its disposal, and how much of it remained free while compiling your program. BC must keep track of
many different  kind  of  information  as  it  processes  your  source  code,  and it  uses  its  own internal
DGROUP memory for that. For example, every variable that you use must be remembered, as well as
its address.

When BASIC sees a statement such as  X = 100, it must look in its  symbol table to see if it has
already encountered that variable. If so, it creates an assembly language instruction to store the value
100 at the corresponding address. Otherwise, it adds the variable X to the table, assigns a new address
for it, and then adds code to assign the value 100 to that address. When you use PRINT X later on,
BASIC will again search its table, find the address, and use that when it creates the code that calls the
PRINT routine.

Other data that BASIC must remember as it works includes the number and type of arguments for each
SUB or FUNCTION that is declared, line label names and their corresponding addresses, and quoted
string  constants.  As you may recall,  in  Chapter  2  I  explained that  BC maintains  a  table  of  string
constants, and stores each in the final program only once. Even when the same quoted string is used in
different places in a program, BC remembers that they are the same and stores only a single copy.
Therefore, an array is used by BC to store these strings while your program is being compiled.

In most cases you can simply ignore the Bytes Available and Bytes Free messages, since how much
memory BASIC used or had available is of no consequence. The only exception, of course, is when
your program is so large that BC needed more than was available. But again, you will receive an error
message when that occurs. However, if you notice that the Bytes Free value is approaching zero, you
should consider splitting your program into separate modules.

The error message display indicates any errors that occurred during compilation, and if so how many.
This display is mostly a throw-back to the earlier versions of the BASIC compiler, because they had no
development environment. These days, most people get their program working correctly in the BASIC
editor, before attempting to compile it. Of course, there must still be a facility for reporting errors.

In most cases, any errors that BC reports will be severe errors. These include a mismatched number of
parentheses, using a reserved word as a variable name (for example, PRINT = 12), and so forth. One
example of a warning error is referencing an array that has not been dimensioned. When this happens,
BASIC creates the array with a default 11 elements (0 through 10), and then reports that it did this as a
warning.

One interesting quirk worth mentioning is  that  BASIC will  not let  you compile a  program named
USER.BAS. If you enter BC USER, BC assumes that you intend to enter the entire program manually,
statement by statement! This too must be a holdover from earlier versions of the compiler; however,
when USER.BAS is specified it will appear that the compiler has crashed, because nothing happens
and no prompt is displayed. In my testing with BASIC 7.1, any statements I entered were also ignored,
and no object file was created.
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Compiler Options

All  of  the  options  available  for  use  with  the  BASIC  compiler  are  described  in  this  section  in
alphabetical  order.  Some  options  pertain  only  to  BASIC  7  PDS,  and  these  are  noted  in  the
accompanying discussion. Each option is specified by listing it on the BC command line, along with a
preceding forward slash (/). Also, these options apply to the BC compiler only, and not necessarily to
the QB and QBX editing environments.

/A

The /a (assembly) switch tells BC to include the assembly language source code it creates in the listing
file. The format of the file was described in detail in Chapter 4, so I won't belabor that here. Note,
however, that a file name must be given in the list file position of the BC command line. Otherwise, a
list file will not be written.

/Ah

Using /ah (array huge) tells BASIC that you plan to create dynamic arrays that may exceed 64K in total
data size. This option affects numeric, TYPE, and fixed-length string arrays only, and not conventional
string arrays. Normally, BASIC calculates the element addresses for array references directly, based on
the segment and other information in the array descriptor. This is the most direct method, and thus
provides the fastest performance and smallest code.

When /ah is used, all access to non-string dynamic arrays is instead made through a called routine. This
called routine calculates the segment and address of a single array element, and because it must also
manipulate segment values,  increases the size of your programs. Therefore,  /ah should be avoided
unless you truly need the ability to create huge arrays. Even if a particular array does not currently
exceed the 64K segment limit, BASIC has no way to know that when it compiles your program.

To minimize the size and speed penalty /ah imposes, it may be used selectively on only some of the
source modules in a program. If you have one subprogram that needs to manipulate huge arrays but the
rest  of  program does  not,  you should  create  a  separate  file  containing  only  that  subprogram and
compile it using /ah. When the program is linked, only that module's array accesses will be slower.

Note that the /ah switch is also needed if you plan to create huge arrays when running programs in the
BASIC editor. However, with the BASIC editor, using /ah does not impinge on available memory or
make the program run slower. Rather, it merely tells BASIC not to display an error message when an
array is dimensioned to a size greater than 64K.

The  BASIC  editor  always  uses  the  slower  code  that
checks for illegal array elements anyway, so it can
report an error rather than lock up your computer.
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One limitation that /ah will not overcome is BASIC's limit of 32,767 elements in a single dimension.
That is, the statement REDIM Array%(1 to 32768) will fail, regardless of whether /ah is used.
There are two ways to exceed this limit:  one is  to create a TYPE array in which each element is
comprised of two or more variables. The other is to create an array that has more than one dimension.
The  brief  program below shows  how  to  access  a  2-dimensional  array  as  if  it  had  only  a  single
dimension.

DEFINT A-Z

'----- pick an arbitrary group size, and number of groups (in this 
'      case 100,000 elements)
GroupSize = 1000: NumGroups = 100

'----- dimension the array
REDIM Array(1 TO GroupSize, 1 TO NumGroups)

'----- pick an element number to assign (note use of a long integer) Element& = 
50000

'----- calculate the first and second subscripts
First = ((Element& - 1) MOD GroupSize) + 1
Second = (Element& - 1) \ GroupSize + 1

'----- assign the appropriate array element 
Array(First, Second) = 123

'----- show how to derive the original element based on First and
'      Second (CLNG is needed to prevent an Overflow error) CalcEl& = First + 
(Second - 1) * CLNG(GroupSize)

/C

The /c (communications) option lets you specify the size of the receive buffer when writing programs
that open the COM port. The value specified represents the total buffer size in bytes, and is shared
when two ports are open at once. For example, if two ports are open and the total buffer size is 4096
bytes, then each port has 2048 bytes available for itself.

A receive  buffer  is  needed  when  performing  communications,  and  it  accumulates  the  incoming
characters as they are received. Each time a character is accepted by the serial port, it is placed into the
receive buffer automatically. When your program subsequently uses INPUT or INPUT$ or GET to read
the data, it is actually reading the characters from the buffer and not from the hardware port. Without
this buffering, your program would have to wait in a loop constantly looking for each character, which
would preclude it from doing anything else!

Communications data is received in a continuous stream, and each byte must be processed before the
next  one arrives,  otherwise the data  will  be lost.  The communications  port  hardware generates  an
interrupt as each character is received, and the communications routines within BASIC act on that
interrupt.  The byte is retrieved from the hardware port  using an assembly language IN instruction,
which  is  equivalent  to  BASIC's  INP function.  This  allows  the  characters  to  accumulate  in  the
background, without any additional effort on your part.
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As each byte is received it is placed into the buffer, and a pointer is updated showing the current ending
address within the buffer. As your program reads those bytes, another pointer is updated to show the
new starting address within the buffer.  This type of buffer is  called a  circular buffer,  because the
starting and ending buffer addresses are constantly changing. That is,  the buffer's end point wraps
around to the beginning when it becomes full.

The receive buffer whose size is specified with /c is located in far memory. However, BASIC also
maintains a second buffer in near memory, and its size is dictated by the optional LEN= argument used
with the OPEN statement. Because near memory can be accessed more quickly than far memory, it is
sensible for BASIC to copy a group of characters from the far receive buffer to the near buffer all at
once, rather than individually each time you use GET or INPUT$.

When /c is not specified, the buffer size defaults to 512 bytes. This means that up to 512 characters can
be received with no intervention on your part. If more than 512 bytes arrive and your program still
hasn't removed them using INPUT$ or GET, new characters that come later will be lost.  It is also
possible to stipulate hardware handshaking when you open the communications port. This means that
the sender and receiver use physical control wires to indicate when the buffer is full, and when it is
okay to resume transmitting.

In many programming situations, the 512 byte default will be more than adequate. However, if many
characters are being received at a high baud rate (9600 or greater) and your program is unable to accept
and process those characters quickly enough, you should consider using a larger buffer. Fortunately, the
buffer is located in far memory, so increasing its size will not impinge on available string and data
stored in DGROUP. 

/D

The /d (debug) option switch is intended solely to help you find problems in a program while it is being
developed. Because /d causes BC to generate additional code and thus bloat your executable program,
it should be used only during development.

When /d is specified, four different types of tests are added to your program. The first is a call to a
routine  that  checks  if  Ctrl-Break  has  been  pressed.  One  call  is  added  for  every  BASIC  source
statement, and each adds five bytes of code to your final executable program. The second addition is a
one-byte assembly language INTO instruction following each integer and long integer math operation,
to detect overflow errors.

The third is  a call  to  a  routine that calculates array element addresses,  to ensure that the element
number is in fact legal. Normally, element addresses are computed directly without checking the upper
and lower bounds, unless you are using huge (greater than 64K) arrays.  Without /d, it  is therefore
possible to corrupt memory by assigning an element that doesn't exist.
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The final code addition implements GOSUB and RETURN statements using a library routine, rather
than calling and returning from the target line directly. Normally, a GOSUB statement is translated into
a three-byte assembly language near call instruction, and a RETURN is implemented using a one-byte
near return. But when /d is used, the library routines ensure that each RETURN did in fact result from
a  corresponding  GOSUB,  to  detect  RETURN  without  GOSUB  errors.  This  is  accomplished  by
incrementing an internal variable each time GOSUB is used, and decrementing it at each RETURN. If
that variable is decremented below 0 during a RETURN statement, then BASIC knows that there was
no corresponding GOSUB. These library routines are added to your program only once by LINK, and
comprise only a few bytes of code. However, a separate five-byte call is generated for each GOSUB
and RETURN statement.

Many aspects of the /d option were described in detail in Chapters 1 and 4, and there is no need to
repeat that information here.  But it  is important to remember that /d always makes your programs
larger and run more slowly. Therefore, it should be avoided once a program is running correctly.

/E

The /e (error) option is necessary for any program that uses ON ERROR or RESUME with a line label
or number. In most cases using /e adds little or no extra code to your final .EXE program, unless ON
ERROR and RESUME are actually used, or unless you are using line numbers. For each line number,
four bytes are added to remember the number itself as well as its position in the file (two bytes each).
As with /d,  every GOSUB and RETURN statement is implemented through a far call  to a library
routine, rather than by calling the target line directly. Without this added protection it would not be
possible to trap "RETURN without GOSUB" errors correctly, or recover from them in an ON ERROR
handler.

Also see the /x option which is needed when RESUME is used alone, or with a 0 or NEXT argument.
The /x switch is closely related to /e, and is described separately below.

/Fpa and /Fpi (BASIC PDS and later)

When Microsoft introduced their BASIC compiler version 6.0, they included an alternate method for
performing  floating  point  math.  This  Floating  Point  Alternate  library  (hence  the  /fpa)  offered  a
meaningful speed improvement over the IEEE standard, though at a cost of slightly reduced accuracy.
This optional math library has been continued with BASIC 7 PDS, and is specified using the /fpa
command switch.

By default, two parallel sets of floating point math routines are added to every program. When the
program runs, code in BASIC's runtime startup module detects the presence of a math coprocessor
chip, and selects which set of math routines will be used. The coprocessor version is called the Inline
Library, and it merely serves as an interface to the 80x87 math coprocessor that does the real work in
its  hardware.  (Note  that  inline  is  really  a  misnomer,  because  that  term implies  that  the  compiler
generates  coprocessor  instructions  directly.  It  doesn't.)   The  second version is  called the  Emulator
Library, because it imitates the behavior of the coprocessor using assembly language subroutines.
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Although the ability to take advantage of a coprocessor automatically is certainly beneficial, there are
two problems with this dual approach: code size and execution speed. The coprocessor version is much
smaller than the routines that perform the calculations manually, since it serves only as an interface to
the coprocessor chip itself. When a coprocessor is in fact present, the entire emulator library is still
loaded into memory. And when a coprocessor is not installed in the host PC, the library code to support
it is still loaded. The real issue, however, is that each BASIC math operation requires additional time to
route execution to the appropriate routines.

Since BC has no way to know if a coprocessor will be present when the program eventually runs, it
cannot know which routine names to call. Therefore, BASIC uses a system of software interrupts that
route execution to one library or the other. That is,  instead of using, say,  CALL MultSingle, it
instead creates code such as INT 39h. The Interrupt 39h vector is set when the program starts to point
to the correct library routine. Unfortunately, the extra level of indirection to first read the interrupt
address and then call that address impacts the program's speed.

Recall that Chapter 1 explained how the library routines in a BRUN-style program modify the caller's
code the first time they are invoked. The compiler creates code that uses an interrupt to access the
library routines, and those routines actually rewrite that code to produce a direct call. Although this
code modification increases the time needed to call a library routine initially, subsequent calls will be
noticeably faster. BASIC statements executed many times within a FOR or DO loop will show the
greatest improvement, but statements executed only once will be much slower than usual.

In a similar fashion, the coprocessor routines that are in BASIC's runtime library alter the caller's code,
replacing  the  interrupt  commands  with  equivalent  coprocessor  instructions.  Each  floating  point
interrupt that BC generates includes the necessary variable addresses and other arguments within the
caller's code. These arguments are in the same format as a coprocessor instruction. The first time an
interrupt is invoked, it subtracts the magic value &H5C32 from the bytes that comprise the interrupt
instruction,  thus  converting  the  instruction  into  a  coprocessor  command.  This  will  be  covered  in
Chapter 12.

Since the alternate floating point math routines do not use a coprocessor even if one is present, the
interrupt method is not necessary. BC simply hardcodes the library subroutine names into the generated
code,  and  the  program is  linked  with  the  alternate  math  library.  Besides  the  speed  improvement
achieved by avoiding the indirection of interrupts, the alternate math library is also inherently faster
than the emulator library when a coprocessor is not present.

The /fpi switch tells BASIC to use its normal method of including both the coprocessor and emulator
math libraries in the program, and determining which to use at runtime. (See the discussion of /fpa
above.)  Using /fpi is actually redundant and unnecessary, because this is the default that is used if no
math option is specified.

/Fs  (BASIC PDS only)
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BASIC PDS offers an option to use far strings, and this is specified with the /fs (far strings) switch.
Without /fs, all conventional (not fixed-length) string variables and string arrays are stored in the same
64K DGROUP memory that holds numeric variables, DATA items, file buffers, and static numeric and
TYPE arrays. Using the /fs option tells BASIC to instead store strings and file buffers in a separate
segment in far memory.

Although a program using far strings can subsequently hold more data, the capability comes at the
expense of speed and code size. Obviously, more code is required to access strings that are stored in a
separate data segment. Furthermore, the string descriptors are more complex than when near strings are
used, and the code that acts on those descriptors requires more steps. Therefore, you should use /fs only
when truly necessary, for example when BASIC reports an Out of string space error.

Far versus near strings were discussed in depth in Chapter 2, and you should refer to that chapter for
additional information. 

One very unfortunate limitation of VB/DOS is that only
far  strings  are  supported.  The  decision  makers  at
Microsoft apparently decided it was too much work to
also write a near-strings version of the forms library.
So users of VB/DOS are stuck with the additional size
and  speed  overhead  of  far  strings,  even  for  small
programs that would have been better served with near
strings.

/G2  (BASIC PDS and later)

The /g2 option tells BASIC to create code that takes advantage of an 80286 or later CPU. Each new
generation  of  Intel  microprocessors  has  offered  additional  instructions,  as  well  as  performance
optimizations to the internal microcode that interprets and executes the original instructions. When an
existing instruction is recoded and improved within the CPU, anyone who owns a PC using the newer
CPU will  benefit  from the performance increase.  For example,  the original 8086/8088 had several
instructions that performed poorly. These include Push and Pop, and Mul and Div. When Intel released
the  80186,  they  rewrote  the  microcode  that  performs  those  instructions,  increasing  their  speed
noticeably. The 80286 is an offshoot of the 80186, and of course includes the same optimizations. The
80386 and 80486 offer even more improvements and additions to the original 8086 instruction set.

Besides  the  enhancements  to  existing  instructions,  newer  CPU  types  also  include  additional
instructions  not  present  in  the  original  8086.  For  example,  the  80286 offers  the  Enter  and Leave
commands,  each  of  which  can  replace  a  lengthy  sequence  of  instructions  on  the  earlier
microprocessors.  Another  useful  enhancement  offered  in  the  80286 is  the ability  to  push numbers
directly onto the stack. Where the 8086 can use only registers as arguments to Push, the instructions
Push 1234 and  Push Offset Variable are legal with 80186 and later CPUs. Likewise, the
80386 offers several new commands to directly perform long integer operations. For example, adding
two long integer values using the 8086 instruction set requires a number of separate steps. The 80386
and later CPUs can do this using only one instruction.
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If  you  are  absolutely  certain  that  your  program will  be  run  only  on  PCs  with  an  80286  or  later
microprocessor, the /g2 option can provide a modest improvement in code size and performance. In
particular, programs that use /g2 can save one byte each time a variable address is passed to a routine.
When /g2 is not used, the command PRINT Work$ results in the code shown below.

PRINT Work$
  Mov  AX,Offset Work$    'this requires 3 bytes
  Push AX                 'this requires 1 byte
  Call B$PESD             'a far call is 5 bytes

When /g2 is used,  the address is pushed directly rather than first being loaded into AX, as shown
following.

PRINT Work$
  Push Offset Work$       'this requires 3 bytes
  Call B$PESD             'this call is 5 bytes

With  the  rapid  proliferation  of  80386,  80486  and  Pentium computers,  Microsoft  should  certainly
consider adding a /g3 switch. Taking advantage of 80386 instructions could provide substantially more
improvement over 80286 instructions than the 80286 provides beyond the 8086.

Microsoft added a /g3 switch to VB/DOS. Unfortunately,
it does little more than the /g2 switch. Most of a
program's execution is spent running code inside the
Microsoft-supplied  runtime  libraries.  But  those
libraries contain only 8088 code!  Using /g2 and /g3
affect  only  the  compiler-generated  code,  which  has
little impact on a program's overall performance. Until
Microsoft writes additional versions of their runtime
libraries using 80386 instructions (yeah, right), using
/g2  or  /g3  will  offer  very  little  practical
improvement.

/Ix  (BASIC PDS and later)

Another important addition to BASIC 7 PDS is its integral ISAM data file handler. Microsoft's ISAM
(Indexed Sequential Access Method) offers three key features: The first is indexing, which lets you
search a data file very quickly. A simple sequential search reads each record from the disk in order until
the desired information is found. That is, to find the record for customer David Eagle you would start at
the beginning of the file, and read each record until you found the one containing that name. An index
system, on the other hand, keeps as many names in memory as will fit, and searches memory instead of
the disk. This is many time faster than reading the disk repeatedly. If Mr. Eagle is found in, say, the
1200th position, the index manager can go directly to the corresponding record on disk and return the
data it contains.
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The second ISAM feature is its ability to maintain the data file in sorted order. In most situations,
records are stored in a data file in the order they were originally entered. For example, with a sales
database, each time a customer purchases a product a new record is added holding the item and price
for the item. When you subsequently step through the data file, the entries will most likely be ordered
by the date and time they were entered. ISAM lets you access records in sorted order—for example,
alphabetically by the customer's last name—regardless of the order in which the data was actually
entered.

The last important ISAM feature is its ability to establish relationships between files, based on the
information they contain. Many business applications require at least two data files: one to hold names
and addresses of each customer which rarely changes, and another to hold the products or other items
that are ordered periodically. It would be impractical and wasteful to duplicate the name and address
information repeatedly in each product detail record. Instead, many database programs store a unique
customer number in each record. Then, it is possible to determine which sales record goes with which
customer based on the matching numbers in both files. A program that uses this technique is called a
relational database.

To help the BASIC ISAM routines operate efficiently, you are required to provide some information
when compiling your program. Each of the /i switches requires a letter indicating which option is being
specified, and a numeric value. For each field in the file that requires fast (indexed) access, ISAM must
reserve a block of memory for file buffers. This is the purpose of the /ii: switch. Notice that /ii: is
needed only if more than 30 indexes will be active at one time.

The /ie: option tells ISAM how much EMS memory to reserve for buffers, and is specified in kilobytes.
This allows other applications to use the remaining EMS for their own use.

The /ib: option switch tells ISAM how many 2K (2048-byte)  page buffers to create in memory. In
general, the more memory that is reserved for buffers, the faster the ISAM program can work. Of
course, each buffer that you specify reduces the amount of memory that is available for other uses in
your program.
 
An entire chapter in the BASIC PDS manual is devoted to explaining the ISAM file system, and there
is little point in duplicating that information here. Please refer to your BASIC documentation for more
examples and tutorial information on using ISAM. In particular, advice and formulas are given that
show how to calculate the numeric values these options require.

In Chapter 6 I will cover file handling and indexing techniques in detail,  with accompanying code
examples showing how you can create your own indexing methods.

/Lp And /Lr  (BASIC PDS only)

BASIC 7 PDS includes an option to write programs that operate under OS/2, as well as MS-DOS.
Although OS/2 has yet to be accepted by most PC users, many programmers agree that it  offers a
number of interesting and powerful capabilities. By default, BC compiles a program for the operating
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system that is currently running. If you are using DOS when the program is compiled and linked, the
resultant program will also be for use with DOS. Similarly, if you are currently running OS/2, then the
program will be compiled and linked for use with that operating system.

The /lp (protected) switch lets you override the assumption that BC makes, and tell it to create OS/2
instructions that will run in protected mode. The /lr (real) option tells BC that even though you are
currently running under OS/2, the program will really be run with DOS. Again, these switches are
needed only when you need to compile for the operating system that is not currently in use.

/Mbf

With the introduction of QuickBASIC 4.0, Microsoft standardized on the IEEE format for floating
point data storage. Earlier versions of QuickBASIC and GW-BASIC used a faster, but non-standard
proprietary numeric format that is incompatible with other compilers and languages. In many cases, the
internal numeric format a compiler uses is of little consequence to the programmer. After all, the whole
point of a high-level language is to shield the programmer from machine-specific details.

One important exception is when numeric data is stored in a disk file. While it is certainly possible to
store  numbers  as  a  string  of  ASCII  characters,  this  is  not  efficient.  As I  described in  Chapter  2,
converting  between  binary  and  decimal  formats  is  time  consuming,  and  also  wastes  disk  space.
Therefore, BASIC (and most other languages) write numeric data to a file using its native fixed-length
format. That is, integers are stored in two bytes, and double-precision data in eight.

Although QuickBASIC 4 and later compilers use the IEEE format for numeric data storage, earlier
version of the compiler do not. This means that values written to disk by programs compiled using
earlier version of QuickBASIC or even GW-BASIC cannot be read correctly by programs built using
the newer compilers. The /mbf option tells BASIC that it is to convert to the original Microsoft Binary
Format (hence the MBF) prior to writing those values to disk. Likewise, floating point numbers read
from disk will be converted from MBF to IEEE before being stored in memory.

Even when /mbf is used, all floating point numbers are
still stored in memory and manipulated using the IEEE
method.  It  is  only  when  numbers  are  read  from  or
written to disk that a conversion between MBF and IEEE
format is performed.

Notice that current versions of Microsoft BASIC also include functions to convert between the MBF
and IEEE formats manually. For example, the statement Value# = CVDMBF(Fielded$) converts
the MBF-format number held in Fielded$, and assigns an IEEE-format result to Value#. When /mbf is
used,  however,  you  do  not  have  to  perform  this  conversion  explicitly,  and  using  Value# =
CVD(Fielded$) provides the identical result.

Also see the data format discussion in Chapter 2, that compares the IEEE and MBF storage methods in
detail.
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/O

BASIC can create two fundamentally different types of .EXE programs: One type is a stand-alone
program  that  is  completely  self-contained.  The  other  type  requires  the  presence  of  a  special
runtime  .EXE  library  file  when  it  runs,  which  contains  the  routines  that  handle  all  of  BASIC's
commands.  By  default,  BASIC  creates  a  program  that  requires  the  runtime  .EXE  library,  which
produces smaller program files. However, the runtime library is also needed, and is loaded along with
the program into memory. The differences between the BRUN and BCOM programs were described in
detail in Chapter 1.

The /o switch tells BASIC to create a stand-alone program that does not require the BRUN library to be
present. Notice that when /o is used, the CHAIN command is treated as if you had used RUN, and
COMMON variables may not be passed to a subsequently executed program.

/Ot  (BASIC PDS and later)

Each time you invoke a BASIC subprogram, function,  or DEF FN function,  code BC adds to the
subprogram  or  function  creates  a  stack  frame  that  remembers  the  caller's  segment  and  address.
Normally, Call and Return statements in assembly language are handled directly by the microprocessor.
DEF FN functions and GOSUB statements are translated by the compiler into near calls, which means
that the target address is located in the same segment. Invoking a formal function or subprogram is
instead  treated  as  a  far  call,  to  support  multiple  segments  and thus  larger  programs.  Therefore,  a
RETURN or EXIT DEF statement assumes that a single address word is on the stack, where EXIT
SUB or EXIT FUNCTION expect both a segment and address to be present (two words).

A problem can arise if you invoke a GOSUB routine within a SUB or FUNCTION procedure, and then
attempt to exit the procedure from inside that subroutine with EXIT SUB or EXIT FUNCTION. If a
GOSUB is active, EXIT SUB will incorrectly return to the segment and address that are currently on
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the stack. Unfortunately, the address is that of the statement following the GOSUB, and the segment is
in fact the address portion of the original caller's return location. This is shown in Figure 5-2.

To avoid this potential problem, the original caller's segment and address are saved when a subprogram
or function is first invoked. The current stack pointer is also saved, so it can be restored to the correct
value, no matter how deeply nested GOSUB calls may become. Then when the procedure is exited,
another library routine is called that forces the originally saved segment and address to be on the stack
in the correct position

Because this process reduces the speed of procedure calls and adds to the resultant code size, the /ot
option was introduced with BASIC 7 PDS. Using /ot tells BASIC not to employ the larger and slower
method, unless you are in fact using a GOSUB statement within a procedure. Since this optimization is
disabled automatically anyway in that case, it is curious that Microsoft requires a switch at all. That is,
BC should simply optimize procedure calls where it can, and use the older method only when it has to.

/R

The /r  switch tells BASIC to store multi-dimensioned arrays in row, rather than column order. All
arrays, regardless of their type, are stored in a contiguous block of memory. Even though string data
can be scattered in different places, the table of descriptors that comprise a string array is contiguous.
When you dimension an array using two or more subscripts, each group of rows and columns is placed
immediately after the preceding one. By default, BASIC stores multi-dimensioned arrays in column
order, as shown in Figure 5-3.

As you can see, each of the elements in the first subscript are stored in successive memory locations,
followed by each of the elements in the second subscript. In some situations it may be necessary to
maintain arrays in row order, for example when interfacing with another language that expects array
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data to be organized that way—notably FORTRAN. When an array is stored in row order, the elements
are arranged such that Array(1, 1) is followed by Array(1, 2), which is then followed by Array(2, 1),
Array(2, 2), Array(3, 1), and so forth.

Although many of the BC option switches described here are also available for use with the QB editing
environment, /r is not one of them. 

/S

The /s switch has been included with BASIC since the first BASCOM 1.0 compiler, and it remains
perhaps the least understood of all the BC options. Using /s affects your programs in two ways. The
first  is  partially  described in  the  BASIC manuals,  which  is  to  tell  BC not  to  combine  like  string
constants as it compiles your program. As you learned in Chapter 2, BASIC makes available as much
string  memory  as  possible  in  your  programs,  by  consolidating  identical  constant  string  data.  For
example, if you have the statement PRINT "Insert disk in drive A" seven times in your
program, the message is stored only once, and used for each instance of PRINT.

In order to combine like data the BC compiler examines each string as it is encountered, and then
searches its own memory to see if that string is already present. Having to store all of the strings your
program uses just to check for duplicates impinges on BC's own working memory. At some point it will
run out of memory, since it also has to remember variable and procedure names, line labels and their
corresponding addresses, and so on. When this happens, BC has no recourse but to give up and display
an "Out of memory" error message.

The /s switch is intended to overcome this problem, because it tells the compiler not to store your
program's string constants. Instead of retaining the strings in memory for comparison, each is simply
added to the object file as it is encountered. However, strings four characters long or shorter are always
combined, since short strings are very common and doing that does not require much of BC's memory.

The second [undocumented] thing /s does is to add two short (eight bytes each) assembly language
subroutines to the very beginning of your program. Two of the most common string operations are
assignments and concatenations, which are handled by routines in the runtime library. Normally, a call
to  either  of  these  routines  generates  thirteen bytes  of  code,  including the statements  that  pass  the
appropriate string addresses.

The subroutines that /s adds are accessed using a near rather than a far call, and they receive the string
addresses in CPU registers rather than through the stack. Therefore, they can be called using between
three and nine bytes, depending on whether the necessary addresses are already in the correct registers
at the time. The inevitable trade-off, however, is that calling one subroutine that in turn calls another
reduces the speed of your programs slightly.

In many cases—especially when there are few or no duplicated string constants—using /s will reduce
the size of your programs. This is contrary to the Microsoft documentation which implies that /s will
make  your  programs  larger  because  the  duplicate  strings  are  not  combined.  I  would  like  to  see

134



Microsoft include this second feature of /s as a separate option, perhaps using /ss (string subroutine) as
a designator. 

/T

The /t  (terse)  switch  tells  BC not  to  display  its  copyright  notice  or  any warning (non-fatal)  error
messages. This option was not documented until BASIC PDS, even though it has been available since
at least QuickBASIC 4.0. The only practical use I can see for /t is to reduce screen clutter, which is
probably why QB and QBX use it when they shell to DOS to create an .EXE program.

/V and /W

Any programs that use event handling such as ON KEY, ON COM, ON PLAY, or the like—but not ON
GOTO or ON GOSUB—require that you compile using either the /v or /w option switches. These
options do similar things, adding extra code to call a central handler that determines if action is needed
to process an event. However, the /v switch checks for events at every program statement while /w
checks only at numbered or labelled lines.

In Chapter 1 I described how event handling works in BASIC, using polling rather than true interrupt
handling. There you saw how a five-byte call is required each time BASIC needs to see if an event has
occurred. Because of this added overhead, many programmers prefer to avoid BASIC's event trapping
statements in favor of manually polling when needed. However, it is important to point out that by
using line numbers and labels sparingly in conjunction with /w, you can reduce the amount of extra
code BASIC creates thus controlling where such checking is performed. 

/X

Like the /e switch, /x is used with ON ERROR and RESUME; however, /x increases substantially the
size of your final .EXE program file. When RESUME, RESUME 0, or RESUME NEXT are used,
BASIC needs a way to find where execution is to resume in your program. Unfortunately, this is not a
simple task. Since a single BASIC source statement can create a long series of assembly language
commands, there is no direct correlation between the two. When an error occurs and you use RESUME
with no argument telling BASIC to execute the same statement again, it can't know directly how many
bytes earlier that statement begins.

Therefore, when /x is specified, a numbered line marker is added in the object code to identify the start
of every BASIC source statement. These markers comprise a linked list of statement addresses, and the
RESUME statement  walks through this  list  looking for the address that most closely precedes the
offending BASIC statement. Because of the overhead to store these addresses—four bytes for each
BASIC source statement—many professional programmers avoid using /x unless absolutely necessary.
However,  the  table  of  addresses  is  stored within  the code segment,  and does  not  take  away from
DGROUP memory.

/Z  (BASIC PDS and later)
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The /z switch is meant to be used in conjunction with the Microsoft editor. This editor is included with
BASIC PDS, and allows editing programs that are too large to be contained within the QB and QBX
editing environments. When a program is compiled with /z, BASIC includes line number information
in the object file. The Microsoft editor can then read these numbers after an unsuccessful compile, to
help you identify which lines were in  error.  Because the addition of  these line number identifiers
increases a program's size, /z should be used only for debugging and not in a final production.

In  general,  the  Microsoft  editor  has  not  been  widely  accepted  by  BASIC programmers,  primarily
because it is large, slow, and complicated to use. Microsoft also includes a newer editing environment
called the Programmer's  Workbench with BASIC PDS; however,  that  too is  generally  shunned by
serious developers for the same reasons.

/Zd

Like /z, the /zd switch tells BC to include line number information in the object file it creates. Unlike
/zi which works with CodeView (see the /zi switch below), /zd is intended for use with the earlier
SYMDEB debugger included with MASM 4.0. It is extremely unlikely that you will ever need to use
/zd in your programming.

/Zi

The /zi  option is  used when you will  execute your program in the Microsoft  CodeView debugger.
CodeView was described in Chapter 4, and there is no reason to repeat that information here. Like /z
and /zd, /zi tells BC to include additional information about your program in the object file. Besides
indicating which assembler statements correspond to which BASIC source lines, /zi also adds variable
and procedure names and addresses to the file. This allows CodeView to display meaningful names as
you step through the assembly language compiled code, instead of addresses only.

In order to create a CodeView-compatible program, you must also link with the /co LINK option. All of
the options that LINK supports are listed elsewhere in this chapter, along with a complete explanation
of what each does.

Note that CodeView cannot process a BASIC source file that has been saved in the Fast Load format.
This  type  of  file  is  created  by default  in  QuickBASIC,  when you save  a  newly created program.
Therefore, you must be sure to select the ASCII option button manually from the Save File dialog box.
In fact, there are so many bugs in the Fast Load method that you should never use it. Problems range
from QuickBASIC hanging during the loading process to completely destroying your source file!

If a program that has been saved as ASCII is accidentally damaged, it is at least possible to reconstruct
it  or  salvage  most  of  it  using  a  DOS  tool  such  as  the  Norton  Utilities.  But  a  Fast  Load  file  is
compressed and encrypted; if even a single byte is corrupted, QB will refuse to load it. Since a Fast
Load file doesn't really load that much faster than a plain ASCII file anyway, there is no compelling
reason to use it.
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Rather  than  fix  the  Fast  Load  bug,  which  Microsoft
claims  they  cannot  reproduce,  beginning  with  PDS
version 7 BASIC now defaults to storing programs as
plain ASCII files.

Compiler Metacommands

There are a number of compiler metacommands that you can use to control how your program is
formatted in the listing file that BC optionally creates. Although these list file formatting options have
been available since the original IBM BASCOM 1.0 compiler,  which Microsoft wrote, they are not
documented in the current versions. As with '$INCLUDE and '$DYNAMIC and the other documented
metacommands, each list formatting option is preceded by a REM or apostrophe, and a dollar sign. The
requirement to embed metacommands within remarks was originally to let programs run under the
GW-BASIC interpreter without error.

Each of the available options is listed below, along with an explanation and range of acceptable values.
Many options require a numeric parameter as well; in those cases the number is preceded by a colon.
For example, a line width of 132 columns is specified using '$LINESIZE: 132. Other options such
as  '$PAGE  do  not  require  or  accept  parameters.  Notice  that  variables  may  not  be  used  for
metacommand parameters, and you must use numbers. CONST values are also not allowed.

Understand that the list file that BASIC creates is of dubious value, except when debugging a program
to determine the address at which a runtime error occurred. While a list file could be considered as part
of  the  documentation  for  a  finished  program,  it  conveys  no  useful  information.  These  formatting
options are given here in the interest of completeness, and because they are not documented anywhere
else. In order to use any of these list options you must specify a list file name when compiling.

'$LINESIZE

The '$LINESIZE option lets you control the width of the list file, to prevent or force line wrapping at a
given column. The default list width is 80 columns, and any text that would have extended beyond that
is instead continued on the next line. Many printers offer a 132-column mode, which you can take
advantage of by using '$LINESIZE: 132. Of course, it's up to you to send the correct codes to your
printer before printing such a wide listing. Note that the minimum legal width is 40, and the maximum
is 255. 

'$LIST

The '$LIST metacommand accepts either a minus (-) or plus (+) argument, to indicate that the listing
should be turned off and on respectively. That is, using '$LIST suspends the listing at that point in the
program, and '$LIST + turns it back on. This option is useful to reduce the size of the list file and to
save paper when a listing is not needed for the entire program.
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'$PAGE

To afford control over the list file format, the '$PAGE metacommand forces subsequent printing to
begin on the next page. Typically '$PAGE would be used prior to the start of a new section of code; for
example, just before each new SUB or FUNCTION procedure. This tells BC to begin the procedure
listing on a new page, to avoid starting it near the bottom of a page. 

'PAGEIF

'$PAGEIF is related to '$PAGE, except it lets you specify that a new page is to be started only if a
certain minimum number of lines remain on the current page. For example, '$PAGEIF: 6 tells BC to
advance to the next page only if there are six or less printable lines remaining. 

'$PAGESIZE 

You can specify the length of each page with the '$PAGESIZE metacommand, to override the 66-line
default. This would be useful with laser printers, if you are using a small font that supports more than
that many lines on each page. Notice that a 6-line bottom margin is added automatically, so specifying
a page size of 66 results in only 60 actual lines of text on each page. The largest value that can be used
with '$PAGESIZE is 255, and the smallest is 15. To set the page length to 100 lines you would use
'$PAGESIZE: 100. There is no way to disable the page numbering altogether, and using values
outside this range result in a warning error message. 

'$OCODE

Using '$OCODE (object code) allows you to turn the assembly language source listing on or off, using
"+" or "-" arguments. Normally, the /a switch is needed to tell BC to include the assembly language
code in the list file. But you can optionally begin a listing at any place in the program source with
'$OCODE+, and then turn it off again using '$OCODE -.

'$SKIP
Like '$PAGE and '$PAGEIF, the '$SKIP option lets you control the appearance of the source listing.
'$SKIP accepts a colon and a numeric argument that tells BC to print that many blank lines in the list
file or skip to the end of the page, whichever comes first.

'$TITLE and '$SUBTITLE

By default, each page of the list file has a header that shows the current page number, and date and time
of  compilation.  The  '$TITLE  and  '$SUBTITLE  metacommands  let  you  also  specify  one  or  two
additional strings, which are listed at the start of each page. Using '$TITLE: 'My program' tells
BASIC to print the text between the single quotes on the first line of each page. If a subtitle is also
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specified, it will be printed on the second line. Note that the title will be printed on the first page of the
list file only if the '$TITLE metacommand is the very first line in the BASIC source file. 

Linking

Once a program has been compiled to an object file, it must be linked with the routines in the BASIC
library before it can be run. LINK combines one or more object files with routines in a library, and
produces an executable program file having an .EXE extension. LINK is also used to create Quick
Libraries for use in the QB editing environment, and that is discussed later in this chapter.

LINK  can  combine  multiple  BASIC  object  files,  as  well  as  object  files  created  with  other
Microsoft-compatible languages. In the section that follows you will learn how the LINK command
line is structured, what each parameter is for, and how the many available options may be used. Using
the various LINK options can reduce the size of your programs, and help them run faster as well.

I should mention here it is imperative that you use the correct version of LINK. DOS comes with an old
version of LINK.EXE that is not suitable for use with QuickBASIC or BASIC PDS. Therefore, you
should always use the LINK.EXE program that  came with your compiler.  I  also suggest that  you
remove or rename the copy of LINK that came with DOS if it is still on your hard disk. More than once
I  have  seen  programmers  receive  inexplicable  LINK  error  messages  because  their  PATH  setting
included the \DOS directory. In particular, many of the switches that current versions of LINK support
cause an "Unrecognized option" message from older versions. If the correct version of LINK is not in
the current directory, then DOS will use its PATH variable to see where else to look, possibly running
an older version.

The LINK command line is structured as follows, using brackets to indicate optional information. The
example below is intended to be entered all on one line:

link [/options] objfile [objfile] [libfile.lib], [exefile], [mapfile],   
[libfile] [libfile] [;]

As with the BC compiler, you may either enter all of the information on a single command, let LINK
prompt  you for  the  file  names,  or  use  a  combination  of  the  two.  That  is,  you could  enter  LINK
[filename] and let LINK prompt you for the remaining information. Default choices are displayed
by LINK, and these are used if Enter alone is pressed. Typing a semicolon on a prompt line by itself or
after a file name tells LINK to assume the default responses for the remaining fields. LINK also lets
you use a response file to hold the file names and options. When there are dozens or even hundreds of
files being specified, this is the only practical method. Response files are described later in this section

Also like BC, the separating commas are required as place holders when successive fields are omitted.
For example, the command:

link program , , mapfile;
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links  PROGRAM.OBJ  to  produce  PROGRAM.EXE,  and  creates  a  map  file  with  the  name
MAPFILE.MAP.  If  the  second  comma  had  not  been  included,  the  output  file  would  be  named
MAPFILE.EXE and a map file would not be written at all.

The first LINK argument is one or more optional command switches, which let you control some of the
ways in  which link works.  For example,  the /co switch tells  LINK to add line number and other
information needed when debugging the resultant EXE program with CodeView. Another option, /ex,
tells LINK to reduce the size of the program using a primitive form of data compression. Each LINK
option will be discussed in the section that follows.

The second argument is the name of the main program object module, which contains the code that will
be executed when the program is run from the DOS command line. Many programs use only a single
object file;  however,  in a multi-module program you must list  the main module first.  That is  then
followed by the other modules that contain additional subprograms and functions. Of course, you can
precede any file name with a drive letter and/or directory name as necessary.

You may also specify that all of the object modules in an entire library be included in the executable
program by entering the library name where the object name would be given. Since LINK assumes
an .OBJ file extension, you must explicitly include the .LIB extension when linking an entire library.
For example, this command creates a program named MAINPROG.EXE which is comprised of the
code in MAINPROG.OBJ and all of the routines in SUBS.LIB:

link mainprog subs.lib;

Normally, a library is specified at the end of the LINK command line. However, in that case only the
routines that are actually called will be added to the program. Placing a library name in the object name
field tells LINK to add all of the routines it contains, regardless of whether they are actually needed.
Normally you do not want LINK to include unused routines, but that is often needed when creating
Quick Libraries which will be discussed in a moment.

Notice that when more than one object file is given, the first listed is the one that is run initially. Its
name is also used for the executable file name if an output file name is not otherwise given. Like the
BC compiler, LINK assumes that you are using certain file naming conventions but lets you override
those assumptions with explicit extensions. I recommend that you use the standard extensions, and
avoid any unnecessary heartache and confusion.  In particular,  using non-standard names is  a  poor
practice when more than one programmer is working on a project. Also notice that either spaces or plus
signs (+) may be used to separate each object and library file name. Which you use is a matter of
personal preference.

The third LINK field is the optional executable output file name. If omitted, the program will use the
base name of the first object file listed. Otherwise, the specified name will be used, and given an .EXE
extension. Again, you can override the .EXE extension, but this is not recommended.

Following the output file name field is the map file entry. A map file contains information about the
executable program, such as segment names and sizes, the size of the stack, and so forth. The /map
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option,  which  is  described  later,  tells  LINK to  include  additional  information  in  the  map  file.  In
general, a map file is not useful in high-level language programming.

One interesting LINK quirk is that it will create a map file if empty commas are used, but not if a
semicolon is used prior to that field.  You can specify the reserved DOS device name  nul to avoid
creating a map file. For example, this command links PROGRAM.OBJ to create PROGRAM.EXE, but
not does not create the file PROGRAM.MAP: 

link program, , nul, library;

I use a similar line in the batch files I use for compiling and linking, to avoid cluttering my hard disk
with these useless files.

The last field specifies one or more libraries that hold additional routines needed for the program. In
purely BASIC programming you do not need to specify a library name, because the compiler specifies
a  default  library  in  the  object  file  header.  If  you  are  linking  with  assembly  or  other  language
subroutines that are in a library, you would list the library names here. You can list any number of
library names, and LINK will search each of them in turn looking for any routines it does not find in
the object files.

The version of  LINK that  comes with BASIC 7 also accepts  a  definitions file  as an optional  last
argument. But that is used only for OS/2 and Windows programming, and is not otherwise needed with
BASIC. 

Link Options

All of the available LINK options that are useful with BASIC running under DOS are shown following
in alphabetical order. As with the switches supported by BC, each is specified on the LINK command
line by preceding it forward slash (/). Many of the options may be abbreviated by entering just the first
few letters of their name. For example, what I refer to as the /co option is actually named /codeview;
however, the first two letters are sufficient for LINK to know what you mean.

Each option is described using only enough letters to understand the meaning of its name. You can see
the full name for those options in the section headers below, or run LINK with the /help switch. Any
switch may be specified using only as many characters as needed to distinguish it from other options.
That is, /e is sufficient to indicate /exepack because it is the only one that starts with that letter. But you
must use at least the first three characters of the /nologo switch, since /no could mean either /nologo
or /nodefaultlibrary. The details section for each option shows the minimum letters that are actually
needed.

/BATCH

Using /ba tells LINK that you are running it from a batch file, and that it is not to pause and prompt for
library names it is unable to find. When /ba is used and external routines are not found, a warning
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message is issued rather than the usual prompt. The /ba option is not generally very useful—even if you
are linking with a batch file—since it offers no chance to fix an incorrect file or directory name.

One interesting LINK quirk worth noting is when it is unable to find a library you must include a
trailing backslash (\) after the path name when reentering it manually. If LINK displays the prompt
"Enter new file spec:" and you type  \pathname,  you are telling LINK to use the library named
PATHNAME.LIB and look for it in the root directory. What is really needed is to enter \pathname\,
which tells it to look in that directory for the library. Furthermore, if you initially enter the directory
incorrectly, you must then specify both the directory and library name. If you are not sure of the default
library name it is often easier to simply press Ctrl-C and start again.

/CODEVIEW

The /co switch is necessary when preparing a program for debugging with CodeView. Because of the
extra  information  that  LINK  adds  to  the  resultant  executable  file,  /co  should  be  used  only  for
debugging purposes. However, the added data is stored at the end of the file, and is not actually loaded
into memory if the program is run from the DOS command line. The program will therefore have the
same amount of memory available to it as if /co had not been used.

/EXEPACK

When  /e  is  used,  LINK compresses  repeated  character  strings  to  reduce  the  executable  file  size.
Because variables and static arrays are initialized to zero by the compiler, they are normally stored in
the file as a group of CHR$(0) zero bytes. The /e switch tells LINK to replace these groups of zero
bytes with a group count. Then when the program is run, the first code that actually executes is the
unpacking code that LINK adds to your program. This is not unlike the various self-extracting archive
utilities that are available commercially and as shareware.

Notice that the compression algorithm LINK employs is not particularly sophisticated. For example,
SLR System's OptLink is an alternate linker that reduces a program to a much smaller file size than
Microsoft's  LINK. PKWare and SEA Associates  are  two other  third-party companies  that  produce
utilities to create smaller executable files that unpack and run themselves automatically.

/FARCALLTRANSLATE

By default, all calls from BASIC to its runtime library routines are far calls, which means that both a
segment  and  address  are  needed  to  specify  the  location  of  the  routine  being  accessed.  Assembly
language and C routines meant to be used with BASIC are also designed as far calls, as are BASIC
subprograms and functions. This affords the most flexibility, and also lets you create programs larger
than could fit into a single 64K segment.

Within the BASIC runtime library there are both near and far calls to other library routines. Which is
used depends on the routines involved, and how the various segments were named by the programmers
at Microsoft. Because a far call is a five-byte instruction compared to a near call which is only three, a
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near call requires less code and can execute more quickly. In many cases, separate code segments that
are less than 64K in size can be combined by LINK to form a single segment. The routines in those
segments could then be accessed using near calls. However, BASIC always generates far calls as it
compiles your programs.

The /f option tells LINK to replace the far calls it encounters with near calls, if the target address is
indeed close enough to be accessed with a near call. The improvement /f affords is further increased by
also using the /packcode switch (see below). Although the far call is replaced with a near call, LINK
can't actually reduce the size of the original instruction. Instead it inserts a Nop (no operation) assembly
language command where part of the far call had been. But since a near call does not require segment
relocation information in the .EXE file header, the file size may be reduced slightly. See the text that
accompanies  Figure  5-1  earlier  in  this  chapter  for  an  explanation  of  DOS'  loading and relocation
process.

There is one condition under which the /f option can cause your program to fail. The machine code for
a far call is a byte with the value of &H9A, which is what LINK searches for as it converts the far calls
to near ones. Most high-level languages store all data in a separate segment, which is ignored by LINK
when servicing /f. BASIC, however, stores line label addresses in the program's code segment when
ON GOTO and the other ON commands are used. If one of those addresses happens to be &H9A, then
LINK  may  incorrectly  change  it.  In  my  personal  experience,  I  have  never  seen  this  happen.  I
recommend that you try /f in conjunction with /packc, and then test your program thoroughly. You
could also examine any ON statements  with CodeView if  you are using them, to  determine if  an
address happens to contain the byte &H9A.

/HELP

Starting LINK with the /he option tells it to display a list of all the command options it recognizes. This
is useful both as a reminder, and to see what new features may have been added when upgrading to a
newer compiler. In many cases, new compilers also include a new version of LINK. 

/INFO

The /inf switch tells LINK to display a log of its activity on the screen as it processes your file. The
name of each object file being linked is displayed, as are the routines being read from the libraries. It is
extremely unlikely that you will find /inf very informative. 

/LINENUM

If you have compiled with the /zd switch to create SYMDEB information, you will also need to specify
the /li LINK switch. This tells LINK to read the line number information in the object file, and include
it in the resultant executable program. SYMDEB is an awkward predecessor to CodeView that is also
hard to use, and you are not likely to find /li useful. 

/MAP
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If you give a map file name when linking, LINK creates a file showing the names of every segment in
your program. The /m switch tells LINK to also include all of the public symbol names. A public
symbol is any procedure or data in the object file whose address must be determined by LINK. This
information is not particularly useful in purely BASIC programming, but it  is  occasionally helpful
when writing subroutines in assembly language. Segment naming and grouping will be discussed in
Chapter 12. 

/NODEFAULTLIB

When BC compiles your program, it places the default runtime library name into the created object
file's  header.  This  way  you  can  simply  run  LINK,  without  having  to  specify  the  correct  library
manually.  Before BASIC PDS there were only two runtime library names you had to deal with—
QuickBASIC 4.5 uses BCOM45.LIB and BRUN45.LIB. But PDS version 7.1 comes with 16 different
libraries, each intended for a different use.

For example, there are BRUN and BCOM libraries for every combination of near and far strings, IEEE
and /fpa (alternate) math, and DOS and OS/2. That is, BRT71EFR.LIB stands for BASIC Runtime 7.1
Emulator Far strings Real mode. Likewise, BCL71ANP is for use with a BCOM stand-along program
using Alternate math and Near strings under OS/2 Protected mode.

Using /nod tells LINK not to use the library name embedded within the object file, which of course
means that you must specify a library name manually. The /nod switch also accepts an optional colon
and explicit library name to exclude. That is, /nod:libname means use all of the default libraries listed
in the object file except libname.

In general, /nod is not useful with BASIC, unless you are using an alternate library such as Crescent
Software's P.D.Q. Another possible use for /nod is if you have renamed the BASIC libraries.

/NOEXTDICT

As LINK combines the various object files that comprise your program with routines in the runtime
library, it maintains a table of all the procedure and data names it encounters. Some of these names are
in the object modules, such as the names of your BASIC subprograms and functions. Other procedure
names are those in the library.

In some situations the same procedure or data name may be encountered more than once. For example,
when you are linking with a stub file it will contain a routine with the same name as the one it replaces
in BASIC's library. Usually, LINK will issue an error message when it finds more than one occurrence
of a public name. If you use /noe (No Extended Dictionary) LINK knows to use the routine or data item
it finds first, and not to issue an error message.

The /noe option should be used only when necessary, because it causes LINK to run more slowly.
Linking with stub files is described separately later in this chapter.
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/NOFARCALL

The /nof switch is usually not needed, since by default LINK does not translate far calls to near ones
(see /farcalltranslate earlier in this section). But since you can set an environment variable to tell LINK
to assume /far  automatically,  /nof  would be  used  to  override  that  behavior.  Setting  LINK options
through the use of environment variables is described later in this chapter.

/NOLOGO

The /nol switch tells LINK not to display its copyright notice, and, like the /t BC switch may be used to
minimize screen clutter.

/NOPACKCODE

As with  the  /nof  switch,  /nop is  not  necessary  unless  you have  established  /packc  as  the  default
behavior using an environment variable. 

/OVERLAYINT

When you have written a  program that  uses overlays,  BASIC uses  an  overlay manager to  handle
loading subprograms and functions in pieces as they are needed. Instead of simply calling the overlay
manager  directly,  it  uses  an  interrupt.  This  is  similar  to  how the  routines  in  a  BRUN library  are
accessed.

BASIC by default uses Interrupt &H3F, which normally will not conflict with the interrupts used by
DOS, the BIOS, or network adapter cards. If an interrupt conflict is occurring, you can use the /o
switch to specify that a different interrupt number be used to invoke the overlay manager. This might
be necessary in certain situations, perhaps when data acquisition or other special hardware is installed
in the host PC.

/PACKCODE

The /packc switch is meant to be used with /far, and it combines multiple adjacent code segments into
as few larger ones as possible. This enable the routines within those segments to call each other using
near, rather than far calls. When combined with /f, /packc will make your programs slightly faster and
possibly reduce their size.

/PAUSE

Using /pau tells  link to pause after reading and processing the object  and library files,  but before
writing the final executable program to disk. This is useful only when no hard drive is available, and all
of the files will not fit onto a single floppy disk.
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/QUICKLIB

The /q switch tells LINK that you are creating a Quick Library having a .QLB extension, rather than an
.EXE program file. A Quick Library is a special file comprised of one or more object modules, that is
loaded into the QB editing environment.  Although BASIC can call  routines written in non-BASIC
languages, they must already be compiled or assembled. Since the BASIC editor can interpret only
BASIC source code,  Quick Libraries provide a  way to access routines written in other languages.
Creating and using Quick Libraries is discussed separately later in this chapter. 

/SEGMENTS

The /seg: switch tells LINK to reserve memory for the specified number of segment names. When
LINK begins, it  allocates enough memory to hold 128 different segment names. This is not unlike
using  DIM in  a  BASIC program you  might  write  to  create  a  128-element  string  array.  If  LINK
encounters more than 128 names as it processes your program, it will terminate with a "Too many
segments" error. When that happens, you must start LINK again using the /seg switch.

All of the segments in an object module that contain code or data are named according to a convention
developed by Microsoft. Segment naming allows routines in separate files to ultimately reside in the
same memory segment. Routines in the same segment can access each other using near calls instead of
far calls, which results in smaller and faster programs. Also, all data in a BASIC program is combined
into a single segment, even when the data is brought in from different modules. LINK knows which
segments are to be combined by looking for identical names.

The routines in BASIC's runtime library use only a few different names, and it is not likely that you
will need to use /seg in most situations. But when writing a large program that also incorporates many
non-BASIC routines, it  is possible to exceed the 128-name limit.  It is also possible to exceed 128
segments when creating a very large Quick Library comprised of many individual routines.

The /seg switch requires a trailing colon, followed by a number that indicates the number of segment
names to reserve memory for. For example, to specify 250 segments you would use this command line:

link /seg:250 program, , nul, library;

In most cases, there is no harm in specifying a number that is too large, unless that takes memory LINK
needs for other purposes. Besides the segment names, LINK must also remember object file names,
procedure names, data variables that are shared among programs, and so forth. But if LINK runs out of
memory while  it  is  processing  your  program, it  simply  creates  a  temporary  work file  to  hold the
additional information. 

/STACK
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The /stack: option lets you control the size of BASIC's stack. One situation where you might need to do
this is if your program has deeply nested calls to non-static procedures. Likewise, calling a recursive
subprogram or function that requires many levels of invocation will quickly consume stack space.

You can increase the stack size in a QuickBASIC program by using the CLEAR command where
stacksize specifies the number of bytes needed:

CLEAR , , stacksize

However,  CLEAR  also  clears  all  of  your  variables,  closes  all  open  files,  and  erases  any  arrays.
Therefore, CLEAR is suitable only when used at the very beginning of a program. Unfortunately, this
precludes you from using it in a chained-to program, since any variables being passed are destroyed.
Using /stack: avoids this by letting you specify how much memory is to be set aside for the stack when
you link the chained-to program.

The /stack: option accepts a numeric argument, and can be used to specify the stack size selectively for
each  program  module.  For  example,  /stack:4096 specifies  that  a  4K  block  be  set  aside  in
DGROUP for use as a stack. Furthermore, you do not need to use the same value for each module.
Since setting aside more stack memory than necessary impinges on available string space, you can
override BASIC's default for only those modules that actually need it.

Note that this switch is not needed or recommended if
you have BASIC PDS, since that version includes the
STACK statement for this purpose. 

Stub Files (PDS and later)

A stub file is an object module that contains an alternate version of a BASIC language statement. A
stub file could also be an alternate library containing multiple object files. The primary purpose of a
stub file is to let you replace one or more BASIC statements with an alternate version having reduced
capability and hence smaller code. Some stub files completely remove a particular feature or language
statement. Others offer increased functionality at the expense of additional code.

Several stub files are included with BASIC PDS, to reduce the size of your programs. For example,
NOCOM.OBJ removes the routines that handle serial communications, replacing them with code that
prints the message "Feature stubbed out" in case you attempt to open a communications port.

When BASIC compiles your program and sees a statement such as OPEN Some$ FOR OUTPUT AS
#1, it has no way to know what the contents of Some$ will be when the program runs. That is, Some$
could hold a file name, a device name such as "CON" or "LPT1:", or a communications argument like
"COM1:2400,N,8,1,RS,DS". Therefore, BASIC instructs LINK to include code to support all of those
possibilities. It does this by placing all of the library routine names in the object file header. When the
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program runs, the code that handles OPEN examines Some$ and determines which routine to actually
call.

Within BASIC's runtime library are a number of individual object modules, each of which contains
code to handle one or more BASIC statements. In Chapter 1 you learned that how finely LINK can
extract individual routines from BASIC's libraries depends on how the routines were combined in the
original assembly language source files. In BASIC 7.1, using the SCREEN function in a program also
causes LINK to add the routines that handle CSRLIN and POS(0), even if those statements are not
used. This is because all three routines are in the same object module. The manner in which these
routines are combined is called granularity, and a library's granularity dictates which routines can be
replaced by a stub file. That is, a stub file that eliminated the code to support SCREEN would also
remove CSRLIN and POS(0).

Some  of  the  stub  files  included  with  BASIC  7  PDS  are  NOGRAPH.OBJ,  NOLPT.OBJ,  and
SMALLERR.OBJ.  NOGRAPH.OBJ  removes  all  support  for  graphics,  NOLPT.OBJ  eliminates  the
code needed to send data  to a printer,  and SMALLERR.OBJ contains a small  subset  of the many
runtime error messages that a BASIC program normally contains. Other stub files selectively eliminate
VGA or CGA graphics support, and another, OVLDOS21.OBJ, adds the extra code necessary for the
BASIC overlay manager to operate with DOS 2.1.

When linking with a stub file, it is essential that you use the /noe LINK switch, so LINK will not be
confused by the presence of two routines with the same name. The general syntax for linking with a
stub file is as follows:

link /noe basfile stubfile;

Of course, you could add other LINK options, such as /ex and /packc, and specify other object and
library files that are needed as well.

You can also create your own BASIC stub files, perhaps to produce a demo version of a program that
has all features except the ability to save data to disk. In order for this to work, you must organize your
subprograms and functions such that all of the routines that are to be stubbed out are in separate source
files, or combined together in one file.

In the example above, you would place the routines that save the data in a separate file. Then, simply
create an empty subprogram that has the same name and the same number and type of parameters, and
compile that separately. Finally, you would link the BASIC stub file with the rest of the program. Note
that such a replacement file is not technically a stub, unless the BASIC routines being replaced have
been compiled and placed into a library. But the idea is generally the same.

Quick Libraries
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For  many  programmers,  one  of  the  most  confusing  aspects  of  Microsoft  BASIC  is  creating  and
managing Quick Libraries. The concept is quite simple, however, and there are only a few rules you
must follow.

The primary purpose of a Quick Library is to let you access non-BASIC procedures from within the
BASIC editor. For example, BASIC comes with a Quick Library that contains the Interrupt routine, to
let  you call  DOS and BIOS system services.  A Quick Library can contain routines  written in any
language, including BASIC.

Although  the  BASIC  editor  provides  a  menu  option  to  create  a  Quick  Library,  that  will  not  be
addressed  here.  Rather,  I  will  show the  steps  necessary  to  invoke LINK manually  from the  DOS
command line.  There are several problems and limitations imposed by BASIC's automated menus,
which can be overcome only by creating the library manually.

One limitation is that the automated method adds all of the programs currently loaded into memory into
the Quick Library, including the main program. Unfortunately, only subprograms and functions should
be included. Code in the main module will  never be executed, and its presence merely wastes the
memory it  occupies.  Another,  more serious problem is  there's no way to specify a /seg parameter,
which is needed when many routines are to be included in the library.

Actually, you can set a DOS environment variable that
tells LINK to default to a given number of segments.
But that too has problems when using VB/DOS, because
the VB/DOS editor specifies a /seg: value manually, and
incorrectly.  Unfortunately,  LINK  honors  the  value
passed  to  it  by  VB/DOS,  rather  than  the  value  you
assigned to the environment variable.

Quick Libraries are built from one or more object files using LINK with the /q switch, and once created
may not be altered. Unlike the LIB.EXE library manager that lets you add and remove object files from
an existing .LIB library, there is no way to modify a Quick Library.

When LINK combines the various components of an executable file, it resolves the data and procedure
addresses in each object module header. The header contains relocation information that shows the
names of all external routines being called, as well as where in the object file the final address is to be
placed. Since the address of an external routine is not known when the source file is compiled or
assembled, the actual CALL instruction is left blank. This was described earlier in this chapter in the
section An Overview of Compiling and Linking.

Resolving these data and procedure addresses is one of the jobs that LINK performs. Because the
external names that had been in each object file are removed by LINK and replaced with numeric
addresses, there is no way to reconstruct them later. Similarly, when LINK creates a Quick Library it
resolves all incomplete addresses, and removes the information that shows where in the object module
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they were located. Thus, it is impossible to extract an object module from a Quick Library, or to modify
it by adding or removing modules.

Understand that the names of the procedures within the Quick Library are still present, so QuickBASIC
can find them and know the addresses to call. But if a routine in a Quick Library in turn calls another
routine in the library, the name of the called routine is lost.

Creating a Quick Library

Quick Libraries are created using the version of LINK that came with your compiler, and the general
syntax is as follows:

link /q obj1 [obj2] [library.lib] , , nul , support;

The support library file shown above is included with BASIC, and its name will vary depending on
your compiler version. The library that comes with QuickBASIC version 4.5 is named BQLB45.LIB;
BASIC 7 instead  includes  QBXQLB.LIB for  the  same purpose.  You must  specify  the  appropriate
support library name when creating a Quick Library.

Notice that LINK also lets you include all of the routines in one or more conventional (.LIB) libraries.
Simply list the library names where the object file names would go. The .LIB extension must be given,
because .OBJ is  the  default  extension  that  LINK assumes.  You can also combine object  files  and
multiple libraries in the same Quick Library like this: 

link /q obj1 obj2 lib1.lib lib2.lib , , nul , support;      

Although  Quick  Libraries  are  necessary  for  accessing  non-BASIC  subroutines,  you  can  include
compiled BASIC object files. In general, I recommend against doing that; however, there are some
advantages. One advantage is that a compiled subprogram or function will usually require less memory,
because comments are not included in the compiled code and long variable names are replaced with
equivalent 2-byte addresses. Another advantage is that compiled code in a Quick Library can be loaded
very quickly, thus avoiding the loading and parsing process needed when BASIC source code is loaded.

But there are several disadvantages to storing BASIC procedures in a Quick Library. One problem is
that you cannot trace into them to determine the cause of an error. Another is that all of the routines in a
Quick Library must be loaded together. If the files are retained in their original BASIC source form,
you can selectively load and unload them as necessary. The last disadvantage affects BASIC 7, and VB/
DOS users, only.

The QBX and VB/DOS editors  places  certain  subprogram and function  procedures  into  expanded
memory if any is available.  Understand that all procedures are not placed there; only those whose
BASIC source code size is between 1K and 16K. But Quick Libraries are always stored in conventional
DOS memory. Therefore, more memory will be available to your programs if the procedures are still in
source form, because they can be placed into EMS memory.

150



Note that when compiling BASIC PDS programs for placement in a Quick Library, it is essential that
you compile using the /fs (far strings) option. Near strings are not supported within the QBX editor, and
failing to use /fs will cause your program to fail spectacularly.

Response Files

A response file contains information that LINK requires, and it can completely or partially replace the
commands that would normally be given from the DOS command line. The most common use for a
LINK response file is to specify a large number of object files. If you are creating a Quick Library that
contains dozens or even hundreds of separate object files, it is far easier to maintain the names in a file
than to enter them each time manually.

To tell LINK that it is to read its input from a response file enter an at sign (@) followed by the
response file name, as shown below. 

link /q @quicklib.rsp

Since the /q switch was already given, the response file need only contain the remaining information. A
typical response is shown in the listing below:

object1 +
object2 +
object3 +
object4 +
object5 
qlbname
nul
support

Even though this example lists only five object files, there could be as many as necessary. Each object
file name except the last one is followed by a plus sign (+), so LINK will know that another object file
name input line follows. The qlbname line indicates the output file name. If it is omitted and replaced
with a blank line, the library will assume the name of the first object file but with a .QLB extension. In
this case, the name would be OBJECT1.QLB. The nul entry could also be replaced with a blank line, in
which case LINK would create a map file named OBJECT1.MAP. As shown in the earlier examples,
the support library will  actually be named BQLB45 or QBXQLB, depending on which version of
BASIC you are using.

LINK recognizes several variations on the structure of a response file. For example, several object
names could be placed on each line, up to the 126-character line length limit imposed by DOS. That is,
you could have a response file like this:

object1 object2 object3 +
object4 object5 object6 +
...
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I have found that placing only one name on each line makes it easier to maintain a large response file.
That also lends itself to keeping the names in alphabetical order.

You may also place the various option switches in a response file, by listing them on the first line with
the object files:

/ex /seg:250 object1 +
object2 +
...

Response files can be used for conventional linking, and not just for creating Quick Libraries. This is
useful when you are developing a very large project comprised of many different modules. Regardless
of what you are linking, however, understanding how response files are used is a valuable skill.

Linking With Batch Files

Because  so  many  options  are  needed  to  fully  control  the  compiling  and  linking  process,  many
programmers use a batch file to create their programs. The C.BAT batch file below compiles and links
a single BASIC program module, and exploits DOS' replaceable batch parameter feature. 

bc /o /s /t %1;
link /e /packc /far /seg:250 %1, , nul, mylib;

Like many programs, a batch file  can also accept command line arguments.  The first  argument  is
known within the batch file as %1, the second is %2, and so forth, up to the ninth parameter. Therefore,
when this file is started using this command:

c myprog

the compiler is actually invoked with the command

bc /o /s /t myprog;

The second line becomes

link /e /far /packc /seg:250 myprog, , nul, mylib;

That is, every occurrence of the replaceable parameter %1 is replaced by the first (and in this case only)
argument: myprog.

I often create a separate batch file for each new project I begin, to avoid having to type even the file
name. I generally use the name C.BAT because its purpose is obvious, and it requires typing only one
letter!  Once the project is complete, I rename the batch file to have the same first name as the main
BASIC program. This lets me see exactly how the program was created if I have to come back to it
again months later. An example of a batch file that compiles and links three BASIC source files is
shown below.
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bc /o /s /t mainprog;
bc /o /s /t module1;
bc /o /s /t module2;
link /e /packc /far mainprog module1 module2, , nul, mylib; 

Of course, you'd use the compiler and link switches that are appropriate to your particular project. You
could also specify a LINK response file within a batch file. In the example above you would replace
the last line with a command such as this:

link @mainprog.rsp;

Linking With Overlays (PDS and VB/DOS Pro Only)

At one time or another, most programmers face the problem of having an executable program become
too large to fit into memory when run. With QuickBASIC your only recourse is to divide the program
into separate .EXE files, and use CHAIN to go back and forth between them. This method requires a
lot  of  planning,  and  doesn't  lend  itself  to  structured  programming  methods.  Each  program  is  a
stand-alone main module, rather than a subprogram or function.

Worse, chaining often requires the same subroutine code to be duplicated in each program, since only
one program can be loaded into memory at a time. If both PROGRAM1.EXE and PROGRAM2.EXE
make calls to the same subprogram, that subprogram will have to be added to each program. Obviously,
this  wastes  disk  space.  BASIC  6.0  included  the  BUILDRTM  program  to  create  custom  runtime
program  files  that  combines  common  subroutine  code  with  the  BASIC  runtime  library.  But  that
program is complicated to use and often buggy in operation.

Therefore, one of the most useful features introduced with BASIC 7 is support for program overlays.
An overlay is a module that contains one or more subprograms or functions that is loaded into memory
only when needed.  All  overlaid modules  are  contained in  a single .EXE file  along with the main
program,  as  opposed  to  the  separate  files  needed  when  programs  use  CHAIN.  The  loading  and
unloading of modules is handled for you automatically by the overlay manager contained in the BASIC
runtime library.

Consider, as an example, a large accounting program comprised of three modules. The main module
would consist of a menu that controls the remaining modules, and perhaps also contains some ancillary
subprograms and functions. The second module would handle data entry, and the third would print all
of the reports. In this case, the data entry and reporting modules are not both required at the same time;
only  the  module  currently  selected  from the  menu  is  necessary.  Therefore,  you  would  link  those
modules as overlays, and let BASIC's overlay manager load and unload them automatically when they
are called.

The overall structure of an overlaid program is shown in Figure 5-4.
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*** MAINPROG.BAS
CALL Menu(Choice)
IF Choice = 1 THEN
     CALL EnterData
ELSEIF Choice = 2 THEN
     CALL DoReports
END IF

SUB Menu(Choice)
     ...
     CALL GetChoice(Choice)
     ...
END SUB

SUB GetChoice(ChoiceNum)
     ...
     ...
END SUB

*** ENTERDAT.BAS
SUB EnterData
     ...
     CALL GetChoice(Choice)
     ...
END SUB

*** REPORTS.BAS
SUB DoReports
     PRINT "Which report? ";
     CALL GetChoice(Choice)
     ...
     ...
END SUB

Figure 5-4: The structure of a program that uses overlays.

Here, the main program is loaded into memory when the program is first run. Since the main program
also  contains  the  Menu  and  GetChoice  subprograms,  they  too  are  initially  loaded  into  memory.
Understand that the main program is always present in memory, and only the overlaid modules are
swapped in and out. Thus, EnterData and DoReports can both freely call the GetChoice subprogram
which is always in memory, without incurring any delay to load it into memory from disk.

If the host computer has expanded memory, BASIC will use that to hold the overlaid modules. Since
EMS  can  be  accessed  much  more  quickly  than  a  disk,  this  reduces  the  load  time  to  virtually
instantaneous. You should be aware, however, that BASIC PDS contains a bug in the EMS portion of
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its overlay manager. If EMS is present but less than 64K is available, your program will terminate with
the error message "Insufficient EMS to load overlay."

If no expanded memory is available, BASIC simply reads the overlaid modules from the original disk
file each time they are called. It should also use the disk if it determines that there isn't enough EMS to
handle the overlay requirements, but it doesn't. Therefore, it is up to your users to determine how much
expanded memory is present, and disable the EMS driver in their PC if there isn't at least 64K.

To specify that a module is to be overlaid, simply surround its name with parentheses when linking.
Using  the  earlier  example  shown  in  Figure  5-4,  you  would  link  MAINPROG.OBJ  with
ENTERDAT.OBJ and REPORTS.OBJ as follows:

link mainprog (enterdat) (reports);

Of course, you may include any link switches that are needed, and also include any non-overlaid object
files. Any object file names that are not surrounded by parentheses will be kept in memory at all times.
Therefore, you should organize your programs such that subprograms and functions that are common
to the entire application are always loaded. Otherwise, the program could become very slow if those
procedures are swapped in and out of memory each time they are called.

Other LINK Details

The BASIC PDS documentation lists no less than 143 different LINK error messages, and at one time
or another you are bound to see at  least  some of those.  LINK errors are divided into two general
categories: warning errors and fatal errors. Warning errors can sometimes be ignored. For example,
failing to use the /noe switch when linking with a stub file produces the message "Symbol multiply
defined",  because LINK encountered the same procedure name in the stub file and in the runtime
library. In this case LINK simply uses the first procedure it encountered. In general, however, you
should not run a program whose linking resulted in any error messages.

Fatal errors are exactly that—an indication that LINK was unable to create the program successfully.
Even if an .EXE file is produced, running it is almost certain to cause your PC to lock up. One example
of a fatal error is "Unresolved external."  This means that your program made a call to a procedure, but
LINK wasn't able to find its name in the list of object and library files you gave it. Another fatal error is
"Too many segments." You might think that LINK would be smart enough to finish reading the files,
count the number of segment names it needs, and then restart itself again reserving enough memory.
Unfortunately, it isn't.

Regardless of the type of error messages you receive, it is impossible to read all of them if there are so
many that they scroll off the screen. Although you can press Ctrl-P to tell DOS to echo the messages to
your printer,  there is an even better  method. You can use the DOS redirection feature to send the
message to a disk file. This lets you load the file into a text editor for later perusal. To send all of
LINK's output to a file, simply use the greater than symbol ">" and specify a file name as follows:
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link [/options] [object files]; > error.log

Instead of displaying the messages on the screen, DOS intercepts and routes them to the ERROR.LOG
file. It is important to understand that this is a DOS issue, and has nothing to do with LINK. Therefore,
you can use this same general technique to redirect the output of most programs to a file. Note that
using redirection causes  all  of  the program's  output  to  go to  the file,  not  just  the error messages.
Therefore, nothing will appear to happen on the screen, since the copyright and sign-on notices are also
redirected.

Another LINK detail you should be aware of is that numeric arguments may be given in either decimal
or hexadecimal form. Any LINK option that expects a number—for example, the /seg: switch—may be
given as a Hexadecimal value by preceding the digits with 0x. That is, /seg:0x100 is equivalent to
/seg:256. The use of 0x is a C notation convention, and the "x" character is used because it sounds like
"hex".

Finally, if you are using QuickBASIC 4.0 there is a nasty bug you should be aware of. All versions of
QuickBASIC let  you create  an executable program from within the editing environment.  And if  a
Quick Library is currently loaded, QB knows to link your program with a parallel .LIB library having
the same name. But instead of specifying that library in the proper LINK field, QB 4.0 puts its name in
the object file position. This causes LINK to add every routine in the library to your program, rather
than only those routines that are actually called. There is no way to avoid this bug, and QB 4.0 users
must compile and link manually from DOS.

Maintaining Libraries

As you already know, multiple object files may be stored in a single library. A library has a .LIB
extension, and LINK can extract from it only those object modules actually needed as it creates an
executable file.  All  current versions of Microsoft  compiled BASIC include the LIB.EXE program,
which lets you manage a library file. With LIB.EXE you can add and remove objects, extract a copy of
a single object without actually deleting it from the library, and create a cross-referenced list of all the
procedures contained therein.

It is important to understand that a .LIB library is very different from a Quick Library. A .LIB library is
simply a collection of individual object files, with a header portion that tells which objects are present,
and where in the library they are located. A Quick Library, on the other hand, contains the raw code and
data only. The routines in a Quick Library do not contain any of the relocation and address information
that was present in the original object module.

The runtime libraries that Microsoft includes with BASIC are .LIB libraries, as are third-party support
libraries you might purchase. You can also create your own libraries from both compiled BASIC code
and assembly language subroutines. The primary purpose of using a library is to avoid having to list
every  object  file  needed manually.  Another  important  use is  to  let  LINK add only  those  routines
actually necessary to your final .EXE program.
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Like BC and LINK, you can invoke LIB giving all of the necessary parameters on a single command
line, or wait for it to prompt you for the information. LIB can also read file names and options from a
response file, which avoids having to enter many object names manually. A LIB response file is similar,
but not identical to, a LINK response file. Using LIB response files will be described later in this
section.

The  general  syntax  of  the  LIB  command  line  is  shown  below,  with  brackets  indicating  optional
information:

lib [/options] libname [commands] , [listfile] , [newlib] [;] 

After any optional switches, the first parameter is the name of the library being manipulated, and that is
followed by one or more commands that tell LIB what you want to do. A list file can also be created,
and it contains the names of every object file in the library along with the procedure names each object
contains. The last argument indicates an optional new library; if present LIB will leave the original
library intact, and copy it to a new one applying the changes you have asked for.

There are three commands that can be used with LIB, and each is represented using a punctuation 
character. However, LIB lets you combine some of these commands, for a total of five separate actions.
This is shown in Table 5-1.

Command Action

+ Adds an object module for entire library

- Removes an object module from the library

* Extracts a copy of an object module

- + Replaces an object module with a new one

-* Extracts and then removes an object module

Table 5-1: The LIB commands for managing libraries.

To add the file NEWOBJ.OBJ to the existing library MYLIB.LIB you would use the plus sign "+" as
follows:

lib mylib +newobj;

And to update the library using a newer version of an object already present in the library you would
instead use this:

lib mylib -+d:\newstuff\anyobj;
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As you can see, the combination operators use a sensible syntax. Here, you are instructing LIB to first
remove ANYOBJ.OBJ from MYLIB.LIB,  and then add a  newer version in  its  place.  A drive and
directory are given just to show that it is possible, and how that would be specified.

To extract a copy of an object file from a library, use the asterisk "*" command. Again, you can specify
a directory in which the extracted file is to be placed, as follows:

lib mylib *\objdir\thisobj;

You should understand that LIB never actually modifies an existing library. Rather, it first renames the
original library to have a .BAK extension, and then creates and modifies a new file using the original
name. It is up to you to delete the backup copy once you are certain that the new library is correct.

But this backup is made only if you do not specify a
new output library name NEWLIB in the earlier syntax—NEWLIB in the earlier syntax
example.

If the named library does not exist, LIB asks if you want to create it. This gives you a chance to abort
the process if you accidentally typed the wrong name. If you really do want to create a new library,
simply answer Y (Yes) at the prompt. Of course, the only thing you can do to a non-existent library is
add new objects to it with the plus "+" command.

One important LIB feature is its ability to create a list file showing what routines are present in the
library. This is particularly valuable if you are managing a library you did not create, such as a library
purchased from a third-party vendor. Many vendors use the same name for the object file as the routine
it contains when possible, but there are exceptions. For example, an object file name is limited to eight
characters, even though procedure names can be as long as 40. If you want to know which object file
contains the procedure ReadDirectories, you will need to create a list file. Also, one object file can hold
multiple  procedures,  and  it  is  not  always  obvious  which  procedure  is  in  which  file.  Individual
procedures cannot necessarily be extracted from a library—only entire object files.

To create a library list file you will run LIB giving the name of the library, as well as the name of a list
file  to  create.  The  example  below  creates  a  list  file  named  MYLIST.LST for  the  library  named
MYLIB.LIB: 

lib mylib , mylist.lst;

The list file that is created contains two cross-referenced tables; one shows each object name and the
procedures it contains, and the other shows the procedure names and which object they are in. A typical
list file is shown in the Figure 5-5, using the QB.LIB file that comes with QuickBASIC 4.5 as an
example.
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In this list file, each object module contains only one procedure. The first section shows each procedure
name in upper case, followed by the object name in lower case. The second section shows each object
file name, its offset within the library and size in bytes, and the routine names within that object file.

Just for fun, you should create a list file from one of the libraries that came with your compiler. Besides
showing how a large listing is structured, you will also be able to see which statements are combined
with others in the same object file. Thus, you can determine the granularity of these libraries. In many
cases the names of the procedures are similar to the corresponding BASIC keywords.

For example, if you create a list file for the BCOM45.LIB library that comes with QuickBASIC 4.5,
you  will  see  an  object  file  named  STRFCN.OBJ  (string  function)  that  contains  the  procedures
B$FASC,  B$FLEN,  B$FMID,  B$INS2,  B$INS3,  B$LCAS,  B$LEFT,  and  several  other  string
functions. Most of the library routines start with the characters B$, which ensures that the names will
not conflict with procedure names you are using. A dollar sign is illegal in a BASIC procedure name.
Other procedures and data items use an embedded underscore "_" which is also illegal in BASIC.

FASC stands for Function ASC, FLEN is for Function LEN, and so forth. INS2 and INS3 contain the
code to handle BASIC's INSTR function, with the first being the two-argument version and the second
the  three-argument  version.  That  is,  using  INSTR(Work$, Substring$) calls  B$INS2,  and
INSTR(Start, Work$, Substring$) instead  calls  B$INS3.  As  you  can  see,  most  of  the
internal procedure names are sensible, albeit somewhat abbreviated. 

LIB Options

Many LIB options are frankly not that useful to purely BASIC programming. However, I will list them
here in the interest of completeness. Note that none of these option switches are available in versions of
LIB prior to the one that comes with BASIC 7.0.
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/HELP

As with the LINK switch of the same name, using /help (or /?) tells LIB to display its command syntax,
and a list of all the available options. 

/I

Using /i means that LIB should ignore capitalization when searching the library for procedure names.
This is the default for LIB, and is not necessary unless you are manipulating an existing library that
was created with /noi (see below).

/NOE

The /noe option has a similar meaning as its LINK counterpart, and should be used if LIB reports an
Out of memory error. Creating an extended dictionary requires memory, and using /noe will avoid that. 

/NOI

The /noi switch tells LIB not to ignore capitalization, and it should not be used with BASIC programs.

/NOLOGO

Like the LINK option, /nologo reduces screen clutter by eliminating the sign-on logo and copyright
display.

/PA

The /pa: option lets you change the default library page size of 16 bytes. Larger values waste memory,
because each object file will always occupy the next higher multiple number of bytes. For example,
with a page size of 200 bytes, a 50 byte object file will require an entire 200-byte page. Since a library
can hold no more than 65,536 pages, a larger page size is useful only when you need to create a library
larger than 1 megabyte. The /pa: switch requires a colon, followed by an integer value between 16 and
32768. For example, using /pa:256 sets a page size of 256 bytes.

Using Response Files With LIB.EXE

A LIB response file is similar to a LINK response file, in that it lets you specify a large number of
operations by entering them on separate lines of a text file. The syntax is similar to a LINK response
file,  but  it  is  not  identical.  Since the  plus  sign continuation  character  that  LINK uses  serves  as  a
command character to LIB, an ampersand (&) is used instead. A typical LIB response file is shown
below.

+ object1 &
+ \subdir\object2 &
+ c:\subdir2\object3 &
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+ object4 ;

As with LINK, you will use an at sign "@" to tell LIB to look in the file for its input, as opposed to
reading the names from the command line: 

lib @filename.rsp

Useful BC, LINK, and LIB Environment Parameters

Most programmers are familiar with the DOS environment as a way to establish PATH and PROMPT
variables. The PATH environment variable tells DOS where to search for executable program files it
doesn't find in the current directory. The PROMPT variable specifies a new prompt that DOS displays
at the command line. For example, many people use the command SET PROMPT=$P$G to show the
current drive and directory. However, the DOS environment can be used to hold other, more general
information as well.

The environment is simply an area of memory that DOS maintains to hold variables you have assigned.
Some of these variables are used by DOS, such as the PATH and PROMPT settings. Other variables
may be defined by you or your programs, to hold any type of information. For example, you could
enter  SET USERNAME=TAMI in the AUTOEXEC.BAT file, and a program could read that to know
the name of the person who is using it. The contents of this variable (TAMI) could then be used as a
file or directory name, or for any other purpose.

LINK looks at the DOS environment to see if you have specified LINK= or LIB= or TMP= variables.
The first is used to specify default option switches. For example, if you set  LINK=/SEG:450 from
the DOS command line or a batch file, you do not need to use that option each time LINK is run.
Multiple  options  may  be  included  in  a  single  SET statement,  by  listing  each  in  succession.  The
command  SET  LINK=/NOE/NOD/EX establishes  those  three  options  shown  as  the  default.
Additional  separating  spaces  may  also  be  included;  however,  that  is  unnecessary  and  wastes
environment memory.

Likewise, setting LIB=D:\LIBDIR\ tells LINK to look in the LIBDIR directory of drive D: for any
libraries it cannot find it the current directory. In this case, LIB= acts as a sort of PATH command. Like
PATH,  the  LIB= variable  accepts  multiple  path  names  with  or  without  drive  letters,  and  each  is
separated by a semicolon. The command SET LIB=C:\LIBS\;D:\WORKDIR\ sets a library path
to both C:\LIBS and D:\WORKDIR, and you could add even more directories if needed.

To remove an environment  variable  simply assign it  to  a  null  value;  in  this  case you would use  
SET LIB=.

The TMP= variable also specifies a path that tells LINK where to write any temporary files. When a
very large program or Quick Library is being created, it is possible for LINK to run out of memory.
Rather than abort with an error message, LINK will open a temporary disk file and spool the excess
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data to that file. If no TMP= variable has been defined, that file is created in the current directory.
However, if you have a RAM disk you can specify that as the TMP parameter, to speed up the linking
process.  For  example,  SET TMP=F:\ establishes  the  root  directory  of  drive  F as  the  temporary
directory.

The INCLUDE= variable  is  recognized by both BC and MASM (the Microsoft  Macro Assembler
program), to specify where they should look for Include files. In my own programming, I prefer to give
an explicit directory name as part of the $INCLUDE metacommand. This avoids unpleasant surprises
when an obsolete version of a file is accidentally included. But you may also store all $INCLUDE files
in a single directory, and then set the INCLUDE variable to show where that directory is. Like LIB and
PATH, the INCLUDE variable accepts one or more directory names separated by semicolons. 

Summary

In this chapter you have learned about compiling and linking manually from the DOS command line, to
avoid the limitations imposed by the automated menus in the BASIC editor. You have also learned how
to  create  and  maintain  both  Quick  Libraries  and  conventional  .LIB  libraries.  Besides  accepting
information you enter at the DOS command line, LINK and LIB can also process instructions and file
names contained in a response file.

All of the commands and option switches available with BC, LINK, and LIB were described in detail,
along with a listing of the undocumented BC metacommands for controlling the format of a compiler
list file. Library list files were also discussed, and a sample printout was given showing how LIB shows
all the procedure and object names in a library cross-referenced alphabetically.

The discussion about stub files explained what they are and how to use them, to reduce the size of your
programs. Overlays were also covered, accompanied by some reasons you will find them useful along
with specific linking instructions.

Finally, I explained some of the details of the linking process. Information in each object file header
tells LINK the names of external procedures being called, and where in the object file the incomplete
addresses are located. Besides the segment and address fix-ups that LINK performs, DOS also makes
some last-minute patches to your program as it is loaded into memory.

In the next chapter I will cover file handling in similar detail, explaining how files are manipulated at a
low level, and also offering numerous tips for achieving high performance and small program size.
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6
File and Device Handling

At some point, all but the most trivial computer programs will need to store and retrieve data using a
disk file. Data files are used for two primary purposes: to hold information when there is more than can
fit into the computer's memory all at once, and to provide a permanent, non-volatile means of storage.
Files are also used to allow data from one computer to be used on another. Such data sharing can be as
simple as a sneaker net system, whereby a floppy disk is manually carried from one PC to another, or
as complex as a multi-user network where disk data can be accessed simultaneously by several users.

Although there are two fundamentally different types of disk drives, floppy and fixed—not counting
CD-ROM  drives  which  are  removable—they  are  accessed  identically  using  the  same  BASIC
statements. BASIC's file commands may also be used to communicate with devices such as a printer or
modem, and even the screen and keyboard. There are many ways to manipulate files and devices, and
some are substantially faster than others. By understanding fully how BASIC interacts with DOS, file
access in your programs can often be sped up by a factor of five or even more.

In this chapter I will address the fundamental aspects of file and device handling, and provide specific
examples of how to achieve the highest performance possible. I will begin with an overview of how
DOS  organizes  information  on  a  disk,  and  then  continue  with  practical  examples.  Unlike  earlier
chapters  in  which  only  short  program  fragments  were  shown,  several  complete  programs  and
subprograms will be presented to illustrate the most important of these techniques in context. I will also
describe the underlying theory of how disks are organized, and explain why this is important for the
BASIC programmer to know.

In Chapter 7 the subject of files will be continued; there you will learn how to write programs for use
with a network, and also how relational databases are constructed. In particular, coverage of these two
very important subjects is severely lacking in the documentation that comes with Microsoft BASIC. As
personal computers continue to permeate the office environment, networks and databases are becoming
ever more common. Many programmers find themselves in the awkward position of having to write
programs that run on a network, but with no adequate source of information. 

Disk File Fundamentals

All disks used with MS-DOS are organized into groups of bytes called sectors, and these sectors are
further combined into clusters. DOS keeps track of every file on a disk, but with this organization DOS
needs to remember only the cluster number at which each file begins. The minimum amount of disk
space that is allocated by DOS is one cluster. Therefore, if you create a very small file, say, ten bytes,
an entire cluster is allocated to that file, and then marked as unavailable for other use.
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In most cases, each disk sector holds 512 bytes; however, one exception is when you use a RAM disk
to simulate a disk drive in memory. Many RAM disk programs lets you specify a smaller sector size, to
minimize waste when there are many small files. The number of sectors that are stored in each cluster
depends on the type of disk and its size. For example, a 360K floppy disk stores two sectors in each
cluster, and a 32 MB hard disk formatted using DOS 3.3 stores four sectors in each cluster. Therefore,
the  minimum unit  of  storage  allocation  for  these  disks  is  1K (1024 bytes),  and  2K (2048 bytes)
respectively. DOS 2.x offers less room to store cluster numbers, and must combine more sectors into
each cluster. A 20MB hard disk formatted with DOS 2.1 allocates 8K for even a one-line batch file!

As files are created and appended, DOS allocates new space to hold the file contents. By allocating
disk space in units, DOS is also able to minimize disk fragmentation. As you learned in Chapter 2,
BASIC  manages  variable-length  strings  by  claiming  new  memory  as  necessary.  When  available
memory is exhausted BASIC compacts its string space, overwriting abandoned string data with strings
that are still active.

This method is not practical with disk files, because copying data from one part of the disk to another
for the purpose of compaction would take an unacceptable amount of time. Therefore, DOS initially
allocates an entire cluster for each file, to provide space for subsequent data. When the ten-byte file
mentioned earlier is added to, space on the disk has already been set aside for all or part of the new data
that will be written. And when the first cluster's capacity is exceeded, DOS allocates an entire second
cluster to hold the additional data.

Even though it is common for a disk to become fragmented, allocating clusters that are comprised of
groups of contiguous sectors greatly reduces the number of individual fragments that must be accessed.
The track, sector, and cluster makeup of a 360k 5-1/4 inch floppy disk is shown in Figure 6-1.
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This disk is divided into 40 circular tracks, and each track is further divided into nine sectors. One 
sector holds 512 bytes, and each pair of tracks is combined to form a single cluster. For a 360k disk, no 
file fragment will ever be smaller than two clusters, since this is the minimum amount of space that 
DOS allocates. Likewise, a hard disk that combines four sectors into each cluster will never be divided 
into pieces smaller than four sectors.

Please understand that tracks and sectors are physical entities that are magnetically encoded onto the
disk when it is formatted—it is DOS that treats each pair of sectors as a single cluster. Note that since a
360k disk stores nine sectors on each track, some clusters will in fact span two tracks.

Using the disk in Figure 6-1 as an example, the first short file that is written to it will be placed in
cluster 1 (sectors 1 and 2), even if the file does not fill both sectors. The second file written to this disk
will then be stored starting at cluster 2 (sectors 3 and 4). If the first file is later extended beyond the
1,024 bytes that can fit into cluster 1, the excess will be added beginning at cluster 3 (sectors 5 and 6).
Thus, when DOS reads the first file sequentially, it must read cluster 1, skip over cluster 2, and then
continue reading at cluster 3.

Of course, this takes longer than reading a file that is contiguous, because the disk drive must wait until
the second file's intervening sectors have passed beneath it. This problem is compounded by additional
head movement when the fragmentation extends across more than one track, as well as by other timing
issues.

There are also three special  areas on every disk: the boot sector,  the Disk Directory,  and the File
Allocation Table (FAT). DOS uses the directory and FAT to know the name of each file, and where on
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the disk its first cluster is located. For simplicity, these are not shown in Figure 6-1, and indeed, they
are in fact stored before any files on a disk.

When a 360K floppy disk is formatted, DOS sets aside room for 112 directory entries. Each entry is 32
bytes long, and holds the name of each file on the disk, its current size, the date and time it was last
written to, its attribute (hidden, read-only, and so forth), and starting cluster number. When you open a
file, DOS searches each directory entry for the file name you specified, and once found, goes to the
first cluster that holds the file's data.

The disk's FAT contains one entry for every cluster in the data area, to show which clusters are in use
and by which file. The FAT is organized as a linked list, with each entry pointing to the next. The last
cluster in the file is identified with a special value. The FAT also holds other special values to identify
unused, reserved, and defective clusters.

Because there are a fixed number of directory entries on a disk, it is possible to receive a "Disk full"
message  when attempting  to  open a  new file,  even  when there  is  sufficient  data  space.  The  root
directory of a 360K floppy disk is limited to 112 entries, and a 1.2MB disk can hold up to 224 file
names. Notice that a volume label takes one directory entry, although no data space is allocated to it.
Unlike the root directory on a disk, subdirectories that you create are not limited to an arbitrary number
of file name entries. Rather, a subdirectory is in fact a file, and it can be extended indefinitely until
there is no more room on the disk.

Fortunately, most programmers do not have to deal with disk access at this level. When you ask BASIC
to open a file and then read from or write to it, DOS handles all the low-level details for you. However,
I think it is important to have at least a rudimentary understanding of how disks are organized. 

If  you  are  interested  in  learning  more  about  the
structure of disks and data files, I recommend Peter
Norton's Programmer's Guide to the IBM PC & PS/2. This
excellent reference is published by Microsoft Press,
and can be found at most major book stores.

Disk-Like Devices

A device is related to a file in that you can open it using BASIC's OPEN command, and then access it
with GET # and PRINT # and the other file-related BASIC statements. There are a number of devices
commonly used with personal computers, and these include printers, modems, tape backup units, and
the console (the PC's keyboard and display screen). Some of these devices are maintained by DOS, and
others are also controlled by BASIC.

For  example,  when  you  open  "SCRN:"  for  Output  mode  in  a  BASIC  program,  BASIC  takes
responsibility  for  displaying  the  characters  that  you  print.  However,  if  you  instead  open  "CON",
BASIC merely sends the data to DOS, which in turn sends it to the display screen. Any device whose
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name is followed by a colon is considered to be a BASIC device; the absence of a trailing colon
indicates a DOS device. This is important to understand, because there may be situations when you
want to route your program's output directly through DOS, and not have it be intercepted by BASIC.

One such situation would be when printing the special control characters that the ANSI.SYS device
driver recognizes. Normally, BASIC processes data in a PRINT statement by writing directly to screen
memory.  This  provides  the  fastest  response,  which  is  of  course  desirable  in  most  programs.  But
ANSI.SYS operates by intercepting the stream of characters sent through DOS. Since BASIC normally
bypasses DOS for screen operations, ANSI.SYS never gets a chance to see those characters.

Another reason for printing through DOS is to activate TSR (Terminate and Stay Resident) programs
that intercept the BIOS video routines. When data is sent through DOS for display, DOS merely passes
it on to the BIOS routines which do the real work.  For example, some early screen design utilities use
this method, to accommodate multiple programming languages by avoiding the differences in calling
and linking. Therefore, to activate, say, a pop-up help screen, you are required to print a special control
string. One such utility uses two CHR$(255) bytes followed by the name of the screen to be displayed.

Although this method is very clumsy when compared to newer products that provide BASIC-linkable
object files, it is simpler for the vendor than providing different objects for each supported language.
This also allows screens to be displayed from within a batch file using the ECHO command. Therefore,
if you need to send data through DOS or the BIOS for whatever reason, you would open and print to
the "CON" device, instead of using normal PRINT statements or printing to the "SCRN:" device.

One final point worth mentioning is the value of using the same syntax for both files and devices.
Many programs let the user specify where a report is to be sent—either to a disk file, a printer, or the
screen. Rather than duplicate similar code three times in a program, you can simply assign a string
variable to the appropriate device or file name. This is shown in the listing below.

PRINT "Printer, Screen, or File? (P/S/F): ";

DO
  Choice$ = UCASE$(INKEY$)
LOOP UNTIL INSTR(" PSF", Choice$) > 1

IF Choice$ = "P" THEN
  Report$ = "LPT1:"
ELSEIF Choice$ = "S" THEN
  Report$ = "SCRN:"
ELSE
  PRINT
  LINE INPUT "Enter a file name: ", Report$
END IF

OPEN Report$ FOR OUTPUT AS #1
  PRINT #1, Header$
  PRINT #1, SomeStuff$
  PRINT #1, MoreStuff$
  ...
  ...
CLOSE #1
END
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Here,  the same block of  code can be used regardless  of where the report  is  to be sent.  The only
alternative is to duplicate similar code three times using PRINT statements if the screen was specified,
LPRINT if  they want the printer,  or PRINT # if  the report  is  being sent to a file.  Of course, this
example could be further expanded to prompt for a printer number (1, 2, or 3) if a printer is specified.

Exploring Data Files

All data is stored on disk as a continuous stream of binary information, regardless of how the file was
opened. Even though BASIC and other languages offer a number of different file access methods, all
disk files merely contain a series of individual bytes. When you open a file for random access, you are
telling BASIC that it is to treat those bytes in a particular manner. In this case, the file is comprised of
one or more fixed-length records. Thus, BASIC can perform many of the low level details that help you
to organize and maintain that data.

Likewise,  opening a file for INPUT tells  BASIC that you plan to read variable-length string data.
Rather than reading or writing a single block of a given length, BASIC instead knows to continue to
read bytes from the file until a terminating comma or carriage return is encountered. However, in both
of these cases the disk file is still comprised of a series of bytes, and the access method you specify
merely tells BASIC how it is to treat those bytes.

The short program below illustrates this in context, and you can verify that all three files are identical
using the DOS COMP utility program.

OPEN "File1" FOR OUTPUT AS #1
  PRINT #1, "Testing"; SPC(13);
CLOSE

OPEN "File2" FOR BINARY AS #1
  Work$ = "Testing" + SPACE$(13)
  PUT #1, , Work$
CLOSE

OPEN "File3" FOR RANDOM AS #1 LEN = 20
  FIELD #1, 20 AS Temp$
  LSET Temp$ = "Testing"
  PUT #1
CLOSE
END

In fact, even executable program files are indistinguishable from data files, other than by their file
name extension. Again, it is how you choose to view the file contents that determines the actual form of
the data.

File Buffers
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Before I explain the various file access methods that BASIC provides, there is one additional low-level
detail that needs to be addressed: file buffers. A file buffer is a portion of memory that holds data on its
way to and from a disk file, and it is used to speed up file reads and writes.

As you undoubtedly know, accessing a disk drive is one of the slowest operations that occurs on a PC.
Because disk drives are mechanical, data being read or written requires a motor that spins the actual
disk, as well as a mechanism to move the drive head to the appropriate location on the disk surface.
Even if a file is located in contiguous disk clusters, a substantial amount of mechanical activity is
required during the course of accessing a large file.

When you open a file for reading, DOS uses a section of memory that it allocated on boot-up as a disk
buffer. The first time the file is accessed, DOS reads an entire sector into memory, even if your program
requests only a few bytes. This way, when your program makes a subsequent read request, DOS can
retrieve that data from memory instead of from the disk.  This  provides an enormous performance
boost, since memory can be accessed many times faster than any mechanical disk drive. Even if the
next portion of data being read is located in the same sector, the disk drive must wait for the disk to
spin until that sector arrives at the magnetic read/write head. 
When using a floppy disk the time delays are even worse. Once a second or two have passed after
accessing a floppy disk, the motor is turned off automatically. Having to then restart it again imposes
yet another one or two second delay.

Similarly, when you write data to a file DOS simply stores the data in the buffer, instead of writing it to
the disk. When the buffer becomes full (or when you close the file—whichever comes first),  DOS
writes the entire buffer contents to the disk all at once. Again, this is many times faster than accessing
the physical drive every time data is written.

You can control the amount of memory that DOS sets aside for its buffers with a BUFFERS= statement
in the PC's CONFIG.SYS file. For each buffer you specify, 512 bytes of memory is taken and made
unavailable for other uses. Even though you might think that more buffers will always be faster than
fewer, this is not necessarily the case. For each buffer, DOS also maintains a table that shows which
disk sectors the buffer currently holds. At some point it can actually take longer for DOS to search
through this table than to read the sector from disk. Of course, this time depends on the type of disk
(floppy or hard), and the disk's access speed.

Although  DOS'  use  of  disk  buffers  greatly  improves  file  access  speed,  there  is  still  room  for
improvement. Each call to DOS to read or write a file takes a finite amount of time, because most DOS
services are handled by the same interrupt service routine. Which particular service a program wants is
specified in one of the processor's registers, and determining which of the many possible services has
been requested takes time.

To further improve disk access performance, BASIC performs additional file buffering using its own
routines. Since BASIC's buffers are usually located in near memory, they can also be accessed very
quickly, because additional steps are needed to access data outside of DGROUP. However, BASIC PDS
and VB/DOS store file buffers in the same segment used for string variables, so there is slightly less
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improvement when far strings are being used. When you open a random access file, a block of memory
large enough to hold one entire record is set aside in string memory. If a record length is given as part
of the OPEN command with LEN =, BASIC uses that for the buffer size. Otherwise, it uses the default
size of 128 bytes.

When you open a file for sequential access, BASIC also allocates string memory for a buffer. 512 bytes
are used by default,  though you can override that with the optional LEN = argument. Specifying a
buffer size with non-random files will be discussed later in this chapter.

Note that BASIC PDS does not create a buffer when a file is opened for random access and you are
using far strings. If a subsequent FIELD statement is then used, the fielded strings themselves comprise
the buffer. Otherwise, BASIC assumes you will be reading the data into a TYPE variable, and avoids
the extra buffering altogether. Also, file buffers in a BASIC PDS program are always stored in string
memory, which is not necessarily DGROUP. If you are in the QBX environment or have compiled with
the /fs far strings option, all file buffers will be stored in the far string data segment.

Although BASIC's additional file buffering does improve your program's speed, it also comes at a cost:
the buffers take away from string memory, and the only way to release their memory is to flush their
contents to disk by closing the file. DOS offers a service to purge a file's buffers, to ensure that the data
will be intact even if the program is terminated abnormally or the power is turned off. Therefore, it is
considered good practice to periodically close a file during long data entry sessions. But closing the file
and then reopening it after writing each record takes a long time, and more than negates any advantage
offered by BASIC's added buffering.

Also, the DOS service that flushes a file's buffers
does  not  flush  BASIC's  buffers.  Any  data  you  have
written to disk that is still pending in a BASIC buffer
will not be written to the file by this service.

It is interesting to note that BASIC always closes all open files when a program ends, so it is not 
strictly necessary to do that manually. I mention this only because you can save a few bytes by 
eliminating the CLOSE command. Also, DOS flushes its buffers and closes all open files when a 
program ends, so a few bytes can be saved this way even with non-BASIC programs. Again, I am not 
necessarily recommending that you do this, and some programmers would no doubt disagree with such 
advice. But the fact is that an explicit CLOSE is not truly needed.

File Access Methods

BASIC offers three fundamental methods for accessing files, and these are specified when the file is
opened. There are also several variations and options available with each method, and these will be
discussed in more detail in the sections that describe each method.
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The first access method is called Sequential, because it requires you to read from or write to the file in
a continuous stream. That is, to read the last item in a sequential file you must read all of the items that
precede it. There are three different forms of OPEN for accessing sequential files.

OPEN FOR OUTPUT creates the named file if it does not yet exist, or truncates it to a length of zero
if it does. Once a file has been opened for output, you may only write data to it.

OPEN FOR APPEND is related to OPEN FOR OUTPUT, and it also tells BASIC to open the file for
writing. Unlike OPEN FOR OUTPUT, however, OPEN FOR APPEND does not truncate a file if it
already exists. Rather, it opens the file and then seeks to the place just past the last byte. This way, data
that is subsequently written will be appended to the end of the file. Note that OPEN FOR APPEND will
also create a file if it does not already exist.

OPEN FOR INPUT requires that the named file be present; otherwise, a "File not found" error will
result. Once a file has been opened for input, you may only read from it.

BASIC also offers the SEEK command to skip to any arbitrary position in the file, and SEEK can in
fact be used with sequential files. However, sequential files are generally written using a comma or a
carriage return/line feed pair, to indicate the end of each data item. Since each item can be of a varying
length, it is difficult if not impossible to determine where in the file a given item begins. That is, if you
wanted to read, say, the 200th line in a README file, how could you know where to seek to?

OPEN FOR RANDOM allows you to read from and write to the file. When you use OPEN FOR
RANDOM, BASIC knows that you will be accessing fixed-length blocks of data called records. The
advantage of random access is that any record can be accessed by a record number, instead of having to
read through the entire file to get to a particular location. That is, you can read or write any record
randomly, without regard to where it is in the file. Because each record has the same physical length as
every other record, it is easy for BASIC to calculate the location in the file to seek to, based on the
desired record number and the fixed record length.

Using random access is ideal for data that is already organized as fixed-length records such as you
would  find  in  a  name  and  address  database.  Since  each  record  contains  the  same  amount  of
information, there is a natural one-to-one correspondence between the data and the record number in
which it resides. For example, the data for customer number 1 would be stored in record number 1,
customer 2 is stored in record 2, and so forth.

Random access can also be used for text and other document files; however, that is much less common.
Although this would let  you quickly access any arbitrary line of text in the file,  the trade-off is  a
considerable waste of disk resources. For each line, space equal to the longest one must be set aside for
all of them. In a typical document file line lengths will vary greatly, and it is wasteful to set aside, say,
80 bytes for each line.

OPEN FOR BINARY is a hybrid access method of sequential and random access. A binary file is
opened using the command OPEN FOR BINARY, and like random, BASIC lets you both read and
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write the file. Binary access is most commonly used when the data in the file is neither fixed-length in
nature, nor delimited by commas or carriage returns. One example of a binary file is a Lotus 1-2-3
worksheet file. Each cell's contents follows a well-defined format, but varying types of information are
interspersed throughout the file.

For example, an 8-byte double-precision number may be followed by a variable length text field, which
is in turn followed by the current column width represented as a 2-byte integer. Another example of
binary information is the header portion of a dBASE data file. Although the data itself is of a fixed
length, a block of data is stored at the beginning of every dBASE data file to indicate the number of
fields in each file and their type. Naturally, the length of this header will vary depending on the number
of  fields  in  each record.  An example  program to read Lotus  worksheet  files  is  given later  in  this
chapter, and a program to read and process dBASE files is shown in Chapter 7.

Note that BASIC imposes its own rules on what you may and may not do with each file access method.
This is unfortunate, because DOS itself has no such restrictions. That is, DOS allows you to open a file
for output, and then freely read from the same file. To do this with BASIC you must first close the file,
and then open it again for input. You can bypass BASIC entirely if you want, to open files and then
read and write them. This requires using CALL Interrupt, and examples of doing this will be shown in
Chapter 11.

BASIC offers two different forms of the OPEN command. The more common method—and the one I
prefer—is as follows:

OPEN FileName$ FOR OUTPUT AS #FileNum [LEN = Length]

Of course, OUTPUT could be replaced with RANDOM, BINARY, INPUT, or APPEND. The other
syntax is more cryptic, and it uses a string to specify the file mode. To open a file for output using the
second method you'd use this: 

OPEN "O", #FileNum, FileName$, [Length]

The  first  syntax  is  available  only  in  QuickBASIC  and  the  other  current  versions  of  the  BASIC
compiler. The second is a holdover from GW-BASIC, and according to Microsoft is maintained solely
for compatibility with old programs. The available single-letter mode designators are "O" for output,
"I" for input, "R" for random, "A" for append, and "B" for binary. Note that "B" is not supported in
GW-BASIC, and was added beginning with QuickBASIC version 4.0.

Besides being more obscure and harder to read, the older syntax does not let you specify the various
access and sharing options available in the newer syntax. One advantage of the older method is that you
can defer the open mode until the program runs. That is, a string variable can be used to determine how
the file will be opened. However, there are few situations I can envision where that would be useful. Of
course, the choice is yours, and some programmers continue to use the original version. 
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Files Manipulation Statements

BASIC offers a number of different statements for opening and manipulating files. In a few cases, the
same command may have different meanings, depending on how the file is opened. For example LEN
=  mentioned  earlier  assumes  a  different  default  value  when  a  file  is  opened  for  random  access
compared to when it is opened for output. Similarly, GET # may or may not accept or require a variable
name and optional seek offset,  depending on the file mode. Therefore,  pay close attention to each
statement as it is described in the sections that follow. Specific differences will be listed as they relate
to each of the various file access methods. 

Opening and Closing Files

Before any file or device may be accessed, it must first be opened with BASIC's OPEN statement.
When you use OPEN, it is up to you make up a file number that will be used when you reference the
file later. If you use OPEN "MYDATA" FOR OUTPUT AS #1, then you will also use the same file
number (1) when you subsequently print to the file. For example, you might use PRINT #1, Any$.
Initially, it might appear that letting the programmer determine his or her own file numbers is a feature.
After all, you are allowed to make up your own variable names, so why not file numbers too?  Indeed,
BASIC  is  rare  among  the  popular  languages  in  this  regard;  both  C  and  Pascal  require  that  the
programmer remember a file number that is given to them.

There are several problems with BASIC's use of file numbers,  and in fact DOS does not use this
method either. Instead, DOS returns a file handle when a file has been successfully opened. When an
assembly language program, or BASIC itself,  calls  DOS to open a  file,  it  is  DOS who issues the
number and not the program. BASIC must therefore maintain a translation table to relate the numbers
you give to the actual handles that DOS returns. This table requires memory, and that memory is taken
from DGROUP.

But there is another, more severe problem with BASIC's use of file numbers instead of DOS handles,
because it is possible that you could accidentally try to open more than one file using the same number.
In a small program that opens only one or two files, it is not difficult to remember which file number
goes with which file. But when designing reusable subroutines that will be added to more than one
program, it is impossible to know ahead of time what file numbers will be in use.

To  solve  this  problem,  Microsoft  introduced  the  FREEFILE  function  with  QuickBASIC  4.0.
FREEFILE was described in Chapter 4, but it certainly bears a brief mention again here. Each time you
use FREEFILE it returns the next available file number, based on which numbers are already taken.
Therefore, any subroutine that needs to open a file can use the number FREEFILE returns, confident
that the number is not already in use. 

Unless you specify otherwise, a file that has been opened for RANDOM or BINARY can be both read
from and written to. The ACCESS option of the OPEN statement lets you indicate that a random or
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binary file may be read or written only. Even though you may ask for both READ and WRITE access
when the file is opened, read/write permission is the default. In some cases you may need to open a file
for binary access, and also prevent your program from later writing to it. In that case you would use the
ACCESS READ option.

Likewise, specifying ACCESS WRITE tells BASIC to let your program write to the file, but prevent it
from reading.  This  may seem nonsensical,  but  one  situation  in  which  write-only  access  might  be
desirable is when designing a network mail system. In that case it is quite likely that a program would
be permitted to send mail to another user's electronic "mailbox", but not be allowed to read the mail
contained in that file. The various ACCESS options are intended for use with any version of DOS
higher than 2.0.

Frankly, these ACCESS options are pointless, because if you wrote the program then you can control
whether the file is read from or written to. If you are writing the Send Mail  portion of a network
application, then you would disallow reading someone else's mail as part of the program logic. And if
you do open a file for ACCESS WRITE, BASIC will generate an error if you later try to read from it.
So I personally don't see any real value in using these ACCESS arguments.

The remaining two OPEN options are LOCK and SHARED, and these are meant for use with shared
files under DOS 3.0 or later. Shared access is primarily employed on a network, though it is possible to
share files on a single computer. This could be the case when a file needs to be accessed by more than
one program when running under a task-switching program such as Microsoft Windows.

You can  specify  that  a  file  is  to  be  shared  by simply  adding  the  SHARED clause  to  the  OPEN
statement. Thus, another program could both read and write the file, even while it is open in your
program. To specify shared access but prevent other programs from writing to the file you would use
LOCK WRITE. Similarly, using LOCK READ lets another program write to the file but not read from
it, and LOCK READ WRITE prevents both.

The LOCK statement can optionally be used on a shared file that is already open to prohibit another
program from accessing it only at certain times. The LOCK statement allows all or just a portion of a
file  to  be locked,  and the UNLOCK statement  releases the locks that  were applied earlier.  Please
understand that these network operations are described here just as a way to introduce what is possible.
Network and database programming will be described in depth in Chapter 7.

Finally, you close an open file using BASIC's CLOSE command. CLOSE accepts one or more file
numbers separated by commas, or no numbers at all which means that every open file is to be closed.
You can also use the RESET command to close all currently open files. When a file that has been
opened for one of the output modes is closed, its file buffer is flushed to disk and DOS updates the
directory entry for that file to indicate the current date and time and new file size. Closing any type of
file releases the buffer memory back to BASIC's string memory pool for other uses. 
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Reading and Writing Data

Once a file has been opened you can read from it, write to it, or both, depending on what form of
OPEN  was  used.  Any  file  that  has  been  opened  for  input  may  be  read  from  only.  Unlike  the
BASIC-related limitations I mentioned earlier, DOS imposes this restriction, and for obvious reasons.
However, when you open a file for output or append, it is BASIC that prevents you from reading back
what you wrote.  BASIC imposes several other unfortunate limitations regarding what you can and
cannot do with an open file, as you will see momentarily.

Sequential access is commonly used with devices as well as with files. Although it is possible to open a
printer  for  random access,  there  is  little  point  since data  is  always  printed  sequentially.  Similarly,
reading from the keyboard or writing to the screen must be sequential. In the discussions that follow,
you can assume that what is said about accessing files also applies to devices, unless otherwise noted.

Sequential Output

Data is written to a sequential file using the PRINT # statement, using the same syntax as the normal
PRINT statement when printing to the display screen. That is, PRINT # accepts an optional semicolon
to suppress a carriage return and line feed from being written to the file, or a comma to indicate that
one or more blank spaces is to be written after the data. The number of blanks sent to the file depends
on the current print position, just like when printing to the screen.

You can also use the WRITE # statement to print data to a sequential file, but I recommend against
using WRITE in most situations. Unlike PRINT that merely sends the data you give it, WRITE adds
surrounding  quotes  to  all  string  data,  which  takes  time  and  also  additional  disk  space.  Since  a
subsequent INPUT from the file will just have to remove those quotes which takes even more time,
what's the point?  Further, WRITE does not let you specify a trailing semicolon or comma. Although a
comma may be used as a delimiter between items written to disk, the comma is stored in the file
literally when WRITE is used.

The only time I can see WRITE being useful is for printing data that will be read by a non-BASIC
application that explicitly requires this format. Many database and spreadsheet programs let you import
comma-delimited data with quoted strings such as WRITE uses. These programs treat each complete
line ending with a carriage return as an entire record, and each comma-delimited item within the line as
a field in that record. But you should avoid WRITE unless your program really needs to communicate
with other such applications, because it results in larger data files and slower performance.

Another use for WRITE is to protect strings that contain commas from being read incorrectly by a
subsequent INPUT statement. INPUT uses commas to delimit individual strings, and the quotes allow
you to input an entire string with a single INPUT command. But BASIC's LINE INPUT does this
anyway, since it reads an entire line of text up to a terminating carriage return. You could also add the
quotes manually when needed: 

175



IF INSTR(Work$, ",") THEN
  PRINT #1, CHR$(34); Work$; CHR$(34)
ELSE
  PRINT #1, Work$
END IF

You may also use TAB and SPC to format the output you print to a file or device. For the most part,
TAB and SPC operate like their non-file counterparts, including the need to add an extra empty PRINT
to force a carriage return at the end of a line. That is, when you use 

PRINT Any$; TAB(20)

or

PRINT #1, SomeVar; SPC(13)

BASIC adds a trailing semicolon whether you want it or not. To force a new line at that point in the
printing process requires an additional PRINT or PRINT # statement. This isn't really as much of a
nuisance as yet another code bloater, since an empty PRINT adds 9 bytes of compiler-generated code
and an empty PRINT # adds 18 bytes.

One important difference between the screen and file versions of TAB and SPC is the way long strings
are handled. If you use TAB or SPC in a PRINT statement that is then followed by a string too long to
fit on the current line, the screen version will advance to the next row, and print the string at the left
edge. This is probably not what you expected or wanted. When printing to a file, however, the string is
simply written without regard to the current column. Column 80 is the default width for the screen and
printer when they have been opened as devices, though you may change that using WIDTH.

The WIDTH statement lets you specify at which column BASIC is to automatically add a carriage
return/line feed pair. The default for a printer is at column 80. In most programming situations this
behavior is a nuisance, since many printers can accommodate 132 columns. After all, why shouldn't
you be allowed to print what you want when you want, without BASIC intervening to add unexpected
and often unwanted extra characters?  Most programmers disable this automatic line wrapping by using
WIDTH # FileNum, 255 if the printer was opened as a device, or  WIDTH LPRINT, 255 if
using LRPINT statements.

Curiously, this special value is not mentioned anywhere in the otherwise very complete documentation
that comes with BASIC PDS. In fact, using a width value of 255 is mandatory if you intend to send
binary data to a printer. Most modern printers accept both graphics commands and downloadable fonts.
Since either of these will no doubt result in strings longer than 80 or even 255 characters, it is essential
that you have a way to disable the favor that BASIC does for you. Undoubtedly, the automatic addition
of a carriage return and line feed goes back to the early days of primitive printers that required this. The
only reason Microsoft continues this behavior is to assure compatibility with programs written using
earlier versions of BASIC.
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Related to the WIDTH anomaly is BASIC's insistence on adding a CHR$(10) line feed whenever you
print a CHR$(13) carriage return to a device. Again, this dubious feature is provided on the assumption
that you would always want a line feed after every carriage return. But there are many cases where you
wouldn't,  such as the font and graphics examples mentioned earlier. If you add the "BIN" (binary)
option when opening a printer, you can prevent BASIC from forcing a new line every 80 columns, and
also  suppress  the  addition  of  a  line  feed  following  each  carriage  return.  For  example,  OPEN
"LPT1:BIN" FOR OUTPUT AS #1 tells BASIC to open the first parallel printer in binary mode.

The PRINT # USING statement lets you send formatted numeric data to a file, in the same way you
would use the regular PRINT USING to format numbers on the screen. PRINT # USING accepts the
same set of formatting commands as PRINT USING, allowing you to mix text and formatted numbers
in a single PRINT operation. If your program will be printing formatted reports from the disk file later,
I recommend using PRINT USING at that time, instead of when writing the data to disk. Otherwise, the
extra spaces and other formatting information are added to the file increasing its size. In fact, PRINT #
USING is really most appropriate when printing to a device such as a printer.

Finally, it is important to point out the importance of selecting a suitable buffer size. As I described
earlier, BASIC and DOS employ an area of memory as a buffer to hold information on its way to and
from disk. This way information can often be written to or read from memory, instead of having to
access the physical disk each time. Besides the buffers that DOS maintains, BASIC provides additional
buffering when your program is using sequential input or output.

BASIC lets you control the size of this buffer, using the LEN = option of the OPEN statement. In
general,  the  larger  you  make  the  buffer,  the  faster  your  programs  will  read  and  write  files.  The
trade-off, however, is that BASIC's buffers are stored in string memory. With QuickBASIC and near
strings in BASIC PDS, the buffer is located in DGROUP. When BASIC PDS far strings are used, the
buffer is in the same segment that the current module uses for string storage.

Conversely, you can actually reduce the default buffer size when string space is at a premium, but at the
expense of disk access speed. When using OPEN FOR INPUT and OPEN FOR OUTPUT, BASIC sets
aside 512 bytes  of  string memory for  the buffer,  unless  you specify otherwise.  If  you have many
sequential files open at once you could reduce the buffer sizes to 128 bytes, for a net savings of 384
bytes for each file. The legal range of values for LEN = is between 1 and 32767 bytes.

Notice that the best buffer values will be a multiple of a power of two, and when increasing the buffer
size, a multiple of 512. Since a disk sector is almost always 512 bytes, DOS will fill the buffer with an
entire sector. In fact, DOS always reads and writes entire sectors anyway. If you use a buffer size of,
say, 600 bytes, DOS will have to read 1024 bytes just to get the first portion of the second sector. But
when  more  data  is  needed  later,  BASIC  will  then  have  to  go  back  and  ask  DOS  for  the  same
information again. By reading entire sectors or evenly divisible portions of a sector, you can avoid
having BASIC and DOS read the same information more than once.

Even though larger buffers usually translate to better performance, you will eventually reach the point
of diminishing returns, beyond which little performance improvement will result. Table 6-1 shows the
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timing results with various buffer sizes when reading a 104K BASIC source file using LINE INPUT.
Understand that this test is informal, and merely shows the results obtained using only one PC. In
particular, the hard disk results are for a fairly fast (17 millisecond) 150 MB ESDI drive and a PC
equipped with a 25 MHz. 386. Therefore, the improvement from a larger buffer is less than you would
get on a slower computer with a slower hard disk or with a floppy disk. Many older XT and AT
compatible PCs will probably fall somewhere between the results shown here for the hard and floppy
disks. Notice that while the improvement actually seems somewhat worse for some increases, this can
be attributed to the lack of resolution in the PC's system timer.

Buffer Size
(bytes)

Fast ESDI HD
(seconds)

360K floppy disc
(seconds)

64 2.699 45.260

128 2.420 45.141

256 2.410 45.148

512 2.420 45.150

1024 2.311 27.180

2048 2.139 18.180

4096 2.201 13.570

8192 2.080 11.650

16384 2.039 11.371

Table 6-1: Timing Results For Sequential Reading Versus Buffer Size.

It is important to point out that a buffer is created only for sequential input and output, and also for
random files with QuickBASIC. Opening a file for random access with BASIC PDS (and I'll presume
VB/DOS) does not create a buffer, nor does opening a file for binary with either version. Further, with
random access files a buffer is created by QuickBASIC only when FIELD is used, and the buffer is
located within the actual fielded strings. Therefore, the LEN = argument in an OPEN FOR RANDOM
statement merely tells BASIC how to calculate record offsets when SEEK and GET are used. 

Sequential Input

Sequential  data  is  read using INPUT #,  LINE INPUT #, or INPUT$ #.  Like the console form of
INPUT, INPUT # can be used to read one or more variables of any type and in any order with a single
statement. When reading a file, INPUT # recognizes both the comma and the carriage return as a valid
delimiter, to indicate the end of one variable. This is in contrast to the regular keyboard version of
INPUT, which issues a "Redo from start" error if the wrong number of comma-delimited variables are
entered. Instead, INPUT # simply moves on to the next line for the remaining variables.
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LINE INPUT # avoids this entirely, and simply reads an entire string without regard to commas until a
carriage return is encountered. This precludes LINE INPUT # from being used with anything but string
variables. However, LINE INPUT # can be used with fixed as well as variable-length strings, without
the  overhead  of  copying from one type  to  the  other  that  BASIC usually  adds.  This  copying was
described in Chapter 2.  As with INPUT #, LINE INPUT # strips leading and trailing quotes from the
line if they are present in the file.

The last method for reading a sequential file or device is with the INPUT$ # function. INPUT$ # is
used to read a specified number of characters, without regard to their meaning. Where commas and
carriage returns are normally used to delimit each line of text, INPUT$ returns them as part of the
string. INPUT$ # accepts two arguments—the number of characters to read and the file number—and
assigns them to the specified string. To read, say, 20 bytes from a sequential file that has been opened
as #3, you would use Any$ = INPUT$(20, #3). Although the pound sign (#) is optional, I prefer
to include it to avoid confusion as to which parameter is the file number and which is the number of
bytes.

As with sequential output, specifying a larger buffer size than the default 512 bytes can greatly improve
the speed of INPUT # and LINE INPUT # statements, but at the expense of string memory.

Random Access

Unlike sequential files that are almost always read starting at the beginning, data in a random access
file can be accessed literally in any arbitrary order. Random access files are comprised of fixed-length
records, and each record contains one or more fields. The most common application of random access
techniques is in database programs, where each record holds the same type of information as the next.
For example, a customer name and address database is comprised of a first name, a last name, a street
address, city, state, and Zip code. Even though different names and addresses will be stored in different
records, the format and length of the information in each record is identical.

BASIC provides two different ways to handle random access files: the FIELD statement and TYPE
variables. Before QuickBASIC version 4.0, the FIELD method was the only way to define the structure
of a random access data file. Although Microsoft has publicly stated that FIELD is provided in current
versions of BASIC only for compatibility with older programs, it has several important properties that
cannot be duplicated in any other way. FIELD also lets you perform some interesting unobvious tricks
that have nothing to do with reading or writing files. These are described later in this chapter in the
section Advanced File Techniques.

Once a file has been opened for RANDOM you may use the FIELD statement by specifying one or
more string variables to hold each field, along with their length. A typical example showing the syntax
for the FIELD statement is as follows:

OPEN FileName$ FOR RANDOM AS #1 LEN = 97
FIELD #1, 17 AS LastName$, 14 AS FirstName$, 32 AS Address$, 15 AS City$, _   
2 AS State$, 9 AS Zip$, 8 AS BalanceDue$
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Here, the file is opened for random access, and the record length is established as being 97 characters.
This allows room for each of the fields in the FIELD statement. In this case 17 characters are set aside
for the last name, 14 for the first name, 32 for the street address, 15 for the city, 2 for the state, 9 for the
Zip code, and 8 for the double precision balance due value. I often use a field length of 32 characters
for name and address data, because that's how many can fit comfortably on a standard 3-1/2 by 15/16
inch mailing label. The first and last names above add up to 32 characters, including a separating blank
space.

Note that the underscore shown above is used here as line continuation character, and you'd actually
type the entire statement as one long line. In fact, in most cases a FIELD statement must be able to fit
entirely on a single line, and there is no direct way to continue the list of variables. Although the BC
compiler recognizes an underscore to continue a line as shown here, the BASIC environment does not.
Underscores in a source file are removed by the BASIC editor when the file is loaded, and the lines are
then combined.

If a second FIELD statement for the same file number is given on a separate line, the additional strings
specified are placed starting at the beginning of the same buffer. While it is possible to coerce a new
FIELD statement to begin farther into the buffer, that requires an additional dummy string variable:

FIELD #1, 17 AS LastName$, 14 AS FirstName$
FIELD #1, 31 AS Dummy$, 32 AS Address$, 15 AS City$
FIELD #1, 78 AS Dummy2$, 2 AS State$, 9 AS Zip$

Here, the dummy strings are used as placeholders to force the Address$ and State$ variables farther
into the buffer, and you would not refer to the dummy strings in your program.

Once a field buffer has been defined, special precautions are needed when assigning and reading the
fielded string variables. As you know, BASIC often moves strings around in memory when they are
assigned. However, that would be fatal if those strings are in a field buffer. A field buffer is written to
disk all at once when you use PUT, and it is essential that all of the strings therein be contiguous. If you
simply assign a variable that is part of a field buffer, BASIC may move the string data to a new location
outside of the buffer and your program will fail.

To avoid this problem you must assign fielded string using either LSET, RSET, or the statement form
of MID$. These BASIC commands let you insert characters into a string, so BASIC will not have to
claim new string memory. This further contributes to FIELD's complexity, and it also adds slightly to
the amount of code needed for each assignment. For example, the statement One$ = Two$ generates
13 bytes of compiled code, and the statement  LSET One$ = Two$ creates 17. Although LSET is
generally faster than a direct assignment, it is important to understand that it also creates more code.
But the situation gets even worse.

Because all of the variables in a field buffer must be strings, additional steps are needed to assign
numeric  variables  such  as  integer  and  double  precision.  The  CVI  and  MKS$  family  of  BASIC
functions are needed to convert numeric data to their equivalent in string form and back. There are

180



eight of these functions in QuickBASIC with two each for integer, long integer, single precision, and
double precision variables. BASIC PDS adds two more to support the Currency data type. All of the
various conversion functions have names that start with the letters MK or CV, and a complete list can
be found in your BASIC manual.

To convert a double precision variable to equivalent data in an 8-byte string you would use MKD$, and
to convert a 2-byte string that holds an integer to an actual integer value you would use CVI. MKD$
stands for Make Double into a string and it has a dollar sign to show that it returns a string. CVI stands
for Convert to Integer and the absence of a dollar sign shows that it returns a numeric value. Combined
with the requisite LSET, a complete assignment prior to writing a record to disk with PUT would be
something like this: LSET BalanceDue$ = MKD$(BalDue#). And if a record has just been read
using GET, an integer value in the field buffer could be retrieved using code such as  MyInt% =
CVI(IntVar$).

The need for LSET, RSET, CVI, and MKS$ and so forth has historically made learning random access
file techniques one of the most difficult and messy aspects of BASIC programming. Besides having to
learn all of the statements and how they are used, you also need to understand how many bytes each
numeric data type occupies to set aside the correct amount of space in the field buffer. Further, a lot of
compiled code is created to convert large amounts of data between numeric and string form. For these
and other reasons, Microsoft introduced the TYPE variable with its release of QuickBASIC 4.0.

The TYPE method allows you to establish a  record's  structure by defining a  custom variable  that
contains individual components for each field in the record. In general, using TYPE is a much clearer
way to define a record, and it also avoids the added library code to handle the FIELD, LSET, CVI, and
MKS$ statements. When you use AS INTEGER and AS DOUBLE and so forth to define each portion
of the TYPE, the correct number of bytes are allocated to store the value in its native fixed-length
format. This avoids having to convert the data to and from ASCII digits.

Using the earlier example, here's how you would define and assign the same record using a TYPE
variable:

TYPE Record
  LastName AS STRING * 17
  FirstName AS STRING * 14
  Address AS STRING * 32
  State AS STRING * 2
  Zip AS STRING 9
  BalanceDue AS DOUBLE
END TYPE
DIM MyRecord AS Record

MyRecord.LastName = LastName$
MyRecord.FirstName = FirstName$
MyRecord.Address = Address$
MyRecord.State = State$
MyRecord.Zip = Zip$
MyRecord.BalanceDue = BalanceDue#
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Even though the same names are used for both the TYPE variable members and the strings they are
being assigned from, you may of course use any names you want. You could also assign the portions of
a TYPE variable from constants using MyRecord.Zip = "06896" or MyRecord.BalanceDue
= 4029.80. Further, one entire TYPE variable may be assigned to another in a single operation using
ThisType  =  ThatType.  Dissimilar  TYPE  variables  may  be  assigned  using  LSET like  this:  LSET
MyType = YourType.

As  you  can  see,  using  TYPE variables  instead  of  FIELD yields  an  enormous  improvement  in  a
program's clarity. However, there are still some programming problems that only FIELD can solve.
One limitation of using TYPE variables is that the file structure must be known when the program is
compiled,  and you cannot  defer  this  until  runtime.  Therefore,  it  is  impossible  to  design a  general
purpose  database  program,  in  which  a  single  program  can  manipulate  any  number  of  differently
structured files. The compiler needs to know the length and type of data within a TYPE variable, in
order to access the data it contains. So while you can use a variable as the LEN = argument with
OPEN, the record structure itself must remain fixed.

FIELD avoids that limitation because it accepts a variable number of arguments, and varying lengths
within each field component. Therefore, by dimensioning a string array to the number of elements
needed for a given record, the entire process of opening, fielding, reading, and writing can be handled
using variables whose contents and type are determined at runtime. Some amount of IF testing will of
course be required when the program runs, but at least it's possible to process a file using variable
information.

The following complete program first creates a random access file with five slightly different records
using a TYPE variable. It then reads the file independently of the TYPE structure using the FIELD
method.  Although  the  second  portion  of  the  program  uses  DATA statements  to  define  the  file's
structure, in practice this information would be read from disk. In fact, this is the method used by
dBASE and Clipper files, based on the field information that is stored in a header portion of the data
file.

'----- create a data file containing five records
DEFINT A-Z

TYPE MyType
  FirstName AS STRING * 17
  LastName AS STRING * 14
  DblValue AS DOUBLE
  IntValue AS INTEGER
  MiscStuff AS STRING * 20
  SngValue AS SINGLE
END TYPE
DIM MyVar AS MyType

OPEN "MYFILE.DAT" FOR RANDOM AS #1 LEN = 65
MyVar.FirstName = "Jonathan"
MyVar.LastName = "Smith"
MyVar.DblValue = 123456.7
MyVar.IntValue = 10
MyVar.MiscStuff = "Miscellaneous stuff"
MyVar.SngValue = 14.29
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FOR X = 1 TO 5
  PUT #1, , MyVar
  MyVar.DblValue = MyVar.DblValue * 2
  MyVar.IntValue = MyVar.IntValue * 2
  MyVar.SngValue = MyVar.SngValue * 2
NEXT
CLOSE #1

'----- read the data without regard to the TYPE above
READ FileName$, NumFields
REDIM Buffer$(1 TO NumFields)   'holds the FIELD strings
REDIM FieldType(1 TO NumFields) 'the array of data types

RecLength = 0
FOR X = 1 TO NumFields
  READ ThisType
  FieldType(X) = ThisType
  RecLength = RecLength + ABS(ThisType)
NEXT

OPEN FileName$ FOR RANDOM AS #1 LEN = RecLength

PadLength = 0
FOR X = 1 TO NumFields
  ThisLength = ABS(FieldType(X))
  FIELD #1, PadLength AS Pad$, ThisLength AS Buffer$(X)
  PadLength = PadLength + ThisLength
NEXT

NumRecs = LOF(1) \ RecLength    'calc number of records
FOR X = 1 TO NumRecs            'read each in sequence
  GET #1                        'get the current record
  CLS
  FOR Y = 1 TO NumFields        'walk through each field
    PRINT "Field"; Y; TAB(15);  'display each field
    SELECT CASE FieldType(Y)    'see what type of data
      CASE -8                   'double precision
        PRINT CVD(Buffer$(Y))   'so use CVD
      CASE -4                   'single precision
        PRINT CVS(Buffer$(Y))   'as above
      CASE -2                   'integer
        PRINT CVI(Buffer$(Y))
      CASE ELSE                 'string
        PRINT Buffer$(Y)
    END SELECT
  NEXT
  LOCATE 20, 1
  PRINT "Press a key to view the next record ";
  WHILE LEN(INKEY$) = 0: WEND
NEXT
CLOSE #1
END

DATA MYFILE.DAT, 6
DATA 17, 14, -8, -2, 20, -4

There are several issues that need elaboration in this program. First is the use of arrays to hold the
fielded string data and also each field's type. When the field buffer is defined with an array, the same
variable name can be used repeatedly in a loop. A parallel array that holds the field data types permits
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the program to relate the field data to its corresponding type of data. That is, Buffer$(3) holds the data
for field 3, and FieldType(3) indicates what type of data it is.

Second, the FieldType array uses a simple coding method that combines both the data type and its
length into a single value. That is, positive values are used to indicate string data, and the value itself is
the field length. Negative values reflect the data type as well as the length, using a negative version of
that data type's length. Specifically,  -8 is used to indicate a double precision field type,  -4 a single
precision type, and -2 an integer. If you need to handle long integers or the BASIC PDS Currency data
type,  you'll  need  to  devise  a  slightly  different  method.  I  chose  this  one  because  it  is  simple  and
effective.

The  final  point  worth  mentioning  when  comparing  FIELD  to  TYPE  is  that  the  field  buffer  is
relinquished  back  to  BASIC's  string  pool  when  the  file  is  closed.  But  when  a  TYPE variable  is
dimensioned, the near memory it occupies is allocated by the compiler, and is never available for other
uses. Although there is a solution, it requires some slight trickery. The statement REDIM TypeVar(1
TO 1) AS TypeName will create a 1-element TYPE array in far memory that can then be used as if
it were a single TYPE variable. That is, any place you would have used the TYPE variable, simply
substitute the sole element in the array.

Understand that more code is required to access data in a dynamic array than in a static variable. For
example, an integer assignment to a member of a dynamic TYPE array generates 17 bytes of code,
compared to only 6 bytes for the same operation on a static TYPE. But when string space is more
important than .EXE file size, this trick can make the difference between a program that runs and one
that doesn't.

Regardless of which method you use—TYPE or FIELD—there are several additional  points to  be
aware of. First,  the PUT # and GET # statements are used to write and read a random access file
respectively. PUT # and GET # accept two different forms, depending on whether you are using TYPE
or FIELD to define the record structure.

When FIELD is used, PUT # and GET # may be used with either no argument to access the current
record, or with an optional record number argument. That is,  PUT #1 writes the current field buffer
contents to disk at the current DOS SEEK position, and  GET #1, RecNum reads record number
RecNum into the buffer for subsequent access by your program.

As with sequential files, each time a record is read or written, DOS advances its internal seek location
to the next successive position in the file. Therefore, to read a group of records in forward order does
not require a record number, nor does writing them in that order. In fact, slightly more time is required
to access a record when a record number is given but not needed, because BASIC makes a separate call
to perform an explicit Seek to that location in the file.

When the TYPE method is used to access random access data, the record number is also optional, but
you must provide the name of a TYPE variable or TYPE array element. In this case, the record number
is still used as the first argument, and the TYPE variable is the second argument. If you omit the record
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number  you  must  include  an  empty  comma  placeholder.  For  example,  PUT #1, RecNum,
TypeVar writes the contents of TypeVar to the file at record number RecNum, and  GET #1, ,
TypeArray(X) reads the current record into TYPE array element X.

It is not essential that the TYPE variable be as long as the record length specified when LEN = was
used with OPEN, but it generally should be. When a record number is given with PUT # or GET #,
BASIC uses the original LEN = value to know where to seek to in the file. If a record number is
omitted, BASIC will still advance to the next complete record even if the TYPE variable being read or
written is shorter than the stated record length. In most cases, however, you should use a TYPE whose
length corresponds to the LEN = argument unless you have a good reason not to.

Notice that when LEN = is omitted, BASIC defaults to a record length of 128 bytes. Indeed, forgetting
to include the length can lead to some interesting surprises. One clever trick that avoids having to
calculate the record length manually is to use BASIC's LEN function. Although earlier versions of
BASIC allowed LEN only in conjunction with string variables, QuickBASIC 4.0 and later versions
recognize LEN for any type of data.

For example,  LEN(IntVar%) is always 2, and  LEN(AnyDouble#) is always equal to 8. When
LEN is used this way the compiler merely substitutes the appropriate numeric constant when it builds
your program. Since LEN can also be used with TYPE variables and TYPE array elements, you can let
BASIC do the byte counting for you. The brief program fragment below shows this in context.

TYPE Something
  X AS INTEGER
  Y AS DOUBLE
  Z AS STRING * 100
END TYPE
DIM Anything AS Something
OPEN MyData$ FOR RANDOM AS #1 LEN = LEN(Anything)

In particular, this method is useful if you later modify the TYPE definition, since the program will be
self-accommodating. Changing Z to STRING * 102 will also change the value used as the LEN =
argument to OPEN. Be careful to use the actual variable name with LEN, and not the TYPE name
itself. That is,  LEN(Anything) will equal 110, but LEN(Something) will be 2 if DEFINT is in
effect. When BASIC sees  LEN(Something) it  assumes you are referring to a variable with that
name, not the TYPE definition.

The only time this use of LEN will be detrimental is when it is used as a passed parameter many times
in a program. Since LEN is treated in this case as a numeric constant, it is subject to the same copying
issues that CONST values and literal numbers are. Therefore, you would probably want to assign a
variable once from the value that LEN returns, and use that variable repeatedly later as described in
Chapter 2.

Binary Access
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Binary file access lets you read or write any portion of a file, and manipulate any type of information.
Reading a sequential file requires that the end of each data item be identified by a comma, or a carriage
return line feed pair. Random access files do not require special delimiters, and instead rely on a fixed
record length to know where each record's data starts and ends. A binary file may be organized in any
arbitrary manner; however, it is up to the programmer to devise a method for determining what goes
where in the file.

The  overwhelming  advantage  of  binary  over  sequential  access  is  the  enormous  space  and  speed
savings. A file that requires extra carriage returns or commas will be larger than one that does not.
Moreover, numeric data in a binary file is stored in its native fixed-length format, instead of as a string
of ASCII digits. Therefore, the integer value  -32700 will occupy only two bytes, as opposed to the
seven needed for the digits plus either a comma or carriage return and line feed.

Furthermore,  converting  between  numbers  and  their  ASCII  representation  is  one  of  the  slowest
operations in BASIC. Because the STR$ and VAL functions must be able to operate on floating point
numbers and perform rounding, they are extremely slow. For example, VAL must examine the digits in
a string for many special  characters such as "e", "d", "&H", and so forth.  And with the statement
IntVar% = VAL("1234.56"), VAL must also round the value to 1235 before assigning the result
to IntVar%. Even if you don't use STR$ or VAL explicitly when reading or writing a file, BASIC does
internally. That is, the statement  PRINT #1, D# is compiled as if you used  PRINT #1, STR$
(D#). Likewise, INPUT #1, IntVar% is compiled the same as INPUT #1, Temp$: IntVar
% = VAL(Temp$).

When a file has been opened for binary access you may not use PRINT #, WRITE #, or PRINT #
USING. The only statement that can write data to a binary file is PUT #. PUT # may be used with any
type of variable, but not constants or expressions. That is, you can use PUT #1, , AnyVar, but not
PUT #1, , 13 or PUT #1, SeekLoc, X + Y! or PUT #1, , LEFT$(Work$, 10). This
is yet another unnecessary BASIC limitation, which means that to write a constant you must first assign
it to a temporary variable, and then use PUT specifying that variable.

Reading from a binary file requires GET #, which is the complement of PUT #. Like PUT #, GET #
may be used with any kind of variable, including TYPE variables. When a string variable is written to
disk with PUT #, the entire string is sent. However, when a string variable is used with GET #, BASIC
reads only as many bytes as will fit into the target string. So to read, say, 20 bytes into a string from a
binary file you would use this: 

Temp$ = SPACE$(20)       'make room for 20 bytes
GET #FileNum, , Temp$    'read all 20 bytes

Although fixed-length strings  cannot  be cleared  to  relinquish the memory they  occupied,  they  are
equally valid for reading data from a binary file: 

DIM FLen AS STRING * 20
GET #FileNum, , FLen
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You can also use INPUT$ to read a specified number of bytes from a binary file. Therefore you can
replace both examples above with the statement Temp$ = INPUT$(20, #FileNum). Contrary to
some versions of Microsoft BASIC documentation, PUT # does not store the length of the string in a
binary file prior to writing the data as it does with files opened for RANDOM.

As you've seen, data is written to a binary file using the PUT # command, and read using GET #. These
work much like their random access counterparts in that a seek offset is optional, and if omitted must
be replaced with an empty comma placeholder. But where the seek argument in a random GET # or
PUT # specifies a record number, a binary GET # treats it as a byte offset into the file.

The first byte in a binary file is considered by BASIC to be byte number 1. This is important to point
out  now, because DOS considers  the  first  byte  to  be numbered 0.  When we discuss  using CALL
Interrupt to access files in Chapter 11, you will need to take this difference into account.

When reading and writing binary files, BASIC always uses the length of the specified variable to know
how many bytes to read or write. The statement GET #1, , IntVar% reads two bytes at the current
DOS seek location into the integer variable IntVar%, and PUT #1, 1000, LongVar# writes the
contents of LongVar# (eight bytes) to the file starting at the 1000th byte. Let's now take a look at a
practical application of binary file techniques.

Rather than invent a binary file format as an example, I will instead use the Lotus 1-2-3 file structure to
illustrate the effective use of binary access. Although it is possible to skip around in a binary file and
read its data in any arbitrary order, a Lotus worksheet file is intended to be read sequentially. Each data
item is preceded by an integer code that indicates the type and length of the data that follows. Note that
the same format is used by Lotus 1-2-3 versions 1 and 2, and also Lotus Symphony. Newer versions of
1-2-3 that  support three-dimensional work sheets use a different  format that  this  program will  not
accommodate.

A Lotus spreadsheet can contain as many as 63 different kinds of data. However, we will concern
ourselves  with  only  those  that  are  of  general  interest  such as  cell  contents  and simple  formatting
commands. These are Beginning of File, End of File, Integer values, Floating point values, Text labels
and their format, and the double precision values embedded within a Formula record. The format used
by the actual formulas is quite complex, and will  not be addressed.  Other records that will  not be
covered here are those that pertain to the structure of the worksheet itself. For example, range names,
printer setup strings, macro definitions, and so forth. You can get complete information on the Lotus
file  structure  as  well  as  other  standard  formats  in  Jeff  Walden's  excellent  book,  File  Formats  for
Popular PC Software, Wiley Press, ISBN 0-471-83671-0, which is available as a digital download at
Archive.org:

https://archive.org/details/FileFormats  -  ForPopularPCSoftwareAProgrammersReferenceJeffWaldenOC  
R

A Lotus file is comprised of individual records, and each record may have a varying length. The length
of a record depends on its type and contents, and most records contain a fixed-length header which
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describes the information that follows. Regardless of the type of record being considered, each follows
the same format: an operation code (opcode), the data length, and the data itself.

The opcode is always a two-byte integer which identifies the type of data that will follow. For example,
an opcode of 15 indicates that the data in the record will be treated by 1-2-3 as a text label. The length
is also an integer, and it holds the number of bytes in the Data section (the actual text) that follows.

All of the records that pertain to a spreadsheet cell contain a five-byte header at the beginning of the
data section.  These five bytes are included as part of the data's length word. The first header byte
contains the formatting information, such as the number of decimal positions to display. The next two
bytes together contain the cell's row as an integer, and the following two bytes hold the cell's column.

Again, this header is present only in records that refer to a cell's contents. For example, the Beginning
of  File  and  End  of  File  records  do  not  contain  a  header,  nor  do  those  records  that  describe  the
worksheet.  Some records such as labels and formulas will  have a varying length,  while those that
contain numbers will be fixed, depending on the type of number. Floating point values are always eight
bytes long, and are in the same IEEE format used by BASIC. Likewise, an integer value will always
have a length of two bytes. Because the length word includes the five-byte header size, the total length
for these double precision and integer examples is 13 and 7 respectively.

It is important to understand that in a Lotus worksheet file, rows and columns are based at zero. Even
though 1-2-3 considers the leftmost row to be number 1, it is stored in the file as a zero. Likewise, the
first column as displayed by 1-2-3 is labelled "A", but is identified in the file as column 0. Thus, it is up
to your program to take that into account as translates the columns to the alphabetic format, if you
intend to display them as Lotus does.

In the Read portion of the program that follows, the same steps are performed for each record. That is,
binary GET # statements read the record's type, length, and data. If the record type indicates that it
pertains to a worksheet cell, then the five-byte header is also read using the GetFormat subprogram.
Opcodes that are not supported by this program are simply displayed, so you will see that they were
encountered.

The Write portion of the program performs simple formatting, and also ensures that a column-width 
record is written only once. Figure 6-2 shows the makeup of the numeric formatting byte used in all 
Lotus files.
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The program example below can either read or write a Lotus 1-2-3 worksheet file. If you select Create 
when this program is run, it will write a worksheet file named SAMPLE.WKS suitable for reading into 
any version of Lotus 123. This sample file contains an assortment of labels and values. If you select 
Read, the program will prompt for the name of a worksheet file which it then reads and displays.
 
DEFINT A-Z
DECLARE SUB GetFormat (Format, Row, Column)
DECLARE SUB WriteColWidth (Column, ColWidth)
DECLARE SUB WriteInteger (Row, Column, ColWidth, Temp)
DECLARE SUB WriteLabel (Row, Column, ColWidth, Msg$)
DECLARE SUB WriteNumber (Row, Col, ColWidth, Fmt$, Num#)

DIM SHARED CellFmt AS STRING * 1    'to read one byte
DIM SHARED ColNum(40)               'max columns to write
DIM SHARED FileNum                  'the file number to use 
CLS
PRINT "Read an existing 123 file or ";
PRINT "Create a sample file (R/C)? "
LOCATE , , 1
DO
   X$ = UCASE$(INKEY$)
LOOP UNTIL X$ = "R" OR X$ = "C"
LOCATE , , 0
PRINT X$

IF X$ = "R" THEN

  '----- read an existing file
  INPUT "Lotus file to read: ", FileName$
  IF INSTR(FileName$, ".") = 0 THEN
    FileName$ = FileName$ + ".WKS"
  END IF
  PRINT

  '----- get the next file number and open the file
  FileNum = FREEFILE
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  OPEN FileName$ FOR BINARY AS #FileNum

  DO UNTIL Opcode = 1       'until End of File code

     GET FileNum, , Opcode  'get the next opcode
     GET FileNum, , Length  'and the data length

     SELECT CASE Opcode     'filter the Opcodes

    CASE 0                  'Beginning of File record
      PRINT "Beginning of file, Lotus ";
      GET FileNum, , Temp

      SELECT CASE Temp
        CASE 1028
          PRINT "1-2-3 version 1.0 or 1A"
        CASE 1029
          PRINT "Symphony version 1.0"
        CASE 1030
          PRINT "123 version 2.x"
        CASE ELSE
          PRINT "NOT a Lotus File!"
      END SELECT

    CASE 1                  'End of File
      PRINT "End of File"

    CASE 12                 'Blank cell
       'Note that Lotus saves blank cells only if
       'they are formatted or protected.
       CALL GetFormat(Format, Row, Column)
       PRINT "Blank:      Format ="; Format,
       PRINT "Row ="; Row,
       PRINT "Col ="; Column

    CASE 13                 'Integer
       CALL GetFormat(Format, Row, Column)
       GET FileNum, , Temp
       PRINT "Integer:    Format ="; Format,
       PRINT "Row ="; Row,
       PRINT "Col ="; Column,
       PRINT "Value ="; Temp

    CASE 14                 'Floating point
       CALL GetFormat(Format, Row, Column)
       GET FileNum, , Number#
       PRINT "Number:     Format ="; Format,
       PRINT "Row ="; Row,
       PRINT "Col ="; Column,
       PRINT "Value ="; Number#

    CASE 15                 'Label
       CALL GetFormat(Format, Row, Column)
       'Create a string to hold the label.  6 is
       'subtracted to exclude the Format, Column,
       'and Row information.

       Info$ = SPACE$(Length - 6)
       GET FileNum, , Info$         'read the label
       GET FileNum, , CellFmt$      'eat the CHR$(0)
       PRINT "Label:      Format ="; Format,
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       PRINT "Row ="; Row,
       PRINT "Col ="; Column, Info$

    CASE 16                 'Formula
       CALL GetFormat(Format, Row, Column)
       GET FileNum, , Number#      'read cell value
       GET FileNum, , Length       'and formula length
       SEEK FileNum, SEEK(FileNum) + Length 'skip formula
       PRINT "Formula:    Format ="; Format,
       PRINT "Row ="; Row,
       PRINT "Col ="; Column,
       PRINT "Value ="; Number#

    CASE ELSE
       Dummy$ = SPACE$(Length)     'skip the record
       GET FileNum, , Dummy$       'read it in
       PRINT "Opcode: "; Opcode    'show its Opcode

     END SELECT

     '----- pause when the screen fills
     IF CSRLIN > 21 THEN
       PRINT
       PRINT "Press <ESC> to end or ";
       PRINT "any other key for more"
       DO
         K$ = INKEY$
       LOOP UNTIL LEN(K$)
       IF K$ = CHR$(27) THEN EXIT DO
       CLS
     END IF

     NumRecs = NumRecs + 1      'count the records

  LOOP
  PRINT "Number of Records Processed ="; NumRecs
  CLOSE

ELSE

  '----- write a sample file
  FileNum = FREEFILE            'as above
  OPEN "SAMPLE.WKS" FOR BINARY AS #FileNum

  Temp = 0                      'OpCode for Start of File
  PUT FileNum, , Temp           'write that
  Temp = 2                      'its data length is 2
  PUT FileNum, , Temp           'since it's an integer
  Temp = 1030                   'Lotus version 2.x
  PUT FileNum, , Temp

  Row = 0                       'write this in Row 1
  DO
     CALL WriteLabel(Row, 0, 16, "This is a Label")
     CALL WriteLabel(Row, 1, 12, "So is this")
     CALL WriteInteger(Row, 2, 7, 12345)
     CALL WriteNumber(Row, 3, 9, "C2", 57.23#)
     CALL WriteNumber(Row, 4, 9, "F5", 12.3456789#)
     CALL WriteInteger(Row, 6, 9, 99)  'skip a column for fun      
     Row = Row + 1                     'go on to the next row   
  LOOP WHILE Row < 6
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  '----- Write the End of File record and close the file
  Temp = 1                  'Opcode for End of File
  PUT FileNum, , Temp
  Temp = 0                  'the data length is zero
  PUT FileNum, , Temp
  CLOSE

END IF
END

SUB GetFormat (Format, Row, Column) STATIC
  GET FileNum, , CellFmt$: Format = ASC(CellFmt$)
  GET FileNum, , Column
  GET FileNum, , Row
END SUB

SUB WriteColWidth (Column, ColWidth) STATIC

  '----- allow a column width only once for each column
  IF NOT ColNum(Column) THEN
    Temp = 8
    PUT FileNum, , Temp
    Temp = 3
    PUT FileNum, , Temp
    PUT FileNum, , Column
    Temp$ = CHR$(ColWidth)
    PUT FileNum, , Temp$
    '----- show we wrote this column's width
    ColNum(Column) = -1
  END IF
END SUB

SUB WriteInteger (Row, Column, ColWidth, Integ) STATIC
  Temp = 13                     'OpCode for an integer
  PUT FileNum, , Temp
  Temp = 7                      'Length + 5 byte header
  PUT FileNum, , Temp
  Temp$ = CHR$(127)             'the format portion
  PUT FileNum, , Temp$
  PUT FileNum, , Column
  PUT FileNum, , Row
  PUT FileNum, , Integ
  CALL WriteColWidth(Column, ColWidth)
END SUB

SUB WriteLabel (Row, Column, ColWidth, Msg$)
  IF LEN(Msg$) > 240 THEN       '240 is the maximum length     
    Msg$ = LEFT$(Msg$, 240)
  END IF

  Temp = 15                     'OpCode for a label
  PUT FileNum, , Temp
  Temp = LEN(Msg$) + 7    'Length plus 5-byte header                        

   'plus "'" plus CHR$(0)
  PUT FileNum, , Temp
  Temp$ = CHR$(127)             '127 is the default format
  PUT FileNum, , Temp$
  PUT FileNum, , Column
  PUT FileNum, , Row
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  Temp$ = "'" + Msg$ + CHR$(0)  'a "'" left-aligns a label                       
   'use "^" instead to center

  PUT FileNum, , Temp$
  CALL WriteColWidth(Column, ColWidth)
END SUB

SUB WriteNumber (Row, Col, ColWidth, Fmt$, Num#) STATIC
  IF LEFT$(Fmt$, 1) = "F" THEN                    'fixed
    '----- specify the number of decimal places
     Format$ = CHR$(0 + VAL(RIGHT$(Fmt$, 1)))
  ELSEIF LEFT$(Fmt$, 1) = "C" THEN                'currency
    Format$ = CHR$(32 + VAL(RIGHT$(Fmt$, 1)))
  ELSEIF LEFT$(Fmt$, 1) = "P" THEN                'percent
    Format$ = CHR$(48 + VAL(RIGHT$(Fmt$, 1)))
  ELSE                                            'default
    Format$ = CHR$(127)    'use CHR$(255) for protected
  END IF

  Temp = 14                 'Opcode for a number
  PUT FileNum, , Temp
  Temp = 13                 'Length (8) + 5 = 13
  PUT FileNum, , Temp

  PUT FileNum, , Format$
  PUT FileNum, , Col
  PUT FileNum, , Row
  PUT FileNum, , Num#

  CALL WriteColWidth(Column, ColWidth)
END SUB

There  are  several  points  worth  noting  about  this  program.  First,  Lotus  label  strings  are  always
terminated with a CHR$(0) zero byte, which is the same method used by DOS and the C language.
Therefore, the WriteLabel subprogram adds this byte, which is also included as part of the length word
that follows the Opcode.

In the WriteNumber subprogram, the 1-byte format code is either 127 to default to unformatted, or
bit-coded to indicate fixed, currency, or percent formatting. WriteNumber expects a format string such
as "F3" which indicates fixed-point with three decimal positions, or "P1" for percent formatting using
one decimal place. If you instead use "C", WriteNumber will use a fixed 2-decimal point currency
format.

Earlier I pointed out the extra work is needed to write a constant value to a binary file, because only
variables may be used with PUT #. This is painfully clear in each of the Write subprograms, where the
integer variable Temp is repeatedly assigned to new values. We can only hope that Microsoft will see
fit to remove this arbitrary limitation in a later version of BASIC.

Finally, note the use of the fixed-length string CellFmt$. Although some language support a one-byte
numeric variable type, BASIC does not.  Therefore, to read and write these values you must use a
fixed-length string. To determine the value after reading a file you will use ASC, and to assign a value
prior to writing it you instead use CHR$. For example, to assign CellFmt$ to the byte value 123 use
CellFmt$ = CHR$(123). 
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Navigating Your Files

BASIC offers a number of file-related functions to determine how long a file is, the current DOS seek
location where the next read or write will take place, and also if that location is at the end of the file.
These are LOF, LOC and SEEK, and EOF respectively. LOF stands for Length Of File, LOC means
current Location, and EOF is End Of File. The SEEK statement is also available to force the next file
access to occur at a specified place within the file. All of these require a file number argument to
indicate which file is being referred to.

The EOF Function

The EOF function is most useful when reading sequential text files, and it avoids BASIC's "Input past
end" error that  would otherwise result  from trying to read past the end of the available data.  The
following short complete program reads a text file and displays it contents, and shows how EOF is used
for this purpose.

OPEN FileName$ FOR INPUT AS #1
  WHILE NOT EOF(1)
    LINE INPUT #1, This$
    PRINT This$
  WEND
CLOSE

Notice the use of the NOT operator in this example. The EOF function returns an integer value of either
-1 or 0, to indicate true (at the end of the file) or false. Therefore, NOT -1 is equal to 0 (False), and
NOT 0 is equal to -1 (True). This use of bit manipulation was described earlier in Chapter 2.

EOF can also be used with binary and random access files for the same purpose. In fact, EOF may be
even more useful in those cases, because BASIC does not create an error when you attempt to read past
the end as it does for sequential files. Indeed, once you go past the end of a binary or random access
file, BASIC simply fills the variables being read with zero bytes. Without EOF there is no way to
distinguish between zeros returned by BASIC because you went past the end of the file and zeros that
were read as legitimate data.

The EOF function was originally needed with DOS 1.0 for a program to determine when the end of the
file was reached. That version of DOS always wrote all data in multiples of 128 bytes, and all file
directory entries also were listed with lengths being a multiple of 128. That is, a file which contains
only ten bytes of data will be reported by DIR as being 128 bytes long. To indicate the true end of the
file, a CHR$(26) end of file marker was placed just past the last byte of valid data. Thus, EOF was
originally written to search for a byte with that value, and return True when it was found.

Most modern applications do not use an EOF character, and instead rely on the file length that is stored
in the file's directory entry. However, some older programs still write a CHR$(26) at the end of the
data, and DOS' COPY CON command does this as well. Therefore, BASIC's EOF will return a True
value when this character is encountered, even if there is still more data to be read in the file. In fact,
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you can provide a minimal amount of data security by intentionally writing a CHR$(26) at or near the
beginning of a sequential file. If someone then uses the DOS TYPE command to view the file, only
what precedes the EOF marker will be displayed.

Another implication of EOF characters in BASIC surfaces when you open a sequential file for append
mode.  BASIC makes  a  minimal  attempt  to  locate  an  EOF  character,  and  if  one  exists  it  begins
appending on top of it. After all, if writing started just past the EOF byte, a subsequent LINE INPUT
would fail when it reached that point. Likewise, an EOF test would return true and the program would
stop reading at that location in the file. Therefore, BASIC checks the last few bytes in the file when you
open for append, to see if an EOF marker is present. However, if the marker is much earlier in a large
file, BASIC will not see it.

When EOF is used with serial communications, it returns 0 until a CHR$(26) byte is received, at which
point it continues to return -1 until the communications port is closed.

The LOF Function

The LOF function simply returns the current length of the file, and that too can be used as a way to tell
when you have reached the end. In the random access FIELD example program shown earlier, LOF
was used in conjunction with the record length to determine the number of records in the file. Since the
length of most random access files is directly related to, and evenly divisible by, the number of records
in the file, simple division can be used to determine how many records there are. The formula is:

NumRecords = LOF(FileNum) \ RecLength

Understand that when used with sequential and binary files, LOF returns the length of the file in bytes.
But with a random access file, LOF instead provides the number of records.

LOF can also be used as a crude way to see if a file exists. Even though this is done much more
effectively and elegantly with assembly language or CALL Interrupt, the short example below shows
how LOF can be used for this purpose.

FUNCTION Exist% (FileName$) STATIC
  FileNum = FREEFILE
  OPEN FileName$ FOR BINARY AS #FileNum
    Length = LOF(FileNum)
  CLOSE #FileNum
  IF Length = 0 THEN   'it probably wasn't there
    Exist% = 0         'return False to show that
    KILL FileName$     'and delete what we created
  ELSE
    Exist% = -1        'otherwise return True
  END IF
END FUNCTION

Besides being clunky, this program also has a serious flaw: If the file does exist but has a perfectly
legal length of zero, this function will say it doesn't exist and then delete it.  As I said, this method is
crude, but a lot of programmers have used it.
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The LOC and SEEK Functions

LOC and SEEK are closely related, in that they return information about where you are in the file.
However, LOC reports the position of the last read or write, and SEEK tells where the next one will
occur. As with LOF, LOC and SEEK return byte values for files that were opened for sequential or
binary access, and record numbers when used with random access files.

In practice, LOC is of little value, especially when you are manipulating sequential files. For reasons
that only Microsoft knows, LOC returns the number of the last byte read or written, but divided by 128.
Since no program I know of treats sequential files as containing 128-byte records, I cannot imagine
how this could be useful. Further, since LOC returns the location of the last read or write, it never
reflects the true position in the file.

When used with communications, LOC reports the number of characters in the receive buffer that are
currently waiting to be read, which is useful. When used with INPUT$ #, LOC provides a handy way
to retrieve all of the characters present in the buffer at one time. This is shown in context below, and the
example assumes that the communications port has already been opened.

NumChars = LOC(1)
IF NumChars THEN
  This$ = INPUT$(NumChars, #1)
END IF

The SEEK function always returns the current file position, which is the point at which the next read or
write will take place. One good use for SEEK is to read the current location in a sequential file, to
allow a program to walk backwards through the file later. For example, if you need to create a text file
browsing program, there is no other way to know where the previous line of a file is located. A short
program that shows this in context follows in the section that describes the SEEK statement. 

The SEEK Statement

Where the SEEK function lets you determine where you are currently in a file, the SEEK statement lets
you move to any arbitrary position.  As you might imagine,  SEEK as a statement is similar to the
function version in that it assumes a byte value when used with sequential and binary files, and a record
number with random access files.

SEEK can be very useful in a variety of situations, and in particular when indexing random access files.
When an indexing system is employed, selected portions of a data file are loaded into memory where
they  can  be  searched  very  quickly.  Since  the  location  of  the  index  information  being  searched
corresponds to the record number of the complete data record, the record can be accessed with a single
GET #. This was described briefly in the discussion of the BASIC PDS ISAM options in Chapter 5.
Thus, once the record number for a given entry has been identified, the SEEK statement (or the SEEK
argument in the GET # command) is used to access that particular record.
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For this  example,  though,  I  will  instead show how SEEK can be used with a sequential  file.  The
following complete program provides the rudiments of a text file browser, but this version displays
only one line at a time. It would be fairly easy to expand this program to display entire screenfulls of
text, and I leave that as an exercise for you.

The program begins by prompting for a file name, and then opens that file for sequential input. The
maximum number of lines that can be accommodated is set arbitrarily at 5000, though you will not be
able to specify more than 16384 unless you compile with the /ah option. The long integer Offset&()
array is used to remember where each line encountered so far in the file begins, and 16384 is the
maximum number of elements that can fit into a single 64K array. For a typical text file with line
lengths that average 60 characters, 16384 lines is nearly 1MB of text.

When you run the program, it expects only the up and down arrow keys to advance and go backwards
through the file, the Home key to jump to the beginning, or the Escape key to end the program. Notice
that the words "blank line" are printed when a blank line is encountered,  just  so you can see that
something has happened.

DEFINT A-Z
CONST MaxLines% = 5000
REDIM Offset&(1 TO MaxLines%)

CLS
PRINT "Enter the name of file to browse: ";
LINE INPUT "", FileName$

OPEN FileName$ FOR INPUT AS #1

  Offset&(1) = 1                'initialize to offset 1
  CurLine = 1                   'and start with line 1

  WHILE Action$ <> CHR$(27)     'until they press Escape
    SEEK #1, Offset&(CurLine)   'seek to the current line
    LINE INPUT #1, Text$        'read that line
    Offset&(CurLine + 1) = SEEK(1)  'save where the next
                                    '  line starts
    CLS
    IF LEN(Text$) THEN          'if it's not blank
      PRINT Text$               'print the line
    ELSE                        'otherwise
      PRINT "(blank line)"      'show that it's blank
    END IF

    DO                          'wait for a key
      Action$ = INKEY$
    LOOP UNTIL LEN(Action$)

    SELECT CASE ASC(RIGHT$(Action$, 1))
      CASE 71                   'Home
        CurLine = 1

      CASE 72                   'Up arrow
        IF CurLine > 1 THEN
          CurLine = CurLine - 1
        END IF
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      CASE 80                   'Down arrow
        IF (NOT EOF(1)) AND CurLine < MaxLines% THEN
          CurLine = CurLine + 1
        END IF

      CASE ELSE
    END SELECT
  WEND
CLOSE
END

You should be aware that BASIC does not prevent you from using SEEK to go past the end of a file
that has been opened for Binary access. If you do this and then write any data, DOS will actually
extend the file to include the data that was just written. Therefore, it is important to understand that any
data that lies between the previous end of the file and the newly added data will be undefined. When a
file is deleted DOS simply abandons the sectors that held its data, and makes them available for later
use. But whatever data those sectors contained remains intact. When you later expand a file this way
using SEEK, the old abandoned sector contents are incorporated into the file. Even if the sectors that
are  allocated  were  never  written  to  previously,  they  will  contain  the  &HF6  bytes  that  DOS'
FORMAT.COM uses to initialize a disk.

You can  turn  this  behavior  into  an  important  feature,  and in  some cases  recreate  a  file  that  was
accidentally truncated.  If  you erase a file by mistake,  it  is possible to recover it  using the Norton
Utilities or a similar disk utility program. But when an existing file is opened for output, DOS truncates
it to a length of zero. The following program shows the steps necessary to reconstruct a file that has
been destroyed this way. 

OPEN FileName$ FOR BINARY AS #1
SEEK #1, 30000
PUT #1, , X%
CLOSE #1

In this case, the file is restored to a length of 30000, and you can use larger or smaller values as
appropriate. Understand that there is no guarantee that DOS will reassign the same sectors to the file
that it originally used. But I have seen this trick work more than once, and it is at least worth a try.

In a similar fashion, you can reduce the size of a file by seeking to a given location and then writing
zero bytes there. Since BASIC provides no way to write zero bytes to a file, some additional trickery is
needed. This will be described in Chapter 11 in the section that discusses using CALL Interrupt to
access DOS and BIOS services.

Advanced File Techniques

There are a number of clever file-related tricks that can be performed using only BASIC programming.
Some of these tricks help you to improve on BASIC's speed, and others let you do things that are not
possible  using  the  normal  and obvious  methods.  BASIC is  no  slower  than  other  languages  when
reading and writing large amounts of data, and indeed, the bottleneck is frequently DOS itself. Further,
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if you can reduce the amount of data that is written, your files will be smaller as well. With that in
mind, let's look at some ways to further improve your programs.

Speeding Up File Access

The single most important way to speed up your programs is to read and write large amounts of data in
one operation. The normal method for saving a numeric or TYPE array is to write each element to disk
in a loop. But when there are many thousands of elements, a substantial amount of overhead is incurred
just from BASIC's repeated calls to DOS. There are several solutions you can consider, each with
increasing levels of complexity. 

BLOAD and BSAVE

The simplest way to read and write a large amount of contiguous data is with BLOAD and BSAVE.
BSAVE takes a "snapshot" of any contiguous area of memory up to 64K in size, and saves it to disk in
a single operation. When an application calls DOS to read or write a file, it furnishes DOS with the
segment and address where the data is to be loaded or saved from, and also the number of bytes.
BLOAD and BSAVE provide a simple interface to the DOS read and write services, and they can be
used to load and save numeric arrays up to 64K in size, as well as screen images.

I have seen a number of messages in the MS-BASIC forum
on CompuServe stating that BSAVE and BLOAD do not work
with compressed disks. Many of those messages have come
from Microsoft technical support, and I have no reason
to doubt them. It may be that only VB/DOS has this
problem, but I have no way to test QB and PDS because I
don't use disk compression.

A file that has been written using BSAVE includes a 7-byte header that identifies it as a BSAVE file, 
and also shows where it was saved from and how many bytes it contains. BLOAD requires this header, 
and thus cannot be used with any arbitrary type of file. But when used together, these commands can be
as much as ten times faster than a FOR/NEXT loop.

The example below creates and then saves a single precision array, and then loads it again to prove the
process worked.

DEFINT A-Z
CONST NumEls% = 20000
REDIM Array(1 TO NumEls%)            'create the array

FOR X = 1 TO NumEls%                 'file it with values
  Array(X) = X
NEXT

DEF SEG = VARSEG(Array(1))           'set the BSAVE segment 
BSAVE "ARRAY.DAT", VARPTR(Array(1)), NumEls% * LEN(Array(1)) 
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REDIM Array(1 TO NumEls%)            'recreate the array
DEF SEG = VARSEG(Array(1))           'the array may have moved 
BLOAD "ARRAY.DAT", VARPTR(Array(1))

FOR X = 1 TO NumEls%                 'prove the data is valid   
IF Array(X) <> X THEN
    PRINT "Error in element"; X
  END IF
NEXT
END

Because BSAVE and BLOAD use the current DEF SEG setting to know the segment the data is in,
VARSEG is used with the first element of the array. Once the correct segment has been established,
BSAVE is given the name of the file to save, the starting address, and the number of bytes of data. As
with the TYPE variable example shown earlier, LEN is ideal here as well to help calculate the number
of bytes that must be saved. In this case, each integer array element is two bytes long, and BASIC
multiplies the constants NumEls% and LEN(Array(1)) when the program is compiled. Therefore, no
additional code is added to the program to calculate this value at runtime.

Once the array has been saved it is redimensioned, which effectively clears it to all zero values prior to
reloading. Notice that DEF SEG is used again before the BLOAD statement. This is an important point,
because there is no guarantee that BASIC will  necessarily allocate the same block of memory the
second time. If a file is loaded into the wrong area of memory, your program is sure to crash or at least
not work correctly.

Also note that BLOAD always loads the entire file, and a length argument is not needed or expected.
This brings up an important issue: how can you determine how large to dimension an array prior to
loading it? The answer, as you may have surmised, is to open the file for binary access and read the
length stored in the BSAVE header. All that's needed is to know how the header is organized, as the
following program reveals.

DEFINT A-Z
TYPE BHeader
  Header AS STRING * 1
  Segment AS INTEGER
  Address AS INTEGER
  Length AS INTEGER
END TYPE
DIM BLHeader AS BHeader

OPEN "ARRAY.DAT" FOR BINARY AS #1
  GET #1, , BLHeader
CLOSE

IF ASC(BLHeader.Header) <> &HFD THEN
  PRINT "Not a valid BSAVE file"
  END
END IF

LongLength& = BLHeader.Length
IF LongLength& < 0 THEN
  LongLength& = LongLength& + 65536
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END IF

NumElements = LongLength& \ 2
REDIM Array(1 TO NumElements)

DEF SEG = VARSEG(Array(1))
BLOAD "ARRAY.DAT", VARPTR(Array(1))
END

Even though the original segment and address from which the file was saved is in the BSAVE header,
that information is not used here. In most situations you will always provide BLOAD with an address
to load the file to. However, if the address is omitted, BASIC uses the segment and address stored in
the  file,  and ignores  the  current  DEF SEG setting.  This  would  be  useful  when handling  text  and
graphics images which are always loaded to the same segment from which they were originally saved.
But in general I recommend that you always define an explicit segment and address.

There are a few other points worth elaborating on as well. First, the program examines the first byte in
the file to be sure it is the special value &HFD which identifies a BSAVE file. The ASC function is
required for that, since the only way to define a TYPE component one byte long is as a string.

Second, the length is stored as an unsigned integer, which cannot be manipulated directly in a BASIC
program if its value exceeds 32767. As you learned in Chapter 2, integer values larger than 32767 are
treated by BASIC as signed, and in this case they are considered negative. Therefore, the value is first
assigned to a long integer, which is then tested for a value less than zero. If it is indeed negative, 65536
is added to the variable to convert it to an equivalent positive number. Note that the length in a BSAVE
header does not include the header length; only the data itself is considered.

If you single-step through this program after running the earlier one that created the file, you will see
that the code that adds 65536 is executed, because the header shows that the file contains 40000 bytes.

There are two limitations to using BSAVE and BLOAD this way. One problem is that you may not
want the header to be attached to the file. The other, more important problem is that BASIC allows
arrays to exceed 64K. Saving a single huge array in multiple files is clumsy, and contributes to the
clutter on your disks. The header issue is less important, because you can always access the file with
normal binary statements after using a SEEK to skip over the header.  But the huge array problem
requires some heavy ammunition.

One final point worth mentioning is that BSAVE and BLOAD assume a .BAS file name extension if
none is given. This is incredibly stupid, since the contents of a BSAVE file have no relationship to a
BASIC source file. Therefore, to save a file with no extension at all you must append a period to the
name: BSAVE "MYFILE.", Address, Length.

Beyond BSAVE

The program that follows includes both a demonstration and a pair of subprograms that let you save
any  data  regardless  of  its  size  or  location.  These  routines  are  primarily  intended for  saving  huge
numeric and TYPE arrays, but there is no reason they couldn't be used for other purposes. However,

201



they cannot be used with conventional variable-length string arrays, because the data in those arrays is
not contiguous. The file is processed in 16K blocks using multiple passes, and the actual saving and
loading is performed by calling BASIC's internal PUT # and GET # routines.

DEFINT A-Z
'NOTE: This program must be compiled with the /ah option.

DECLARE SUB BigLoad (FileName$, Segment, Address, Bytes&)
DECLARE SUB BigSave (FileName$, Segment, Address, Bytes&)
DECLARE SUB BCGet ALIAS "B$GET3" (BYVAL FileNum, BYVAL Segment, _
  BYVAL Address, BYVAL NumBytes)
DECLARE SUB BCPut ALIAS "B$PUT3" (BYVAL FileNum, BYVAL Segment, _
  BYVAL Address, BYVAL NumBytes)

CONST NumEls% = 20000
REDIM Array&(1 TO NumEls%)
NumBytes& = LEN(Array&(1)) * CLNG(NumEls%)

FOR X = 1 TO NumEls%            'fill the array
  Array&(X) = X
NEXT

Segment = VARSEG(Array&(1))     'save the array
Address = VARPTR(Array&(1))
CALL BigSave("ARRAY.DAT", Segment, Address, NumBytes&)

REDIM Array&(1 TO NumEls%)      'clear the array
Segment = VARSEG(Array&(1))     'reload the array
Address = VARPTR(Array&(1))
CALL BigLoad("ARRAY.DAT", Segment, Address, NumBytes&)

FOR X = 1 TO NumEls%            'prove this all worked
  IF Array&(X) <> X THEN
    PRINT "Error in element"; X
  END IF
NEXT
END

SUB BigLoad (FileName$, DataSeg, Address, Bytes&) STATIC
  FileNum = FREEFILE
  OPEN FileName$ FOR BINARY AS #FileNum
  NumBytes& = Bytes&            'work with copies to
  Segment = DataSeg             'protect the parameters

  DO
    IF NumBytes& > 16384 THEN
      CurrentBytes = 16384
    ELSE
      CurrentBytes = NumBytes&
    END IF
    CALL BCGet(FileNum, Segment, Address, CurrentBytes)
    NumBytes& = NumBytes& - CurrentBytes
    Segment = Segment + &H400
  LOOP WHILE NumBytes&

  CLOSE #FileNum
END SUB

SUB BigSave (FileName$, DataSeg, Address, Bytes&) STATIC
  FileNum = FREEFILE
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  OPEN FileName$ FOR BINARY AS #FileNum
  NumBytes& = Bytes&            'work with copies to
  Segment = DataSeg             'protect the parameters

  DO
    IF NumBytes& > 16384 THEN
      CurrentBytes = 16384
    ELSE
      CurrentBytes = NumBytes&
    END IF
    CALL BCPut(FileNum, Segment, Address, CurrentBytes)
    NumBytes& = NumBytes& - CurrentBytes
    Segment = Segment + &H400
  LOOP WHILE NumBytes&
  CLOSE #FileNum
END SUB

Although BASIC lets you save and load only single variables or array elements, its internal library
routines can work with data of nearly any size. And since TYPE variables can be as large as 64K, these
routines must be able to accommodate data at least that big. Therefore, BASIC's usual restriction on
what you can and cannot read or write to disk with GET # and PUT # is an arbitrary one.

Accessing BASIC's internal routines requires that you declare them using ALIAS, since it is illegal to
call a routine that has a dollar sign in its name. As you can see, these routines expect their parameters to
be passed by value, and this is handled by the DECLARE statements. Normally, you cannot call these
routines from within the QB editing environment. But if you separate the two subprograms and place
them into a different module, that module can be compiled and added to a Quick Library. That is, the
subprograms can be together in one file, but not with the demo that calls them. Be sure to add the two
DECLARE statements that define B$PUT3 and B$GET3 to that module as well.

The long integer array this program creates exceeds the normal 64K limit, so the /ah compiler switch
must be used. Notice in the BigLoad and BigSave subprograms that copies are made of two of the
incoming parameters. If this were not done, the subprograms would change the passed values, which is
a bad practice in this case. Also, notice how the segment value that is used for saving and loading is
adjusted through each pass of the DO loop. Since the data is saved in 16K blocks, the segment must be
increased by 16384 \ 16 = 1024 for each pass. The use of an equivalent &H value here is arbitrary; I
translated  this  program from another  version written  in  assembly  language that  used  Hex for  that
number.

Processing Large Files

Although the solutions shown so far are valuable when saving or loading large amounts of data, that is
as far as they go. In many cases you will also need to process an entire existing file. Some examples are
a program that copies or encrypts files, or a routine that searches an entire file for a string of text. As
with saving and loading files, processing a file or portion of a file in large blocks is always faster and
more effective than processing it line by line.
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The file copying subprogram below accepts source and destination file names, and copies the data in
4K blocks. The 4K size is significant, because it is large enough to avoid many repeated calls to DOS,
and small enough to allow a conventional string to be used as a file buffer. As with the BigLoad and
BigSave routines, the file is processed in pieces. Also, for simplicity a complete file name and path is
required. Although the DOS COPY command lets you use a source file name and a destination drive or
path only, the CopyFile subprogram requires that entire file names be given for both.

DEFINT A-Z
DECLARE SUB CopyFile (InFile$, OutFile$)

SUB CopyFile (InFile$, OutFile$) STATIC
  File1 = FREEFILE
  OPEN InFile$ FOR BINARY AS #File1
 
  File2 = FREEFILE
  OPEN OutFile$ FOR BINARY AS #File2

  Remaining& = LOF(File1)
  DO
    IF Remaining& > 4096 THEN
      ThisPass = 4096
    ELSE
      ThisPass = Remaining&
    END IF
    Buffer$ = SPACE$(ThisPass)
    GET #File1, , Buffer$
    PUT #File2, , Buffer$
    Remaining& = Remaining& - ThisPass
  LOOP WHILE Remaining&
  CLOSE File1, File2
END SUB

Once the basic structure of a routine that processes an entire file has been established, it can be easily
modified for other purposes. For example, CopyFile can be altered to encrypt an entire file, search a
file for a text string, and so forth. A few of these will be shown here. Note that for simplicity and
clarity,  CopyFile  creates  a  new buffer  with  each pass  through the  loop.  You could  avoid  that  by
preceding the assignment  with  IF LEN(Buffer$) <> ThisPass THEN or  similar  logic,  to
avoid creating the buffer when it  already exists  and is  the correct length.  The BufIn function and
example below serves as a very fast LINE INPUT replacement. Even though BASIC's own file input
routines  provide  buffering  for  increased  speed,  they  are  not  as  effective  as  this  function.  In  my
measurements  I  have found BufIn to be consistently  four to five times faster than BASIC's LINE
INPUT routine when reading large (greater than 50K) files. With smaller files the improvement is less,
but still substantial.

DEFINT A-Z
DECLARE FUNCTION BufIn$ (FileName$, Done)

LINE INPUT "Enter a file name: ", FileName$

'---- Show how fast BufIn$ reads the file.
Start! = TIMER
DO
  This$ = BufIn$(FileName$, Done)
  IF Done THEN EXIT DO
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LOOP
Done! = TIMER
PRINT "Buffered input: "; Done! - Start!

'---- Now show how long BASIC's LINE INPUT takes.
Start! = TIMER
OPEN FileName$ FOR INPUT AS #1
DO
  LINE INPUT #1, This$
LOOP UNTIL EOF(1)
Done! = TIMER
PRINT " BASIC's INPUT: "; Done! - Start!
CLOSE
END

FUNCTION BufIn$ (FileName$, Done) STATIC
IF Reading GOTO Process        'now reading, jump in

'----- initialization
Reading = -1                   'not reading so start now
Done = 0                       'clear Done just in case
CR$ = CHR$(13)                 'define for speed later

FileNum = FREEFILE             'open the file
OPEN FileName$ FOR BINARY AS #FileNum

Remaining& = LOF(FileNum)      'byte count to be read
IF Remaining& = 0 GOTO ExitFn  'empty or nonexistent file

BufSize = 4096                 'bytes to read each pass
Buffer$ = SPACE$(BufSize)      'assume BufSize bytes

DO                             'the main outer loop
  IF Remaining& < BufSize THEN 'read only what remains
    BufSize = Remaining&       'resize the buffer
    IF BufSize < 1 GOTO ExitFn 'possible only if EOF byte
    Buffer$ = SPACE$(BufSize)  'create the file buffer
  END IF
  GET #FileNum, , Buffer$      'read a block

  BufPos = 1                   'start at the beginning
  DO                                 'walk through buffer
    CR = INSTR(BufPos, Buffer$, CR$) 'look for a Return
    IF CR THEN                       'we found one
      SaveCR = CR                    'save where
      BufIn$ = MID$(Buffer$, BufPos, CR - BufPos)
      BufPos = CR + 2                'skip inevitable LF
      EXIT FUNCTION                  'all done for now
    ELSE                             'back up in the file
      '---- if at the end and no CHR$(13) was found
      '     return what remains in the string
      IF SEEK(FileNum) >= LOF(FileNum) THEN
        Output$ = MID$(Buffer$, SaveCR + 2)
        '---- trap a trailing EOF marker
        IF RIGHT$(Output$, 1) = CHR$(26) THEN
          Output$ = LEFT$(Output$, LEN(Output$) - 1)
        END IF
        BufIn$ = Output$             'assign the function
        GOTO ExitFn                  'and exit now
      END IF
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      Slop = BufSize - SaveCR - 1    'calc buffer excess
      Remaining& = Remaining& + Slop 'calc file excess
      SEEK #FileNum, SEEK(FileNum) - Slop
    END IF

Process:
   LOOP WHILE CR               'while more in buffer
   Remaining& = Remaining& - BufSize

LOOP WHILE Remaining&          'while more in the file

ExitFn:
  Reading = 0                  'we're not reading anymore
  Done = -1                    'show that we're all done
  CLOSE #FileNum               'final clean-up
END FUNCTION

As you can see, the BufIn function opens the file, reads each line of text, and then closes the file and
sets a flags when it has exhausted the text. Even though this example show BufIn being invoked in a
DO loop, it can be used in any situation where LINE INPUT would normally be used. As long as you
declare the function, it may be added to programs of your own and used when sequential line-oriented
data must be read as quickly as possible.

I don't think each statement in the BufIn function warrants a complete explanation, but some of the less
obvious aspects do. BufIn operates by reading the file in 4K blocks in an outer loop, and each block is
then examined for a CHR$(13) line terminator in an inner loop that uses INSTR. INSTR happens to be
extremely fast, and it is ideal when used this way to search a string for a single character.

The only real complication is when a portion of a string is in the buffer, because that requires seeking
backwards in the file to the start of the string. Other, less important complications that also must be
handled arise from the presence of a CHR$(26) EOF marker, and a final string that has no terminating
carriage return.

I have made every effort to make this function as bullet-proof as possible; however, it is mandatory that
every carriage return in  the file  be followed by a  corresponding line feed.  Some word processors
eliminate the line feed to indicate a soft return at the end of a line, as opposed to the hard return that
signifies the end of a paragraph. Most word processor files use a non-standard format anyway, so that
should not be much of a problem.

The last complete program I'll present here is called TEXTFIND.BAS, and it searches a group of files
for a specified string. TEXTFIND is particularly useful when you need to find a document, and cannot
remember its  name.  If  you can think of  a  snippet  of text  the file  might  contain,  TEXTFIND will
identify which files contain that text, and then display it in context. 

'----- TEXTFIND.BAS

'Copyright (c) 1991 by Ethan Winer

DEFINT A-Z

TYPE RegTypeX                   'used by CALL Interrupt
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  AX    AS INTEGER
  BX    AS INTEGER
  CX    AS INTEGER
  DX    AS INTEGER
  BP    AS INTEGER
  SI    AS INTEGER
  DI    AS INTEGER
  Flags AS INTEGER
  DS    AS INTEGER
  ES    AS INTEGER
END TYPE
DIM Registers AS RegTypeX       'holds the CPU registers

TYPE DTA                        'used by DOS services
  Reserved  AS STRING * 21      'reserved for use by DOS
  Attribute AS STRING * 1       'the file's attribute
  FileTime  AS STRING * 2       'the file's time
  FileDate  AS STRING * 2       'the file's date
  FileSize  AS LONG             'the file's size
  FileName  AS STRING * 13      'the file's name
END TYPE
DIM DTAData AS DTA

DECLARE SUB InterruptX (IntNumber, InRegs AS RegTypeX, OutRegs AS RegTypeX) 
CONST MaxFiles% = 1000
CONST BufMax% = 4096

REDIM Array$(1 TO MaxFiles%)    'holds the file names
Zero$ = CHR$(0)                 'do this once for speed

'----- This function returns the larger of two integers.
DEF FNMax% (Value1, Value2)
  FNMax% = Value1
  IF Value2 > Value1 THEN FNMax% = Value2
END DEF

'----- This function loads a group of file names.
DEF FNLoadNames%
  STATIC Count

  '---- define a new Data Transfer Area for DOS
  Registers.DX = VARPTR(DTAData)
  Registers.DS = VARSEG(DTAData)
  Registers.AX = &H1A00
  CALL InterruptX(&H21, Registers, Registers)

  Count = 0                  'zero the file counter
  Spec$ = Spec$ + Zero$      'DOS needs an ASCIIZ string
  Registers.DX = SADD(Spec$) 'show where the spec is
  Registers.DS = SSEG(Spec$)    'use this with PDS
 'Registers.DS = VARSEG(Spec$)  'use this with QB
  Registers.CX = 39          'the attribute for any file
  Registers.AX = &H4E00      'find file name service

'---- Read the file names that match the search specification. The Flags   
'     registers indicates when no more matching files are found. Copy   
'     each file name to the string array. Service &H4F is used to   
'     continue the search started with service &H4E using the same file   
'     specification.
  DO
    CALL InterruptX(&H21, Registers, Registers)
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    IF Registers.Flags AND 1 THEN EXIT DO
    Count = Count + 1
    Array$(Count) = DTAData.FileName
    Registers.AX = &H4F00
  LOOP WHILE Count < MaxFiles%

  FNLoadNames% = Count       'return the number of files
END DEF
 
'----- The main body of the program begins here.
PRINT "TEXTFIND Copyright (c) 1991, Ziff-Davis Press."
PRINT

'---- Get the file specification, or prompt for one if it wasn't given. 
Spec$ = COMMAND$
IF LEN(Spec$) = 0 THEN
  PRINT "Enter a file specification: ";
  INPUT "", Spec$
END IF

'----- Ask for the search string to find.
PRINT "    Enter the text to find: ";
INPUT Find$
PRINT

Find$ = UCASE$(Find$)        'ignore capitalization
FindLength = LEN(Find$)      'see how long Find$ is
IF FindLength = 0 THEN END

Count = FNLoadNames%         'load the file names
IF Count = 0 THEN
  PRINT "No matching files"
  END
END IF

'----- Isolate the drive and path if given.
FOR X = LEN(Spec$) TO 1 STEP -1
  Char = ASC(MID$(Spec$, X))
  IF Char = 58 OR Char = 92 THEN   '":" or "\"
    Path$ = LEFT$(UCASE$(Spec$), X)
    EXIT FOR
  END IF
NEXT

FOR X = 1 TO Count           'for each matching file
  Array$(X) = LEFT$(Array$(X), INSTR(Array$(X), Zero$) - 1)   
PRINT "Reading "; Path$; Array$(X)
  OPEN Path$ + Array$(X) FOR BINARY AS #1
  Length& = LOF(1)           'get and save its length
  IF Length& < FindLength GOTO NextFile

  BufSize = BufMax%          'assume a 4K text buffer
  IF BufSize > Length& THEN BufSize = Length&
  Buffer$ = SPACE$(BufSize)  'create the file buffer

  LastSeek& = 1              'seed the SEEK location
  BaseAddr& = 1              'and the starting offset
  Bytes = 0                  'how many bytes to search

  DO                         'the file read loop
     BaseAddr& = BaseAddr& + Bytes 'track block start
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     IF Length& - LastSeek& + 1 >= BufSize THEN
       Bytes = BufSize       'at least BufSize bytes left
     ELSE                    'get just what remains
       Bytes = Length& - LastSeek& + 1
       Buffer$ = SPACE$(Bytes) 'adjust the buffer size
     END IF

     SEEK #1, LastSeek&      'seek back in the file
     GET #1, , Buffer$       'read a chunk of the file

     Start = 1               'this is the INSTR loop for
     DO                      'searching within the buffer
       Found = INSTR(Start, UCASE$(Buffer$), Find$)
       IF Found THEN         'print it in context
         Start = Found + 1   'to resume using INSTR later
         PRINT               'add a blank line for clarity          
         PRINT MID$(Buffer$, FNMax%(1, Found - 20), FindLength + 40)          
         PRINT

         PRINT "Continue searching "; Array$(X);
         PRINT "? (Yes/No/Skip): ";
         WHILE INKEY$ <> "": WEND   'clear kbd buffer
         DO
           KeyHit$ = UCASE$(INKEY$) 'then get a response
         LOOP UNTIL KeyHit$ = "Y" OR KeyHit$ = "N" OR KeyHit$ = "S"              
PRINT KeyHit$              'echo the letter
         PRINT

         IF KeyHit$ = "N" THEN      '"No"
           END                      'end the program
         ELSEIF KeyHit$ = "S" THEN  '"Skip"
           GOTO NextFile            'go to the next file
         END IF

       END IF
                                    'search for multiple hits      
LOOP WHILE Found                    'within the file buffer 
     IF Bytes = BufSize THEN        'still more file to examine        
       '---- Back up a bit in case Find$ is there but straddling the buffer      
       '     boundary. Then update the internal SEEK pointer.        
       BaseAddr& = BaseAddr& - FindLength
       LastSeek& = BaseAddr& + Bytes
     END IF

  LOOP WHILE Bytes = BufSize AND BufSize = BufMax%

NextFile:
  CLOSE #1
  Buffer$ = ""               'clear the buffer for later

NEXT
END

TEXTFIND may be run either in the BASIC editor or compiled to an executable file and then run. If
you are using QuickBASIC you will need either QB.QLB or QB.LIB because the program relies on
CALL Interrupt to interface with DOS. To start QB and load the QB.QLB library simply enter qb /l.
If you are compiling the program, specify the QB.LIB file when it is linked:

link textfind , , nul , qb;
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For BASIC 7 users the appropriate library names are QBX.QLB and QBX.LIB respectively, and for
VB/DOS the libraries are VBDOS.QLB and VBDOS.LIB.

When you run TEXTFIND you may either enter a file specification such as *.BAS or LET*.TXT or the
like as a command line argument, or enter nothing and let the program prompt you. In either case, you
will then be asked to enter the text string you're searching for. TEXTFIND will search through every
file that matches the file specification, and display the string in context if it is found.

As written, TEXTFIND shows the 20 characters before and after the string. You may of course modify
that to any reasonable number of characters. Simply change the 20 and 40 values in the corresponding
PRINT statement. The first value is the number of characters on either side to display, and the second
must be twice that to accommodate the length of the search string itself. Note the use of FNMax%
which ensures that the program will not try to print characters before the start of the buffer. If the text
were found at the very start of the file, attempting to print the 20 characters that precede it will create
an "Illegal function call" error at the MID$ function.

Each time the string is found and displayed you are offered the opportunity to continue searching the
same file, ending the program, or skipping to the next file.

Although CALL Interrupt will be discussed in depth in Chapter 11, there are several aspects of the
program's operation that require elaboration here. First, any program that uses the DOS Find First and
Find Next services to read a list  of file names must establish a small block of memory as a Disk
Transfer Area (DTA). The DTA holds pertinent information about each file that is found, such as its
date, time, size, and attribute. In this case, though, we are merely interested in each file's name. DOS
service &H1A is used to assign the DTA to a TYPE variable that is designed to facilitate extracting this
information.  BASIC PDS, and VB/DOS, include the DIR$ function which lets you read file names, but
I have used CALL Interrupt here so the program will also work with QuickBASIC.

Second, DEF FN-style functions are used instead of formal functions because they are smaller and
slightly faster. The FNLoadNames function is responsible for loading all of the file names into the
string array, and it returns the number of files that were found. After each call to DOS to find the next
matching name, the Carry flag is tested. DOS often uses the carry flag to indicate the success or failure
of an operation, and in this case it is set to True when there are no more files.

Note how a CHR$(0) is appended to the file specification when calling DOS, to indicate the end of the
string. Similarly, DOS returns each file name terminated with a zero byte, and INSTR is used to find
that byte. Then, only those characters to the left of the zero are kept using LEFT$.

Third, the block of code that isolates the drive and path name if given is needed because the DOS Find
services return only a file name. If you enter D:\ANYDIR\*.* as a file specification, that is then passed
to DOS. But DOS returns only the names it finds that match the specification. Therefore, the drive and
path must be added to the beginning of each name, to create a complete file name for the subsequent
OPEN command.
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Finally, as with the BufIn function, the files are read in 4K (4096-byte) blocks, except for the last block
which of course may be smaller. A smaller block is also used when the file is less than 4K in length.
Within each outer read loop, an inner loop is employed to search for the text, and again INSTR is used
because  of  its  speed.  As  written,  TEXTFIND  looks  for  the  specified  string  without  regard  to
capitalization. You can remove that feature by eliminating the UCASE$ function in both the INSTR
loop, and at the point in the program where Find$ is capitalized.

Minimizing Disk Usage

While improving your  program's performance is  certainly a  desirable  pursuit,  equally important  is
minimizing the amount of space needed to store data. Besides the obvious savings in disk space, the
less data there is, the faster it can be loaded and saved. There are a number of simple tricks you can use
to reduce the size of your data files, and some types of data lend themselves quite nicely to compaction
techniques.

Date information is particularly easy to reduce. At the minimum, you should remove the separating
slashes or dashes—perhaps with a dedicated function. For example, you would convert "06-22-91" to
"062291". Even better, however, is to convert each digit pair to an equivalent single CHR$() byte, and
also swap the order of the digits. That is, the date above would be packed to CHR$(91) + CHR$(6) +
CHR$(22).  By placing the year  first  followed by the  month  and then  the  day,  dates  may also  be
compared.  Otherwise,  a  normal  string  comparison  would  show the  date  "01-01-91"  as  being  less
(earlier) than "12-31-90" even though it is in fact greater (later). A complementary function would then
extract the ASCII values into a date string suitable for display. These are shown below.

DEFINT A-Z
DECLARE FUNCTION PackDate$ (D$)
DECLARE FUNCTION UnPackDate$ (D$)

D$ = "03-22-91"
Packed$ = PackDate$(D$)
UnPacked$ = UnPackDate$(Packed$)

PRINT D$
PRINT Packed$
PRINT UnPacked$
END

FUNCTION PackDate$ (D$) STATIC
  Year = VAL(RIGHT$(D$, 2))
  Month = VAL(LEFT$(D$, 2))
  Day = VAL(MID$(D$, 4, 2))
  PackDate$ = CHR$(Year) + CHR$(Month) + CHR$(Day)
END FUNCTION

FUNCTION UnPackDate$ (D$) STATIC
  Month$ = LTRIM$(STR$(ASC(MID$(D$, 2, 1))))
  Day$ = LTRIM$(STR$(ASC(RIGHT$(D$, 1))))
  Year$ = LTRIM$(STR$(ASC(LEFT$(D$, 1))))
  UnPackDate$ = RIGHT$("0" + Month$, 2) + "-" + RIGHT$("0" + Day$, 2) + _     
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    "-" + RIGHT$("0" + Year$, 2)
END FUNCTION

Because the compacted dates will likely contain a CHR$(26) byte which is used by DOS and BASIC as
an EOF marker, this method is useful only with random access and binary data files. But since it is
usually large database files that need the most help anyway, these functions are ideal.

Another useful database compaction technique is to replace selected strings with an equivalent integer
or  byte value.  The commercial  database program  DataEase uses  a  very clever  trick to  implement
multiple  choice fields.  It  is  not  uncommon to have a  string field that  contains,  say,  an income or
expense category. For example, most businesses are required to indicate the purpose of each check that
is written. Instead of using a string field and requiring the operator to type Entertainment, Payroll, or
whatever, a menu can be popped up showing a list of possible choices.

Assuming there are no more than 256 possibilities, the choice number that was entered can be stored on
disk in a single byte. You would use something like FileType.Choice = CHR$(MenuChoice),
where the Choice portion of the file type was defined as STRING * 1. Then to extract the choice after a
record was read you would use MenuChoice = ASC(FileType.Choice).

Some database programs support Memo Fields, whereby the user can enter a varying amount of memo
information.  Since database files almost always use a fixed length for each record,  this presents a
programming dilemma: How much space do you set aside for the memo field? If you set aside too
little, the user won't be very pleased. But setting aside enough to accommodate the longest possible
string is very wasteful of disk space.

One good solution is to store a long integer pointer in each record, and keep the memos themselves in a
separate file. A long integer requires only four bytes of storage, yet it  can hold a seek location for
memo data kept in a separate file whose size can be greater than 2000 MB! As each new memo is
entered, the current length—derived using LOF—of the memo file is written in the current record of
the data file. The memo string is then appended to the memo file. When you want to retrieve the memo,
simply seek to the long integer offset held in the main data record and use LINE INPUT to read the
string from the memo file.

The  only  real  complication  with  this  method  is  when  a  memo  field  must  be  edited.  There's  no
reasonable way to lengthen or shorten data in the middle of a file, and no reasonable program would
even try.  Instead,  you would simply overwrite the existing data with special  values—perhaps with
CHR$(255) bytes—and then append the new memo to the end of the file. Periodically you would have
to run a utility program that copied only the valid memo fields to a new file, and then delete the old
file. Be aware that you will also have to update the long integer pointers in the main data file, to reflect
the new offsets of their corresponding memo fields.

The last data size reduction technique is probably the simplest of all, and that is to use the appropriate
type of data and file access method. If you can get by with a single precision variable, don't use a
double  precision.  And  if  the  range  of  integer  values  is  sufficient,  use  those.  Many  programmers
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automatically use single precision variables without even thinking about it, when a smaller data type
would suffice.

Finally, avoid using sequential files to store numeric data. As I already pointed out, an integer can be
stored in a binary file in only two bytes—no matter what its value—compared to as many as eight bytes
needed to store the equivalent digits, possible minus sign, and a terminating carriage return and line
feed. Be creative, and don't be afraid to invent a method that is suited to your particular application.
The Lotus format is a good one for many other applications, whereby a size and type code precedes
each piece of information. If your needs are modest you can probably get away with a single byte as a
type code, further reducing the amount of storage that is needed.

Avoiding BASIC's Limitations

So far I have focused on improving what BASIC already does. I showed techniques for speeding up file
accesses, and reducing the size of your data. I even showed how to overcome BASIC's unwillingness to
directly write binary data larger than a single variable. But there are other BASIC limitations that can
be overcome as well.

One important limitation is that BASIC lets you run only .EXE files with the RUN statement. If you
need to execute a .COM program or a batch file, BASIC will not let you. However you can trick DOS
into believing a .COM program or batch file's name was entered at the DOS prompt. The StuffBuffer
subprogram shown below inserts a string of up to 15 characters directly into the keyboard buffer. It
works by poking each character one by one into the buffer address in low memory. Thus, when your
program ends the characters are there as if someone had typed them manually.

DEFINT A-Z
DECLARE SUB StuffBuffer (Cmd$)

SUB StuffBuffer (Cmd$) STATIC
'----- Limit the string to 14 characters plus Enter and save the length.
Work$ = LEFT$(Cmd$, 14) + CHR$(13)
Length = LEN(Work$)

'----- Set the segment for poking, define the buffer head and tail, and   
'      then poke each character.
DEF SEG = 0
POKE 1050, 30
POKE 1052, 30 + Length * 2
FOR X = 1 TO Length
  POKE 1052 + X * 2, ASC(MID$(Work$, X))
NEXT
END SUB

To run a .COM program or batch file simply call StuffBuffer and end the program:

CALL StuffBuffer("PROGRAM"): END
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A terminating carriage return is added to the command, to include a final Enter keypress. Because the
keyboard buffer holds only 15 characters, you cannot specify long path names when using StuffBuffer.
However, you can easily open and write a short batch file with the complete path and file name, and
run the batch file instead.

Notice that this technique will not work if the original BASIC program itself has been run from a batch
file, because that batch file gains control when the program ends. Also, when creating and running a
batch file that will be run by StuffBuffer,  it  is imperative that the last line not have a terminating
carriage return. The short example below shows the correct way to create and run a batch file for use
with StuffBuffer. 

OPEN "MYBAT.BAT" FOR OUTPUT AS #1
  PRINT #1, "cd \somedir"
  PRINT #1, "someprog";
CLOSE
CALL StuffBuffer("MYBAT")
END

You can also have the batch file re-run the BASIC program by entering its name as the last line in the
batch file. In that case you would include the semicolon at the end of that line, instead of the line that
runs  the  program.  Note  that  StuffBuffer  is  an  ideal  replacement  for  BASIC's  SHELL command,
because with SHELL your BASIC program remains in memory while the subsequent program is run.
Using StuffBuffer with a batch file removes the BASIC program entirely, thus freeing up all available
system memory for the program being run.

Understand that StuffBuffer cannot be used to activate a TSR or other program that monitors keyboard
interrupt 9. This limitation also extends to the special key sequences that enable the Turbo mode on
some  PC  compatibles,  and  simulating  Ctrl-Esc  to  activate  the  DOS  compatibility  box  of  OS/2.
Programs that look for these special keys insert themselves into the keyboard chain before the keyboard
buffer, and act on them before the BIOS has the chance to store them in the buffer.

Another BASIC limitation is that only 15 files may be open at one time. In truth, this is really a DOS
limitation, and indeed, the fix requires a DOS interrupt service. It is also possible to reduce the number
of files open at once by combining data. For example, the BASIC PDS ISAM file manager uses this
technique to store both the data and its  indexes all  in the same file.  But doing that requires more
complication than many programmers are willing to put up with.

The program below shows how to increase the number of files that DOS will let you open. Be aware
that the DOS service that performs this magic requires at least version 3.3, and this program tests for
that.

DEFINT A-Z
DECLARE SUB Interrupt (IntNum, InRegs AS ANY, OutRegs AS ANY) DECLARE SUB 
MoreFiles (NumFiles)
DECLARE FUNCTION DOSVer% ()
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TYPE RegType
  AX    AS INTEGER
  BX    AS INTEGER
  CX    AS INTEGER
  DX    AS INTEGER
  BP    AS INTEGER
  SI    AS INTEGER
  DI    AS INTEGER
  Flags AS INTEGER
END TYPE
DIM SHARED InRegs AS RegType, OutRegs AS RegType

ComSpec$ = ENVIRON$("COMSPEC")
BootDrive$ = LEFT$(ComSpec$, 2)
OPEN BootDrive$ + "\CONFIG.SYS" FOR INPUT AS #1
  DO WHILE NOT EOF(1)
    LINE INPUT #1, Work$
    Work$ = UCASE$(Work$)
    IF LEFT$(Work$, 6) = "FILES=" THEN
      FilesVal = VAL(MID$(Work$, 7))
      EXIT DO
    END IF
  LOOP
CLOSE

INPUT "How many files? ", NumFiles
NumFiles = NumFiles + 5
IF NumFiles > FilesVal THEN
  PRINT "Increase the FILES= setting in CONFIG.SYS"
  END
END IF

IF DOSVer% >= 330 THEN
  CALL MoreFiles(NumFiles)
ELSE
  PRINT "Sorry, DOS 3.3 or later is required."
  END
END IF

FOR X = 1 TO NumFiles
  OPEN "FTEST" + LTRIM$(STR$(X)) FOR RANDOM AS #X
NEXT
CLOSE
KILL "FTEST*."
END

FUNCTION DOSVer% STATIC
  InRegs.AX = &H3000
  CALL Interrupt(&H21, InRegs, OutRegs)
  Major = OutRegs.AX AND &HFF
  Minor = OutRegs.AX \ &H100
  DOSVer% = Minor + 100 * Major
END FUNCTION

SUB MoreFiles (NumFiles) STATIC
  InRegs.AX = &H6700
  InRegs.BX = NumFiles
  CALL Interrupt(&H21, InRegs, OutRegs)
END SUB
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As with the TEXTFIND program, this also uses CALL Interrupt and therefore requires QB.LIB and
QB.QLB to compile or run in the QuickBASIC environment respectively. Even though DOS allows
you to increase the number of files past the default 15, an appropriate FILES= statement must also be
added to the PC's CONFIG.SYS file. In fact, the FILES= value must be five greater than the desired
number of files, because DOS reserves the first five for itself. The reserved files devices are PRN,
AUX, STDIN, STDOUT, and STDERR. PRN is of course the printer connected to LPT1, AUX is the
first COM port, and the remaining devices are all part of the CON console device.

In order  to find the CONFIG.SYS file  this  program uses the ENVIRON$ function to  retrieve the
current COMSPEC= setting. Unless someone has changed it on purpose, the COMSPEC environment
variable holds the drive and path from which the PC was booted, and the file name COMMAND.COM.
Then each line in CONFIG.SYS is examined for the string FILES=, to ensure that enough file entries
were specified. This program makes only a minimal attempt to identify the FILES= string, so if there
are extra spaces such as FILES = 30 the test will fail.

Next the DOS version is tested to ensure that it is version 3.3 or later. The DOSVer function is designed
to return the DOS version as an integer value 100 times higher than the actual version number. That is,
DOS 2.14 is returned as 214, and DOS 3.30 is instead 330. This eliminates the floating point math
required to return a value such as 2.14 or 3.3, resulting in less code and faster operation.

Assuming the FILES= setting is sufficiently high and the DOS version is at least 3.30, the program
creates and then deletes the specified number of files just to show it worked. You should be aware that
the BASIC editor must also open files when it saves your program.  I mention this because it is possible
to be experimenting with a program such as this one, and not be able to save your work because the
maximum allowable number of files are already open.  In that case BASIC issues a "Too many files"
error message, and refuses to let you save.  The solution is to press F6 to go to the Immediate window,
and then type CLOSE.

A similar situation happens when you try to shell to DOS from the BASIC editor, because shelling
requires BASIC to open COMMAND.COM. But an unsuccessful shell results in an "Illegal function
call" error. That message is particularly exasperating when BASIC's SHELL fails, because the failure is
usually  caused  by  insufficient  memory  or  because  COMMAND.COM  cannot  be  located.  Why
Microsoft chose to return "Illegal function call" rather than "Out of memory", "File not found", or "Too
many files" is anyone's guess.

Another important BASIC limitation that can be overcome only with clever trickery is its inability to
map multiple variables to the same memory address. This is an important feature of the C language,
and  it  has  some important  applications.  For  example,  if  you are  frequently  accessing  a  group of
characters  in  the  middle  of  a  string,  you must  use  MID$ each  time  you assign  or  retrieve  them.
Unfortunately, MID$ is very slow because it always extracts a copy of the specified characters, even if
you are merely printing them. If only BASIC would let you create a new string that always referred to
that group of characters in the first string, the access speed could be greatly improved.
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The FIELD statement lets you do exactly this, and each time a new FIELD statement is encountered the
same  area  of  memory  is  referred  to.  The  short  example  below  shows  the  tremendous  speed
improvement possible only when two variables can occupy the same address. An additional trick used
here is to open the DOS reserved "\DEV\NUL" device. This eliminates any disk access, and avoids also
having to create an empty file just to implement the FIELD statement.

DEFINT A-Z

OPEN "\DEV\NUL" FOR RANDOM AS #1 LEN = 30
FIELD #1, 10 AS First$, 10 AS Middle$, 10 AS Last$
FIELD #1, 30 AS Entire$
LSET Entire$ = "ABCDEFGHIJKLMNOPQRSTUVWXYZ1234"
Start! = TIMER
FOR X = 1 TO 20000
  Temp = ASC(Middle$)
NEXT
Done! = TIMER
PRINT USING "##.### seconds for FIELD"; Done! - Start!
CLOSE

Entire$ = "ABCDEFGHIJKLMNOPQRSTUVWXYZ1234"
Start! = TIMER
FOR X = 1 TO 20000
  Temp = ASC(MID$(Entire$, 10, 10))
NEXT
Done! = TIMER
PRINT USING "##.### seconds for MID$"; Done! - Start!

As you can see, accessing Middle$ as defined in the FIELD statement is more than three times faster
than accessing the middle portion of Entire$ using MID$. There are no doubt other situations where it
is useful to treat the same area of memory as different variables, perhaps to provide different views—
such as numeric and string—of the same data. We can only hope that Microsoft will see fit to add this
important capability to a future version of BASIC. PowerBASIC offers this feature via the UNION
command.

The  NUL  device  has  other  important  applications  in  conjunction  with  FIELD.  One  common
programming problem that comes up frequently is being able to format numbers to a controlled number
of decimal places. Although BASIC's PRINT USING will format a number and write it to the screen,
there is no way to actually access the formatted value. It is possible to have PRINT USING write the
value on the screen—perhaps in the upper left corner with a color setting of black on black—and then
read it character by character with SCREEN. But that method is clunky at best, and also very slow.

The short program below uses PRINT USING # to write to a fielded buffer, and then LINE INPUT # to
read the number back from the buffer. 

Value# = 123.45678#

OPEN "\DEV\NUL" FOR RANDOM AS #1 LEN = 15
FIELD #1, 15 AS Format$
PRINT #1, USING "####.##"; Value#
LINE INPUT #1, Fmt$
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PRINT "    Value:"; Value#
PRINT "Formatted:"; Fmt$

Notice that the field buffer must be long enough to receive the entire formatted string, including the 
carriage return and line feed that BASIC sends as part of the PRINT # statement. This technique opens 
up many exciting possibilities, especially when used in conjunction with PRINT # USING's other 
extensive formatting options.

PDS includes the FORMAT$ function externally in Quick
and  regular  link  libraries,  and  VB/DOS  goes  a  step
further by adding FORMAT$ to the language. But FORMAT$
offers only a subset of what PRINT USING can do.

Advanced Device Techniques

As many tricks as there are for reading and writing files, there are just as many for accessing devices.
Many devices such as printers and modems are so much slower than BASIC that the techniques for
sending large amounts of data in one operation are not needed or useful. But these devices offer a
whole new set of problems that just beg for clever programming solutions. With that in mind, let's
continue  this  tour  and  examine  some  of  the  less  obvious  aspects  of  BASIC's  device  handling
capabilities.

The Printer Device

All modern printers accept special control codes to enable and disable underlining, boldfacing, italics,
and sometimes even font changes. Many printers honor the standard Epson/IBM control codes, and
some recognize additional codes to control unique features available only with that brand or model.
However, it is possible to print underline and boldface text with most printers, without regard to the
particular  model.  The examples  shown below require  that  you open the  printer  as  a  device  using
"LPT1:BIN".  If  you  are  using  LPT2,  of  course,  then  you  will  open  "LPT2:BIN"  instead.  As  I
mentioned earlier, the BIN option tells BASIC not to interfere with any control codes you send, and
also not to add automatic line wrapping.

Most programmers assume that every carriage return is always accompanied by a corresponding line
feed, and indeed, that is almost always the case. Even if you print a CHR$(13) carriage return followed
by a semicolon, BASIC steps in and appends a line feed for you. But these are separate characters, and
each can be used separately to control a printer. The example below prints a short string and a carriage
return without a line feed, and then prints a series of underlines beneath the string. 

OPEN "LPT1:BIN" FOR OUTPUT AS #1
PRINT #1, "BASIC Techniques and Utilities"; CHR$(13);
PRINT #1, "      __________"
CLOSE
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Similarly, you can also simulate boldfacing by printing the same string at the same place on the paper
two or three times. While this won't work with a laser printer, it is very effective on dot matrix printers.
Of course, if you do know the correct control codes for the printer, then those can be sent directly. Be
sure,  however,  to always include a trailing semicolon as part  of the print  statement,  to avoid also
sending an unwanted return and line feed. For example, to advance a printer to the start of the next
page you would use either PRINT #1, CHR$(12); or LPRINT CHR$(12);. In this case, a normal
LPRINT will work because you are not sending a CHR$(13) or CHR$(10).

Most printers also accept a CHR$(8) to indicate a backspace, which may simplify underlining in some
cases. That is, instead of printing a CHR$(13) to go the start of the line, you would print the string, and
simply back up the print head the appropriate number of columns. BASIC's STRING$ function is ideal
for this, using LPRINT STRING$(Count, 8); to send Count backspace characters to the printer.

You can also send a complete font file to a printer with the CopyFile program shown earlier. Simply
give the font file's name as the source, and the string "LPT1:BIN" as the destination.

The Screen Device

As with printers,  there are a number of ways to manipulate the display screen by printing special
control characters. Where a CHR$(12) can be used to advance the printer to the top of the next page,
this  same character  will  clear  the  screen  and place  the  cursor  at  the  upper  left  corner.  Printing  a
CHR$(11) will home the cursor only, and printing a CHR$(7) beeps the speaker.

Another useful screen control character is CHR$(9), which advances to the next tab stop. Tab stops are
located at every eighth column, with the first at column 9, the second at column 17, and so forth. As
with  a  printer  that  has  not  been  opened  using  the  BIN  option,  printing  either  a  CHR$(10)  or  a
CHR$(13)—even with a semicolon—always sends the cursor to the beginning of the next line. There is
unfortunately no way to separate the actions of a carriage return and line feed.

The last four control characters that are useful with the screen are CHR$(28), CHR$(29), CHR$(30),
and CHR$(31). These move the cursor forward, backward, up a line if possible, and down a line if
possible.  Although LOCATE can be used to move the cursor,  these commands allow you to do it
relative  to  the  current  location.  To do  the  same with  LOCATE would  require  code  like  this:  IF
POS(0) > 1 THEN LOCATE , POS(0) - 1. Obviously, the control characters will result in
less generated code, because they avoid the IF test and repeated calls to BASIC's POS(0) function.

BASIC PDS includes  a  series  of  stub  files  named  TSCNIOxx.OBJ  that  eliminate  support  for  all
graphics statements, and also ignore the control characters listed above. Because each character must
be tested individually by BASIC as it looks for these control codes, using these stub files will increase
the speed of your program's display output.
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All  versions  of  Microsoft  BASIC have always included the  WIDTH statement  for  controlling  the
number of columns on the screen. With the introduction of QuickBASIC 3.0, SCREEN was expanded
to also allow setting the number of rows on EGA and VGA monitors. The statement  WIDTH , 43
puts the screen into the 43-line text mode, and may be used with an EGA or VGA display. WIDTH ,
50 is valid for VGA monitors only, and as you can imagine, it switches the display to the 50-line text
mode.

In many cases it is necessary to know if the display screen is color or monochrome, and also if it is
capable of supporting the EGA or VGA graphics modes. The simplest way to detect a color monitor is
to look at the display adapter's port address in low memory. The short code fragment below shows how
this is done.

DEF SEG = 0
IF PEEK(&H463) = &HB4 THEN
  '---- it's a monochrome monitor
ELSE
  '---- it's a color monitor
END IF

This information is important if you plan to BLOAD a screen image directly into video memory. If the
display  adapter  is  reported as  monochrome,  then you would use DEF SEG to set  the segment  to
&HB000. A color monitor in text mode instead uses segment &HB800. Knowing if a monitor has color
capabilities also helps you to choose appropriate color values, and tells you if it can support graphics.
But you will need to know which video modes the display adapter is capable of.

Detecting an EGA or VGA is more complex than merely distinguishing between monochrome and
color, because it requires calling a video interrupt service routine located on the display adapter card. A
Hercules monitor is also difficult to detect, because that requires a timing loop to see if the Hercules
video status port changes. All of this is taken into account in the example and function that follows.

DEFINT A-Z

DECLARE SUB Interrupt (IntNum, InRegs AS ANY, OutRegs AS ANY) DECLARE FUNCTION 
Monitor% (Segment)

TYPE RegType
  AX    AS INTEGER
  BX    AS INTEGER
  CX    AS INTEGER
  DX    AS INTEGER
  BP    AS INTEGER
  SI    AS INTEGER
  DI    AS INTEGER
  Flags AS INTEGER
END TYPE
DIM SHARED InRegs AS RegType, OutRegs AS RegType

SELECT CASE Monitor%(Segment)
  CASE 1
    PRINT "Monochrome";
  CASE 2
    PRINT "Hercules";
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  CASE 3
    PRINT "CGA";
  CASE 4
    PRINT "EGA";
  CASE 5
    PRINT "VGA";
  CASE ELSE
    PRINT "Unknown";
END SELECT
PRINT " monitor at segment &H"; HEX$(Segment)

FUNCTION Monitor% (Segment) STATIC
  DEF SEG = 0                 'first see if it's color or mono
  Segment = &HB800            'assume color

  IF PEEK(&H463) = &HB4 THEN  'it's monochrome

    Segment = &HB000          'assign the monochrome segment
    Status = INP(&H3BA)       'get the current video status
    FOR X = 1 TO 30000        'test for a Hercules 30000 times
       IF INP(&H3BA) <> Status THEN
        Monitor% = 2          'the port changed, it's a Herc
         EXIT FUNCTION         'all done
      END IF
    NEXT
    Monitor% = 1              'it's a plain monochrome

  ELSE                        'it's some sort of color monitor 
    InRegs.AX = &H1A00        'first test for VGA
    CALL Interrupt(&H10, InRegs, OutRegs)
    IF (OutRegs.AX AND &HFF) = &H1A THEN
      Monitor% = 5            'it's a VGA
      EXIT FUNCTION           'all done
    END IF

    InRegs.AX = &H1200        'now test for EGA
    InRegs.BX = &H10
    CALL Interrupt(&H10, InRegs, OutRegs)
    IF (OutRegs.BX AND &HFF) = &H10 THEN
      Monitor% = 3            'if BL is still &H10 it's a CGA
    ELSE
      Monitor% = 4            'otherwise it's an EGA
    END IF
  END IF
END FUNCTION

The Monitor function returns both the type of monitor that is active, as well as the video segment that is
used when displaying text. EGA and VGA displays use segment &HA000 for graphics, which is a 
different issue altogether. Monitor is particularly valuable when you need to know what SCREEN 
modes a given display adapter can support. The only alternative is to use ON ERROR and try each 
possible SCREEN value in a loop starting from the highest resolution. When SCREEN finally reaches 
a low enough value to succeed, then you know what modes are legal. Since BASIC knows the type of 
monitor installed, it seems inconceivable to me that this information is not made available to your 
program. 

221



PowerBASIC  uses  an  internal  variable  to  hold  the
display type, and that variable is available to the
programmer.

Notice that the Registers TYPE variable is dimensioned in the example portion of this program, and not
in the Monitor function itself. Each time a TYPE or fixed-length string variable is dimensioned in a 
STATIC subprogram or function, new memory is allocated permanently to hold it. In this short 
program the Registers TYPE variable is used only once. But in a real program that incorporates many 
of the routines from this chapter, memory can be saved by using DIM SHARED in the main program. 
Then, each subroutine can use the same variable for its own use.

Once  you  know the  type  of  monitor,  you  will  also  know what  color  combinations  are  valid  and
readable. A color monitor can of course use any combination of foreground and background colors, but
a monochrome is limited to the choices shown in Table 6-2. Combinations not listed will result in text
that is unreadable on a many monochrome monitors.

Color as Displayed COLOR Values

White on Black COLOR 7,0

Bright White on Black COLOR 15,0

Black on White COLOR 0,7

White Underlined on Black COLOR 1,0

Bright White Underlined on Black COLOR 9,0

 Table 6-2: Valid Color Combinations For Use With a Monochrome Monitor.

It  is  important  to  point  out  that  some  computers  employ  a  CGA display  adapter  connected  to  a
monochrome monitor. For example, the original Compaq portable PC used this arrangement. Many
laptop computers also have a monochrome display connected to a CGA, EGA, or VGA adapter. Since
it is impossible for a program to look beyond the adapter hardware through to the monitor itself, you
will need to provide a way for users with that kind of hardware to alert your program.

The BASIC editor recognizes a /b command line switch to indicate black and white operation, and I
suggest that you do something similar. Indeed, many commercial programs offer a way for the user to
indicate that color operation is not available or desired.

The last video-related issue I want to cover is saving and loading text and graphics images. As you
probably know, the memory organization of a display adapter when it is in one of the graphics modes is
very different than when it is in text mode. In the text mode, each character and its corresponding color
byte are stored in contiguous memory locations in the appropriate video segment. All of the color text
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modes  store the characters  and their  colors  at  segment  &HB800,  while  monochrome displays  use
segment &HB000.

The character  in  the upper  left  corner  of the screen is  at  address  0 in  the video segment,  and its
corresponding color is at address 1. The character currently at screen location (1, 2) is stored at address
2, and its color is at address 3, and so forth. The brief program fragment below illustrates this visually
by using POKE to write a string of characters and colors directly to display memory.

DEFINT A-Z

CLS
LOCATE 20
PRINT "Keep pressing a key to continue"
DEF SEG = 0
IF PEEK(&H463) = &HB4 THEN
  DEF SEG = &HB000
ELSE
  DEF SEG = &HB800
END IF

Test$ = "Hello!"
Colr = 9                        'bright blue or underlined 
FOR X = 1 TO LEN(Test$)         'walk through the string
  Char = ASC(MID$(Test$, X, 1)) 'get this character
  POKE Address, Char            'poke it to display memory
  WHILE LEN(INKEY$) = 0: WEND   'pause for a keypress
  POKE Address + 1, Colr        'now poke the color
  Address = Address + 2         'bump to the next address
  WHILE LEN(INKEY$) = 0: WEND   'pause for a keypress
NEXT
END

The initial CLS command stores blank spaces and the current BASIC color settings in every memory
address pair. Assuming you have not changed the color previously, a character value of 32 is stored by
CLS into every even address, and a color value of 7 in every odd one. Once the correct video segment
is known and assigned using DEF SEG, a simple loop pokes each character in the string to the display
starting at address 0. Since Address was never assigned initially, it holds a value of zero.

Saving and loading graphics images is of necessity somewhat more complex, because you need to
know not only the appropriate segment from which to save, but also how many bytes. The example
program below creates a simple graphic image in CGA screen mode 1, saves the image, and then after
clearing the screen loads it again.

DEFINT A-Z
SCREEN 1

DEF SEG = 0
PageSize = PEEK(&H44C) + 256 * PEEK(&H44D)

FOR X = 1 TO 10
  CIRCLE (140, 95), X * 10, 2
NEXT

DEF SEG = &HB800

223



BSAVE "CIRCLES.CGA", 0, PageSize
PRINT "The screen was just saved, press a key."
WHILE LEN(INKEY$) = 0: WEND

CLS
PRINT "Now press a key to load the screen."
WHILE LEN(INKEY$) = 0: WEND
BLOAD "CIRCLES.CGA", 0

Notice the use of PEEK to retrieve the current video page size at addresses &H44C and &H44D. This
is a handy value that the BIOS maintains in low memory, and it tells you how many bytes are occupied
by the screen whatever its current mode. In truth, this value is often slightly higher than the actual
screen dimensions would indicate, since it is rounded up to the next even video page boundary. For
example, the 320 by 200 screen mode used here occupies 16000 bytes of display memory, yet the page
size is reported as 16384. But this value is needed to calculate the appropriate address when saving
video pages other than page 0. That is, page 0 begins at address 0 at segment &HB800, and page 1
begins at address 16384.

Note that  many early CGA video adapters contain only 16K of  memory,  and thus  do not  support
multiple screen pages. Also note that there is a small quirk in Hercules adapters that causes the page
size to always be reported as 16384, even when the screen is in text mode. I have found this word to be
unreliable in the EGA and VGA graphics mode.

Although  you  might  think  that  the  pixels  on  a  CGA graphics  screen  occupy  contiguous  memory
addresses, they do not. Although each horizontal line is in fact contiguous, the lines are interlaced.
Running the short program below shows how the first half of the video addresses contains the even
rows (starting at row zero), and the second half holds the odd rows. 

SCREEN 1
DEF SEG = &HB800
FOR X = 1 TO 15999
  POKE X, 255
NEXT

EGA and VGA displays add yet another level of complexity, because they use a separate video memory
plane to store each color. Four planes are used for EGA and VGA, with one each to hold the red, blue,
green,  and intensity (brightness) information.  Each plane is identified using the same segment and
address, and OUT instructions are needed to select which is to be made currently active. This is called
bank switching,  because multiple,  parallel  banks of memory are switched in and out of the CPU's
address space. When the red plane is active, reading and writing those memory locations affects only
the red information on the screen. And when the intensity plane is made active, only the brightness for
a given pixel on the screen is considered.

Bank switching is needed to accommodate the enormous amount of information that an EGA or VGA
screen can contain. For example, in EGA screen mode 9, each plane occupies 28,000 bytes, for a total
of 112,000 bytes of memory. This far exceeds the amount of memory the designers of the original IBM
PC anticipated  would  ever  be  needed  for  display  purposes.  There  simply  aren't  enough addresses
available in the PC for video use. Therefore, the only way to deal with that much information is to
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provide additional memory in the EGA and VGA adapters themselves. When a program needs to access
a memory plane, it must do that one bank at a time so it can be read or written by the CPU.

The program below expands slightly on the earlier example, and shows how to save and load EGA and
VGA screens by manipulating each video plane individually.

DEFINT A-Z
DECLARE SUB EgaBSave (FileName$)
DECLARE SUB EgaBLoad (FileName$)

SCREEN 9
LOCATE 25, 1
PRINT "Press a key to stop, and save the screen.";

'---- clever video effects by Brian Giedt
WHILE LEN(INKEY$) = 0
  T = (T MOD 150) + 1
  C = (C + 1) MOD 16
  LINE (T, T)-(300 - T, 300 - T), C, B
  LINE (300 + T, T)-(600 - T, 300 - T), C, B
WEND

LOCATE 25, 1
PRINT "Thank You!"; TAB(75);
CALL EgaBSave("SCREEN9")

CLS
LOCATE 25, 1
PRINT "Now press a key to read the screen.";
WHILE LEN(INKEY$) = 0: WEND
LOCATE 25, 1
PRINT TAB(75);

CALL EgaBLoad("SCREEN9")

SUB EgaBLoad (FileName$) STATIC
    'UnREM the KILL statements to erase the saved images after they
    ' have been loaded.

    DEF SEG = &HA000
    OUT &H3C4, 2: OUT &H3C5, 1
    BLOAD FileName$ + ".BLU", 0
    'KILL FileName$ + ".BLU"

    OUT &H3C4, 2: OUT &H3C5, 2
    BLOAD FileName$ + ".GRN", 0
    'KILL FileName$ + ".GRN"

    OUT &H3C4, 2: OUT &H3C5, 4
    BLOAD FileName$ + ".RED", 0
    'KILL FileName$ + ".RED"

    OUT &H3C4, 2: OUT &H3C5, 8
    BLOAD FileName$ + ".INT", 0
    'KILL FileName$ + ".INT"
    OUT &H3C4, 2: OUT &H3C5, 15
END SUB

SUB EgaBSave (FileName$) STATIC
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    DEF SEG = &HA000
    Size& = 28000       'use 38400 for VGA SCREEN 12

    OUT &H3CE, 4: OUT &H3CF, 0
    BSAVE FileName$ + ".BLU", 0, Size&

    OUT &H3CE, 4: OUT &H3CF, 1
    BSAVE FileName$ + ".GRN", 0, Size&

    OUT &H3CE, 4: OUT &H3CF, 2
    BSAVE FileName$ + ".RED", 0, Size&

    OUT &H3CE, 4: OUT &H3CF, 3
    BSAVE FileName$ + ".INT", 0, Size&

    OUT &H3CE, 4: OUT &H3CF, 0
END SUB

In the EGABLoad and EGABSave subroutines, two OUT statements are actually needed to switch
planes. The first gets the EGA adapter's attention, to tell it  that a subsequent byte is coming. That
second value then indicates which memory plane to make currently available.

The Keyboard Device

The  last  device  to  consider  is  the  keyboard.  BASIC  offers  several  commands  and  functions  for
accessing the keyboard,  and these  are  INPUT,  LINE INPUT,  INPUT$,  and INKEY$. Further,  the
"KYBD:" device may be opened as a file, and read using the file versions of the first three statements.

As with the file versions, INPUT reads numbers or text up to a terminating comma or Enter character.
LINE INPUT is for strings only, and it ignores commas and requires Enter to be pressed to indicate the
end  of  the  line.  INPUT$  waits  until  the  specified  number  of  characters  have  been  typed  before
returning, without regard to what characters are entered. INKEY$ returns to the program immediately,
even if no key was pressed.

Few serious programmers ever use INPUT or LINE INPUT for accepting entire lines of text, unless the
program is very primitive or will be used only occasionally. The major problem with INPUT and LINE
INPUT is that there's no way to control how many characters the operator enters. Once you use INPUT
or LINE INPUT, you have lost control entirely until the user presses Enter. Worse, when INPUT is used
to enter numeric variables, an erroneous entry causes BASIC to print its infamous "Redo from start"
message. Either of these can spoil the appearance of a carefully designed data entry screen.

Therefore, the only reasonable way to accept user input is to use INKEY$ to read the keys one by one,
and act on them individually. If a character key is pressed, the cursor is advanced and the character is
added to the string. If the back space key is detected, the cursor is moved to the left one column and the
current character is erased. A series of IF or CASE statements is often used for this purpose, to handle
every key that needs to be recognized.
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The  Editor  input  routine  below provides  exactly  this  service,  and  also  tells  you how editing  was
terminated. Besides being able to control the size of the input editing field, Editor also handles the
Insert and Delete keys, and recognizes Home and End to jump the beginning and end of the field. A
single COLOR statements lets  you control  the editing field color  independently of  the rest  of  the
screen. The first portion of the code shows how Editor is set up and called.

DEFINT A-Z
DECLARE SUB Editor (Text$, LeftCol, RightCol, KeyCode)

COLOR 7, 1                      'clear to white on blue
CLS

Text$ = "This is a test"        'make some sample text
LeftCol = 20                    'set the left column
RightCol = 60                   'and the right column
LOCATE 10                       'set the line number
COLOR 0, 7                      'set the field color

DO                              'edit until Enter or Esc
   CALL Editor(Text$, LeftCol, RightCol, KeyCode)
LOOP UNTIL KeyCode = 13 OR KeyCode = 27

SUB Editor (Text$, LeftCol, RightCol, KeyCode)
  '----- Find the cursor's size.
  DEF SEG = 0
  IF PEEK(&H463) = &HB4 THEN
     CsrSize = 12               'mono uses 13 scan lines
  ELSE
     CsrSize = 7                'color uses 8
  END IF

  '----- Work with a temporary copy.
  Edit$ = SPACE$(RightCol - LeftCol + 1)
  LSET Edit$ = Text$

  '----- See where to begin editing and print the string.
  TxtPos = POS(0) - LeftCol + 1
  IF TxtPos < 1 THEN TxtPos = 1
  IF TxtPos > LEN(Edit$) THEN TxtPos = LEN(Edit$)

  LOCATE , LeftCol
  PRINT Edit$;

  '----- This is the main loop for handling key presses.
  DO
     LOCATE , LeftCol + TxtPos - 1, 1

     DO
       Ky$ = INKEY$
     LOOP UNTIL LEN(Ky$)        'wait for a keypress

     IF LEN(Ky$) = 1 THEN       'create a key code
       KeyCode = ASC(Ky$)       'regular character key
     ELSE                       'extended key
       KeyCode = -ASC(RIGHT$(Ky$, 1))
     END IF

     '----- Branch according to the key pressed.
     SELECT CASE KeyCode
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       '----- Backspace: decrement the pointer and the
       '      cursor, but ignore if in the first column.
       CASE 8
         TxtPos = TxtPos - 1
         LOCATE , LeftCol + TxtPos - 1, 0
         IF TxtPos > 0 THEN
           IF Insert THEN
             MID$(Edit$, TxtPos) = MID$(Edit$, TxtPos + 1) + " "            
         ELSE
             MID$(Edit$, TxtPos) = " "
           END IF
             PRINT MID$(Edit$, TxtPos);
         END IF

       '----- Enter or Escape: this block is optional in
       '      case you want to handle these separately.
       CASE 13, 27
         EXIT DO                'exit the subprogram

       '----- Letter keys: turn off the cursor to hide
       '      the printing, handle Insert mode as needed.
       CASE 32 TO 254
         LOCATE , , 0
         IF Insert THEN         'expand the string
           MID$(Edit$, TxtPos) = Ky$ + MID$(Edit$, TxtPos)            
           PRINT MID$(Edit$, TxtPos);
         ELSE                   'else insert character
           MID$(Edit$, TxtPos) = Ky$
           PRINT Ky$;
         END IF
         TxtPos = TxtPos + 1    'update position counter

       '----- Left arrow: decrement the position counter.
       CASE -75
         TxtPos = TxtPos - 1

       '----- Right arrow: increment position counter.
       CASE -77
         TxtPos = TxtPos + 1

       '----- Home: jump to the first character position.
       CASE -71
         TxtPos = 1

       '----- End: search for the last non-blank, and
       '      make that the current editing position.
       CASE -79
         FOR N = LEN(Edit$) TO 1 STEP -1
           IF MID$(Edit$, N, 1) <> " " THEN EXIT FOR
         NEXT
         TxtPos = N + 1
         IF TxtPos > LEN(Edit$) THEN TxtPos = LEN(Edit$)

       '----- Insert key: toggle the Insert state and
       '      adjust the cursor size.
       CASE -82
         Insert = NOT Insert
         IF Insert THEN
           LOCATE , , , CsrSize \ 2, CsrSize
         ELSE
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           LOCATE , , , CsrSize - 1, CsrSize
         END IF

       '----- Delete: delete the current character and
       '      reprint what remains in the string.
       CASE -83
         MID$(Edit$, TxtPos) = MID$(Edit$, TxtPos + 1) + " "          
         LOCATE , , 0
         PRINT MID$(Edit$, TxtPos);

       '---- All other keys: exit the subprogram
       CASE ELSE
         EXIT DO
     END SELECT

  '----- Loop until the cursor moves out of the field.
  LOOP UNTIL TxtPos < 1 OR TxtPos > LEN(Edit$)

  Text$ = RTRIM$(Edit$)         'trim the text
END SUB

Most of the details in this subprogram do not require much explanation, and the code should prove
simple enough to be self-documenting. However, I would like to discuss INKEY$ as it is used here.

Each time INKEY$ is used it examines the keyboard buffer, to see if a key is pending. If not, a null
string is returned. If a key is present in the buffer INKEY$ removes it, and returns either a 1-byte or
2-byte string, depending on what type of key it is. Normal character keys and control keys—entered by
pressing the Ctrl key in conjunction with a regular key—are returned as a 1-byte string. Some special
keys such as Enter and Escape are also returned as a 1-byte string, because they are in fact control keys.
For example, Enter is the same as Ctrl-M, and Escape is identical to the Ctrl-[ key.

The IBM PC offers additional keys and key combinations that are not defined by the ASCII standard,
and these are returned as a 2-byte string so your program can identify them. Extended keys include the
function keys, Home and End and the other cursor control keys, and Alt key combinations. When an
extended key is returned the first character is always CHR$(0), and the second character corresponds to
the extended key's code using a method defined by IBM. Therefore, you can determine if a key is
extended either by looking for a length of two, or by examining the first character to see if it  is a
CHR$(0) zero byte.

There are three ways to accomplish this, and which is best depends on the compiler you are using. The
brief program fragment below shows each method, and the number of bytes that are generated by both
compilers. 

IF LEN(X$) = 2 THEN             '17 for QB4, 7 for PDS

IF ASC(X$) THEN                 '16 for QB4, 13 for PDS

IF LEFT$(X$, 1) = CHR$(0) THEN  '33 for QB4, 30 for PDS

 
The references to QB 4 are valid for both QuickBASIC 4.0 and 4.5. The BASIC PDS byte counts
reflect that compiler's improved code optimization, however this improvement is available only with
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near strings. When far strings are used the LEN test requires the same 13 bytes as the ASC test. I'll
presume that VB/DOS, with its support for only far strings, also uses the longer byte count.

As you can see, the test that uses BASIC's ASC function is slightly better than the one that uses LEN if
you are using QuickBASIC. But if you have BASIC PDS the LEN test is quite a bit shorter. Comparing
the first character in the string is much worse for either compiler, because individual calls must be
made to BASIC's LEFT$, CHR$, and string comparison routines.

Even though the length and address of a QuickBASIC string is stored in the string's descriptor and is
easily  available  to  the compiler,  the BC compiler  that  comes with  QuickBASIC still  calls  a  LEN
routine. Where the compiler could use CMP WORD PTR [DescriptorAddress], 2 to see if the
string length is 2, it instead passes the address of the string descriptor on the stack, calls the LEN
routine, and compares the result LEN returns. Fortunately, this optimization was added in BASIC PDS
when near strings are used. Likewise, SADD when used with PDS near strings directly retrieves the
string's address from the descriptor as well, instead of calling a library routine as QuickBASIC does.

The Editor subprogram uses the LEN method to determine the type of key that was pressed, which is
most efficient if you are using BASIC PDS. Because integer comparisons are faster and generate less
code than the equivalent operation with strings, ASC is then used to obtain either the ASCII value of
the key, or the value of the extended key code. The result is assigned to the variable KeyCode as either
a positive number to indicate a regular ASCII key, or a negative value that corresponds to an extended
key's code. This method helps to reduce the size of the subprogram, by eliminating string comparisons
in each CASE statement.

One important warning when using ASC is that it will generate an "Illegal function call" error if you
pass it a null string. Therefore, in many cases you must include an additional test just for that: 

IF LEN(Work$) THEN
  IF ASC(Work$) THEN
    ...
    ...
  END IF
END IF

One solution is to create your own function, perhaps called ASCII%(), that does this for you. Since
calling a BASIC function requires no more code than when BASIC calls its own routines—assuming
you are using the same number of arguments, of course—, this can also help to reduce the size of your
programs. I like to use a return value of -1 to indicate a null string, as shown below.

FUNCTION ASCII%(This$)
  IF LEN(This$) THEN
    ASCII% = ASC(This$)
  ELSE
    ASCII% = -1
  END IF
END FUNCTION
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Now you can simply use code such as  IF ASCII%(Any$) = Whatever THEN... confident
that no error will occur and the returned value will still be valid.

Redirection

One clever DOS feature that many programmers are not aware of is its ability to redirect a program's
normal input and output to a file. When a program is redirected, print statements go to a specified file,
keyboard input is read from a file, or both. The actual redirection commands are entered by the user of
your program, and your program has no idea that this has happened. This is really more a DOS issue
than a BASIC concern, but it's a powerful feature and you should understand how it works.

Redirection is useful for capturing a program's output to a disk file, or feeding keystrokes to a program
using a predefined sequence contained in a file. For example, the output of the DOS DIR command can
be redirected to a file with this command:

dir *.* > anyfile

Redirecting a program's input can be equally valuable. If you often format several diskettes at once you
might create a file that contains the answer Y followed by an Enter character, and then run format using
this: 

format < yesfile

This way the file will provide the response to "Format another (Y/N)?".

To redirect a program's output, start it from the DOS command line and place a greater than > symbol
and the output file name at the end of the command line:

program > filename

Similarly, using a less than < sign tells DOS to replace the program's requests for keyboard input with
the contents of the specified file, thus: 

program < filename

You can combine both redirected input and output at the same time, and the order in which they are
given does not matter.  It is important to understand that redirecting a program's output to a file is
similar to opening that file for output. That is, it is created if it didn't yet exist, or truncated to a length
of zero if it  did. However, DOS also lets you append to a file when redirecting output, using two
symbols in a row: 

program >> filename

Please be aware that you can hang a PC completely when redirecting a program's input, if the necessary
characters are not present. For example, this would happen when redirecting a program that uses LINE
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INPUT from a file that has no terminating CHR$(13) Enter character. Even pressing Ctrl-Break will
have no effect, and your only recourse is to reboot, or close down the DOS session if you are using
Windows.

Summary

This chapter has presented an enormous amount of information about both files and devices in BASIC.
If  began with a brief overview of how DOS allocates disk storage using sectors and clusters, and
continued with an explanation of file buffers. By understanding the relationship between BASIC's own
buffers and their impact on string memory, you gain greater control over your program's speed and
memory requirements.

This then led to a comparison of files and devices, and showed how they can be controlled by similar
BASIC  statements.  In  particular,  you  learned  how  the  same  block  of  code  can  be  used  to  send
information to either, simplifying the design of reports and other programming output chores.

The section that described file access methods compared all of the available options, and explained
when each is appropriate and why. You learned that all DOS files are really just a continuous stream of
binary data, and the various OPEN methods merely let you indicate to BASIC how that data is to be
handled.

You also learned that the best way to improve a program's file access speed is to read and write data in
large blocks. Several complete subprograms and functions were shown to illustrate this technique, and
most are general enough to be useful when included within your own programs.

Numerous tips and tricks were presented to determine the type of display adapter installed, run .COM
programs and .BAT files, obtain formatted numbers by combining PRINT USING # with FIELD and
INPUT #, and many more. You were also introduced to the possibility of calling BASIC's internal
library routines as a way to circumvent many otherwise arbitrary limitations in the language.

Finally, video memory organization was revealed for all of the popular screen modes, and example
programs were provided to show how they may be saved and loaded.

In the next chapter I will continue this discussion of files with detailed explanations of writing database
programs. Chapter 7 will also describe how to write programs that operate on a network, as well as how
to access data that uses the popular dBASE file format.
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7
Network and Database Programming

In Chapter 6 you learned the principles of accessing files with BASIC, and saw the advantages and
disadvantages of each of the various methods. This chapter continues the coverage of file handling in
BASIC by discussing the concepts of database application programming. In particular, this chapter will
cover database file structures—including fixed and variable length records—as well as the difference
between code and data-driven applications.

This chapter also provides an in-depth look at the steps needed to write applications that can run on a
network.  This  is  an  important  topic  that  is  fast  becoming  even  more  important,  and  very  little
information is available for programmers using BASIC. I will discuss the various file access schemes
and record locking techniques,  and also  how to  determine if  a  program is  currently  running on a
network and if so which one.

This chapter examines common database file formats including the one used by dBASE III Plus, and
utility programs are provided showing how to access these files. I will explain some of the fundamental
issues of database design, including relationships between files. Also presented is a discussion of the
common indexing techniques available, and a comparison of the relative advantages and disadvantages
of each. You will also learn about the Structured Query Language (SQL) data access method, and
understand the advantages it offers in an application programming context. Finally, several third-party
add-on products that facilitate database application programming will be described.

Data Files versus Data Management

Almost every application you create will require some sort of file access, if only to store configuration
information.  Over time, programmers have developed hundreds of methods for storing information
including sequential files, random files, and so forth. However, this type of data file management must
not be confused with database management in the strict sense. Database management implies repeated
data structures and relationships, with less importance given to the actual data itself.

In Chapter 6 you learned two common methods for defining the structure of a random access data file.
But whether you use FIELD or TYPE, those examples focused on defining a record layout that is
known in advance. When the data format will not change, defining a file structure within your program
as FIELD or TYPE statements makes the most sense—a single statement can directly read or write any
record in the file very quickly. But this precludes writing a general purpose database program such as
dBASE, DataEase, or Paradox. In programs such as these, the user must be allowed to define each field
and thus the record structure.
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The key to the success of these commercial programs is therefore in their flexibility. If you need to
write  routines  for  forms  processing,  expression  evaluation,  file  sorting,  reports,  and so  forth,  you
should strive to make them reusable. For example, if you intend to print a report from a data file whose
records have 100 fields, do you really want to use 100 explicit PRINT statements? The ideal approach
is to create a generic report module that uses a loop to print each selected field in each of the selected
records. This is where the concept of data-driven programming comes into play.

Data-Driven Programming

Data-driven programming, as its name implies, involves storing your data definitions as files, rather
then as explicit  statements in the program's BASIC source code.  The advantage to this method of
database programming lies in its flexibility and reusability. By storing the data definitions on disk, you
can use one block of code to perform the same operations on completely different sets of data.

There are two general methods of storing data definitions on a disk—in the same file as the actual data
or in a separate file. Storing the record definition in a separate file is the simplest approach, because it
allows the main data file to be comprised solely of identical-length records. Keeping both the record
layout and the data itself in a single file requires more work on your part, but with the advantage of
slightly less disk clutter. In either case, some format must be devised to identify the number of fields in
each data record and their type.

The example below shows a typical field layout definition, along with code to determine the number of
fields in each record. Please understand that the random access file considered here is a file of field
definitions, and not actual record data.

TYPE FldRec
  FldName AS STRING * 15
  FldType AS STRING * 1
  FldOff  AS INTEGER
  FldLen  AS INTEGER
END TYPE

OPEN "CUST.FLD" FOR BINARY AS #1
TotalFields% = LOF(1) \ 20
DIM FldStruc(1 TO TotalFields%) AS FldRec

RecLength% = 0
FOR X% = 1 TO TotalFields%
  GET #1, , FldStruc(X%)
  RecLength% = RecLength% + FldStruc(X%).FldLen
NEXT
CLOSE #1

In this program fragment, 15 characters are set aside for each field's name, a single byte is used to hold
a field type code (1 = string, 2 = currency, or whatever), and integer offset and length values show how
far into the record each field is located and how long it is. Once the field definitions file has been
opened, the number of fields is easily determined by dividing the file size by the known 20-byte length
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of  each  entry.  From the  number  of  you  fields  you  can  then  dimension  an  array  and  read  in  the
parameters of each field as shown here.

Notice that the record length is accumulated as each field description in read from the field definition
file.  In a real program, two field lengths would probably be required: the length of the field as it
appears on the screen and the number of bytes it will actually require in the record. For example, a
single precision number is stored on disk in only four bytes, even though as many as seven digits plus a
decimal point could be displayed on the data entry screen. Therefore, the method shown in this simple
example to accumulate the record lengths would be slightly more involved in practice.

Once the number and size of each field is known, it is a simple matter to assign a string to the correct
length to hold a single data record. Any record could then be retrieved from the file, and its contents
displayed as shown following.

OPEN "CUST.DAT" FOR RANDOM AS #1 LEN = RecLength%
Record$ = SPACE$(RecLength%)
GET #1, 11, Record$
CLOSE #1

FOR X% = 1 TO TotalFields%
  FldText$ = MID$(Record$, FldStruc(X%).FldOff, FldStruc(X%).FldLen)
  PRINT FldStruc(X%).FldName; ": "; FldText$
NEXT

Here, the first record in the file is read, and then the function form of MID$ is used to extract each data
field from that record. Assigning individual fields is just as easy, using the complementary statement
form of MID$:

MID$(Record$, FldStruc(FldNum).FldOff, FldStruc(FldNum).FldLen) = NewText$ 

Understand that the entire point of this exercise is to show how a generic routine to access files can be
written, and without having to establish the record structure when you write the program. Although you
could use FIELD instead of MID$ to assign and retrieve the information from each field, that works
only when the field information is kept in a separate file. If the field definitions are in the same file as
the data, you will have to use purely binary file access, to account for the fixed header offset at the start
of the file.

When you tell BASIC to open a file for random access, it uses the record length to determine where
each record begins in the file. But if a header portion is at the beginning of the file, a fixed offset must
be added to skip over the header. Since BASIC does not accommodate specifying an offset this way, it
is up to you to handle that manually. However, the added complexity is not really that difficult, as you
will see shortly in the routines that create and access dBASE files.

dBASE—and indeed, most commercial database products—store the field information in the same file
that contains the data. This has the primary advantage of consolidating information for distribution
purposes. For example, if your company sells a database of financial information, this minimizes the
number of  separate  files your  users will  have to  deal  with.  Modern header  structures  are  variable
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length, which allows for a greater optimization of disk space. In fact, most header structures mimic the
record array shown above, but also store information such as the length of the header and the number
of fields. This is needed because the number of fields cannot be determined from the file size alone,
when the file also holds the data.

The dBASE III File Structure

The description of the dBASE file structure that follows serves two important purposes:  First, it shows 
you how such a data file is constructed using a real world example. Second, this information allows 
you to directly access dBASE files in programs of your own. If you presently write commercial 
software, or if you aspire to, being compatible with the dBASE standard can give your product a 
definite advantage in the marketplace. Table 7-1 identifies each component of the dBASE file header.

Offset Contents

1 dBASE version (3, or &H83 if there's a memo 
file)

2 Year of last update

3 Month of last update

4 Day of last update

5-8 Total number of records in the file (long integer)

9-10 Number of bytes in the header (integer) *

11-12 Length of records in the file (integer)

13-32 Reserved

The remainder of the header holds the field definitions, built from a repeating group of 32-byte 
blocks structured as follows:

33-42 Field name, padded with CHR$(0) null bytes

43 Always zero

44 Field type (C, D, L, M, or N) **

45-48 Reserved

49 Field width

50 Number of decimal places (Numeric fields only)

51-64 Reserved
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Offset Contents

Notes:

*   The end of the header is marked with a byte value of 13. 
** The possible field types at byte 44 are Character, Date, Yes/No, Memo, and Numeric.

Table 7-1: The Structure of a dBASE III File Header

To obtain any item of information from the header you will use the binary form of GET #. For example,
to read the number of data records in the file you would do this:

OPEN "CUST.DBF" FOR BINARY AS #1
GET #1, 5, NumRecords&
CLOSE #1

And to determine the length of each data record you will instead use this: 

OPEN "CUST.DBF" FOR BINARY AS #1
GET #1, 1, RecordLength%
CLOSE #1
PRINT "The length of each record is "; RecordLength%

In the first example, GET # is told to seek to the fifth byte in the file and read the four-byte long integer
stored there. The second example is similar, except it seeks to the 11th byte in the file and reads the
integer record length field. One potential limitation you should be aware of is BASIC does not offer a
byte-sized  variable  type.  Therefore,  to  read  a  byte  value  such  as  the  month  you  must  create  a
one-character string, read the byte with GET #, and finally use the ASC function to obtain its value: 

Month$ = " "
GET #1, 3, Month$
PRINT "The month is "; ASC(Month$)

Likewise, you will use CHR$ to assign a new byte value prior to writing a one-character string:

Month$ = CHR$(NewMonth%)
PUT #1, 3, Month$

With this information in hand, it is a simple matter to open a dBASE file, and by reading the header
determine everything your program needs to know about the structure of the data in that file.  The
simplest way to do this is by defining a TYPE variable for the first portion of the header, and a TYPE
array to hold the information about each field. Since both the record and field header portions are each
32 bytes in length, you can open the file for Random access. A short program that does this is shown
below.

TYPE HeadInfo
  Version  AS STRING * 1
  Year     AS STRING * 1
  Month    AS STRING * 1
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  Day      AS STRING * 1
  TRecs    AS LONG
  HLen     AS INTEGER
  RecLen   AS INTEGER
  Padded   AS STRING * 20
END TYPE

TYPE FieldInfo
  FName AS STRING * 10
  Junk1 AS STRING * 1
  FType AS STRING * 1
  Junk2 AS STRING * 4
  FLen  AS STRING * 1
  Dec   AS STRING * 1
  Junk3 AS STRING * 14
END TYPE

DIM Header AS HeadInfo

OPEN "CUST.DBF" FOR RANDOM AS #1 LEN = 32
GET #1, 1, Header
TFields% = (Header.HLen - 32) \ 32
REDIM FInfo(1 TO TFields%) AS FieldInfo

FOR X% = 2 TO TFields%
  GET #1, X%, FInfo(X%)
NEXT
CLOSE #1

dBASE File Access Tools

The programs that follow are intended as a complete set of toolbox subroutines that you can add to
your own programs. The first  program contains the core routines that  do all  of the work,  and the
remaining programs illustrate their use in context. Routines are provided to create, open, and close
dBASE files, as well as read and write data records. Additional functions are provided to read the field
information from the header, and also determine if a record has been marked as deleted.

The main file that contains the dBASE access routines is DBACCESS.BAS, and several demonstration
programs are included that  show the use of these routines  in  context.  In particular,  DBEDIT.BAS
exercises all of the routines, and you should study that program very carefully.

There  are  two  other  example  programs  that  illustrate  the  use  of  the  dbAccess  routines.
DBCREATE.BAS creates  an  empty  dBASE file  containing  a  header  with  field  information  only,
DBEDIT.BAS lets  you browse, edit,  and add records  to a file,  and DBSTRUCT.BAS displays the
structure of an existing file. There is also a program to pack a database file to remove deleted records
named, appropriately enough, DBPACK.BAS.

When you examine these subroutines, you will notice that all of the data—regardless of the field type
—is stored as strings. As you learned in earlier chapters, storing data as strings instead of in their native
format usually bloats the file size, and always slows down access to the field values. This is but one of
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the fundamental limitations of the dBASE file format. Note that using strings alone is not the problem;
rather, it is storing the numeric values as ASCII data.

'********** DBACCESS.BAS, module for access to DBF files

'Copyright (c) 1991 Ethan Winer

DEFINT A-Z

'$INCLUDE: 'dbf.bi'
'$INCLUDE: 'dbaccess.bi'

SUB CloseDBF (FileNum, TRecs&) STATIC
  Temp$ = PackDate$
  PUT #FileNum, 2, Temp$
  PUT #FileNum, 5, TRecs&
  CLOSE #FileNum
END SUB

SUB CreateDBF (FileName$, FieldArray() AS FieldStruc) STATIC 
  TFields = UBOUND(FieldArray)
  HLen = TFields * 32 + 33
  Header$ = SPACE$(HLen + 1)
  Memo = 0

  FldBuf$ = STRING$(32, 0)
  ZeroStuff$ = FldBuf$
  FldOff = 33
  RecLen = 1

  FOR X = 1 TO TFields
    MID$(FldBuf$, 1) = FieldArray(X).FName
    MID$(FldBuf$, 12) = FieldArray(X).FType
    MID$(FldBuf$, 17) = CHR$(FieldArray(X).FLen)
    MID$(FldBuf$, 18) = CHR$(FieldArray(X).Dec)
    MID$(Header$, FldOff) = FldBuf$
    LSET FldBuf$ = ZeroStuff$
    FldOff = FldOff + 32
    IF FieldArray(X).FType = "M" THEN Memo = -1
    RecLen = RecLen + FieldArray(X).FLen
  NEXT

  IF Memo THEN Version = 131 ELSE Version = 3
  MID$(Header$, 1) = CHR$(Version)
  Today$ = DATE$
  Year = VAL(RIGHT$(Today$, 2))
  Day = VAL(MID$(Today$, 4, 2))
  Month = VAL(LEFT$(Today$, 2))

  MID$(Header$, 2) = PackDate$
  MID$(Header$, 5) = MKL$(0)
  MID$(Header$, 9) = MKI$(HLen)
  MID$(Header$, 11, 2) = MKI$(RecLen)
  MID$(Header$, FldOff) = CHR$(13)
  MID$(Header$, FldOff + 1) = CHR$(26)

  OPEN FileName$ FOR BINARY AS #1
  PUT #1, 1, Header$
  CLOSE #1
END SUB
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FUNCTION Deleted% (Record$) STATIC
  Deleted% = 0
  IF LEFT$(Record$, 1) = "*" THEN Deleted% = -1
END FUNCTION

FUNCTION GetField$ (Record$, FldNum, FldArray() AS FieldStruc) STATIC
  GetField$ = MID$(Record$, FldArray(FldNum).FOff, FldArray(FldNum).FLen) 
END FUNCTION

FUNCTION GetFldNum% (FieldName$, FldArray() AS FieldStruc) STATIC   
FOR X = 1 TO UBOUND(FldArray)
    IF FldArray(X).FName = FieldName$ THEN
      GetFldNum% = X
      EXIT FUNCTION
    END IF
  NEXT
END FUNCTION

SUB GetRecord (FileNum, RecNum&, Record$, Header AS DBFHeadStruc) STATIC
  RecOff& = ((RecNum& - 1) * Header.RecLen) + Header.FirstRec   
  GET FileNum,   RecOff&, Record$
END SUB

SUB OpenDBF (FileNum, FileName$, Header AS DBFHeadStruc, FldArray() AS _     
FieldStruc) STATIC
  OPEN FileName$ FOR BINARY AS FileNum
  GET FileNum, 9, HLen
  Header.FirstRec = HLen + 1
  Buffer$ = SPACE$(HLen)

  GET FileNum, 1, Buffer$
  Header.Version = ASC(Buffer$)
  IF Header.Version = 131 THEN
    Header.Version = 3
    Header.Memo = -1
  ELSE
    Header.Memo = 0
  END IF

  Header.Year = ASC(MID$(Buffer$, 2, 1))
  Header.Month = ASC(MID$(Buffer$, 3, 1))
  Header.Day = ASC(MID$(Buffer$, 4, 1))
  Header.TRecs = CVL(MID$(Buffer$, 5, 4))
  Header.RecLen = CVI(MID$(Buffer$, 11, 2))
  Header.TFields = (HLen - 33) \ 32

  REDIM FldArray(1 TO Header.TFields) AS FieldStruc
  OffSet = 2
  BuffOff = 33
  Zero$ = CHR$(0)

  FOR X = 1 TO Header.TFields
    FTerm = INSTR(BuffOff, Buffer$, Zero$)
    FldArray(X).FName = MID$(Buffer$, BuffOff, FTerm - BuffOff)
    FldArray(X).FType = MID$(Buffer$, BuffOff + 11, 1)
    FldArray(X).FOff = OffSet
    FldArray(X).FLen = ASC(MID$(Buffer$, BuffOff + 16, 1))
    FldArray(X).Dec = ASC(MID$(Buffer$, BuffOff + 17, 1))
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    OffSet = OffSet + FldArray(X).FLen
    BuffOff = BuffOff + 32
  NEXT
END SUB

FUNCTION PackDate$ STATIC
  Today$ = DATE$
  Year = VAL(RIGHT$(Today$, 2))
  Day = VAL(MID$(Today$, 4, 2))
  Month = VAL(LEFT$(Today$, 2))
  PackDate$ = CHR$(Year) + CHR$(Month) + CHR$(Day)
END FUNCTION

FUNCTION Padded$ (Fld$, FLen) STATIC
  Temp$ = SPACE$(FLen)
  LSET Temp$ = Fld$
  Padded$ = Temp$
END FUNCTION

SUB SetField (Record$, FText$, FldNum, FldArray() AS FieldStruc) STATIC
  FText$ = Padded$(FText$, FldArray(FldNum).FLen)
  MID$(Record$, FldArray(FldNum).FOff, FldArray(FldNum).FLen) = Ftext$
END SUB

SUB SetRecord (FileNum, RecNum&, Record$, Header AS DBFHeadStruc) STATIC      
RecOff& = ((RecNum& - 1) * Header.RecLen) + Header.FirstRec
  PUT FileNum, RecOff&, Record$
END SUB

Each of the routines listed above performs a different useful service to assist you in accessing dBASE
files, and the following section describes the operation and use of each routine. Please understand that
these routines are intended to be loaded as a module, along with your own main program. To assist you,
a file named DBACCESS.BI is provided, which contains appropriate DECLARE statements for each
routine. You should therefore include this file in your programs that use these routines.

A second include file named DBF.BI is also provided, and it contains TYPE definitions for the header
and field information. You may notice that these definitions vary slightly from the actual format of a
dBASE file. For efficiency, the OpenDBF routine calculates and saves key information about the file to
use later. As an example, the offset of the first record's field information is needed by GetRecord and
SetRecord.  Rather than require those procedures to calculate the information repeatedly each time,
OpenDBF does it once and stores the result in the Header TYPE variable.

Similarly, the field definition header used by these routines does not parallel exactly the format of the
information in the file. The modified structures defined in DBF.BI are as follows:

'********** DBF.BI - Record declarations for the dbAccess routines 
TYPE DBFHeadStruc
  Version  AS INTEGER
  Memo     AS INTEGER
  Year     AS INTEGER
  Month    AS INTEGER
  Day      AS INTEGER
  FirstRec AS INTEGER
  TRecs    AS LONG
  RecLen   AS INTEGER
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  TFields  AS INTEGER
END TYPE

TYPE FieldStruc
  FName AS STRING * 10
  FType AS STRING * 1
  FOff  AS INTEGER
  FLen  AS INTEGER
  Dec   AS INTEGER
END TYPE

CreateDBF

CreateDBF accepts the name of the file to create and a field definition array, and then creates the
header portion of a dBASE file based on the field information in the array. The file that is created has
no data records in it,  but all of the header information is in place. The calling program must have
dimensioned the field information TYPE array, and filled it with appropriate information that describes
the structure of the records in the file. The DBCREATE.BAS program shows an example of how to set
up and call CreateDBF.

OpenDBF And CloseDBF

OpenDBF is used to open a DBF file, and to make information about its structure available to the
calling program. It fills a TYPE variable with information from the data file header, and also fills the
field definition array with information about each field. When you call it you will pass a BASIC file
number you want to be used for later access, the full name of the file, a TYPE variable that receives the
header information, and a TYPE array. The array is redimensioned within OpenDBF, and then filled
with information about each field in the file.

CloseDBF is called when you want to close the file, and it is also responsible for updating the date and
number of records information in the file header.

GetRecord And SetRecord

GetRecord and SetRecord retrieve and write individual records respectively. The calling program must
specify the file and record numbers, and also pass a string that will receive the actual record data.
GetRecord assumes that you have already created the string that is to receive data from the file. A
Header variable is also required, so GetRecord and SetRecord will know the length of each record.
Both GetRecord and SetRecord require the file to have already been opened using OpenDBF.

GetField, GetFldNum, SetField, and Padded

These routines are used to retrieve and assign the actual field data within a record string. The dbAccess
routines cannot use a TYPE variable to define the records, since they must be able to accommodate any
type of file. Therefore, the Record$ variable is created dynamically, and assigned and read as necessary.
However, this also means that you may not refer to the fields by name as would be possible with a
TYPE variable.
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GetField returns the contents of the specified field, based on the field number; the complementary
function GetFldName returns the field number based on the field name. SetField is the opposite of
GetField, and it assigns a field into the Record$ variable. Padded$ serves as an assistant to SetField,
and it ensures that the field contents are padded to the correct length with trailing blanks.

Deleted

Deleted is an integer function that returns a value of  -1 to indicate that the record string passed to it
holds a deleted record, or 0 if the record is not deleted. The very first byte in each dBASE record is
reserved just to indicate if the record has been deleted. An asterisk "*" in that position means the record
is deleted; otherwise the field is blank. Using a function for this purpose lets you directly test a record
using  code  such  as  IF Deleted%(Record$) THEN or  IF NOT Deleted%(Record$)
THEN.

Marking deleted records is  a common technique in database programming, because the amount of
overhead needed to actually remove a record from a file is hardly ever justified. The lost space is
recovered in one of two ways: the most common is to copy the data from one file to another. Another,
more sophisticated method instead keeps track of which records have been deleted. Then as new data is
added, it  is  stored in the space that was marked as abandoned, thus overwriting the old data.  The
DBPACK.BAS program described later in this chapter uses the copy method, but uses a trick to avoid
having to create a second file.

dBASE Utility Programs

Several programs are presented to show the various dbAccess routines in context, and each is described
individually  below.  DBSTRUCT.BAS  displays  the  header  structure  of  any  dBASE  file,
DBCREATE.BAS creates an empty database file with header information only, and DBEDIT.BAS lets
you browse,  edit,  and add records  to  an  existing  data  file.  These  programs are  simple  enough to
understand,  even without  excessive comments.  However,  highlights of each program's operation is
given.

DBSTRUCT.BAS

DBSTRUCT.BAS begins by including the DBF.BI file which defines the Header TYPE variable and
the FldStruc() TYPE array. A short DEF FN-style function is used to simplify formatting when the file
date is printed later in the program. Once you enter the name of the dBASE file to be displayed, a call
is made to OpenDBF. OpenDBF accepts the incoming file number and name, and returns information
about the file in Header and FldStruc(). The remainder of the program simply reports that information
on the display screen.

DBCREATE.BAS

243



The DBCREATE.BAS program accepts the name of a data file to create, and then asks how many
fields it is to contain. Once the number of fields is known, a TYPE array is dimensioned to hold the
information,  and you are prompted for each field's  characteristics  one by one.  As you can see by
examining the program source listing, the information you enter is validated to prevent errors such as
illegal field lengths, more decimal digits than the field can hold, and so forth.

As each field is defined in the main FOR/NEXT loop, the information you enter is stored directly into
the FldStruc TYPE array. At the end of the loop, CreateDBF is called to create an empty .DBF data file.

'********** DBCREATE.BAS, creates a DBF file

DEFINT A-Z

'$INCLUDE: 'dbf.bi'
'$INCLUDE: 'dbaccess.bi'

CLS
LOCATE , , 1

LINE INPUT "Enter DBF name: "; DBFName$
IF INSTR(DBFName$, ".") = 0 THEN
  DBFName$ = DBFName$ + ".DBF"
END IF

DO
  INPUT "Enter number of fields"; TFields
  IF TFields <= 128 THEN EXIT DO
  PRINT "Only 128 fields are allowed"
LOOP

REDIM FldStruc(1 TO TFields) AS FieldStruc

FOR X = 1 TO TFields
  CLS
  DO
    PRINT "Field #"; X
    LINE INPUT "Enter field name: ", Temp$
    IF LEN(Temp$) <= 10 THEN EXIT DO
    PRINT "Field names are limited to 10 characters"
  LOOP
  FldStruc(X).FName = Temp$

  PRINT "Enter field type (Char, Date, Logical, Memo, ";
  PRINT "Numeric (C,D,L,M,N): ";
  DO
    Temp$ = UCASE$(INKEY$)
  LOOP UNTIL INSTR(" CDLMN", Temp$) > 1
  PRINT
  FldStruc(X).FType = Temp$
  FldType = ASC(Temp$)

  SELECT CASE FldType
    CASE 67                     'character
      DO
        INPUT "Enter field length: ", FldStruc(X).FLen
        IF FldStruc(X).FLen <= 255 THEN EXIT DO
        PRINT "Character field limited to 255 characters"
      LOOP
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    CASE 78                     'numeric
      DO
        INPUT "Enter field length: ", FldStruc(X).FLen
        IF FldStruc(X).FLen <= 19 THEN EXIT DO
        PRINT "Numeric field limited to 19 characters"
      LOOP
      DO
        INPUT "Number of decimal places: ", FldStruc(X).Dec
        IF FldStruc(X).Dec < FldStruc(X).FLen THEN EXIT DO
        PRINT "Too many decimal places"
      LOOP

    CASE 76                     'logical
        FldStruc(X).FLen = 1

    CASE 68                     'date
        FldStruc(X).FLen = 8
     
    CASE 77
        FldStruc(X).FLen = 10

    END SELECT
NEXT

CALL CreateDBF(DBFName$, FldStruc())
PRINT DBFName$; " created"
END

DBEDIT.BAS

DBEDIT.BAS is the main demonstration program for the dbAccess subroutines. It prompts you for the
name of the dBASE file to work with, and then calls OpenFile to open it. Once the file has been opened
you may view records forward and backward, edit existing records, add new records, and delete and
undelete records. Each of these operations is handled by a separate CASE block, making the code easy
to understand.

'********** DBEDIT.BAS, edits a record in a DBF file

DEFINT A-Z
'$INCLUDE: 'dbf.bi'
'$INCLUDE: 'dbaccess.bi'

DIM Header AS DBFHeadStruc
REDIM FldStruc(1 TO 1) AS FieldStruc

CLS
LINE INPUT "Enter .DBF file name: ", DBFName$
IF INSTR(DBFName$, ".") = 0 THEN
  DBFName$ = DBFName$ + ".DBF"
END IF

CALL OpenDBF(1, DBFName$, Header, FldStruc())

Record$ = SPACE$(Header.RecLen)
RecNum& = 1
RecChanged = 0
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GOSUB GetTheRecord

DO
  PRINT "What do you want to do (Next, Prior, Edit, ";
  PRINT "Delete, Undelete, Add, Quit)? ";
  SELECT CASE UCASE$(INPUT$(1))
    CASE "N"
      IF RecChanged THEN
        CALL SetRecord(1, RecNum&, Record$, Header)
      END IF
      RecNum& = RecNum& + 1
      IF RecNum& > Header.TRecs THEN
        RecNum& = 1
      END IF
      GOSUB GetTheRecord
      
    CASE "P"
      IF RecChanged THEN
        CALL SetRecord(1, RecNum&, Record$, Header)
      END IF
      RecNum& = RecNum& - 1
      IF RecNum& < 1 THEN
        RecNum& = Header.TRecs
      END IF
      GOSUB GetTheRecord
      
    CASE "E"
Edit:
      PRINT
      INPUT "Enter the field number:"; Fld
      DO
        PRINT "New "; FldStruc(Fld).FName;
        INPUT Text$
        IF LEN(Text$) <= FldStruc(Fld).FLen THEN EXIT DO
        PRINT "Too long, only "; FldStruc(Fld).FLen
      LOOP
      CALL SetField(Record$, Text$, Fld, FldStruc())
      RecChanged = -1
      GOSUB DisplayRec
      
    CASE "D"
      MID$(Record$, 1) = "*"
      RecChanged = -1
      GOSUB DisplayRec
      
    CASE "U"
      MID$(Record$, 1, 1) = " "
      RecChanged = -1
      GOSUB DisplayRec

    CASE "A"
      Header.TRecs = Header.TRecs + 1
      RecNum& = Header.TRecs
      LSET Record$ = ""
      GOTO Edit
      
    CASE ELSE
      EXIT DO
  END SELECT
LOOP
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IF RecChanged THEN
  CALL SetRecord(1, RecNum&, Record$, Header)
END IF

CALL CloseDBF(1, Header.TRecs)
END

GetTheRecord:
  CALL GetRecord(1, RecNum&, Record$, Header)

DisplayRec:
  CLS
  PRINT "Record "; RecNum&; " of "; Header.TRecs;
  IF Deleted%(Record$) THEN PRINT " (Deleted)";

  PRINT
  PRINT
  FOR Fld = 1 TO Header.TFields
    FldText$ = GetField$(Record$, Fld, FldStruc())
    PRINT FldStruc(Fld).FName, FldText$
  NEXT
  PRINT

RETURN

DBPACK.BAS

DBPACK.BAS is the final dBASE utility, and it shows how to write an optimized packing program.
Since there is no reasonable way to actually erase a record from the middle of a file, dBASE and most
database  programs  reserve  a  byte  in  each  record  solely  to  show  if  it  has  been  deleted.  The
DBPACK.BAS  utility  program is  intended  to  be  run  periodically,  to  actually  remove  the  deleted
records.

Most programs perform this maintenance by creating a new file, copying only the valid records to that
file, and then deleting the original data file. In fact, this is what dBASE does. The approach taken by
DBPACK is much more intelligent in that it works through the file copying good records on top of
deleted ones. When all that remains at the end of the file is data that has been deleted or abandoned
copies of records, the file is truncated to a new, shorter length. The primary advantage of this approach
is that it saves disk space. This is superior to the copy method that of course requires you to have
enough free space for both the original data and the copy. Because the actual data file is manipulated
instead of a copy, be sure to have a recent backup in case a power failure occurs during the packing
process.

DBPACK.BAS is fairly quick, but it could be improved if records were processed in groups, rather than
one at a time. This would allow more of the swapping to take place in memory, rather than on the disk.
However, DBPACK was kept simple on purpose, to make its operation clearer.

There  is  no  BASIC  or  DOS  command  that  specifically  truncates  a  file,  so  this  program  uses  a
little-known trick. If a program calls DOS telling it to write zero bytes to a file, DOS truncates the file
at the current seek location. Since BASIC does not allow you to write zero bytes, CALL Interrupt must
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be used to perform the DOS call. Note that you can also use this technique to extend a file beyond its
current  length.  This  will  be described in  more detail  in  Chapter  11,  which describes  using CALL
Interrupt to access DOS and BIOS services.

'********* DBPACK.BAS, removes deleted records from a file 

'NOTE: Please make a copy of your DBF file before running this program. 
'      Unlike dBASE that works with a copy of the data file, this program 
'      packs, swaps records, and then truncates the original data file. 
DEFINT A-Z
'$INCLUDE: 'dbf.bi'
'$INCLUDE: 'dbaccess.bi'
'$INCLUDE: 'regtype.bi'

DIM Registers AS RegType
DIM Header AS DBFHeadStruc
REDIM FldStruc(1 TO 1) AS FieldStruc

LINE INPUT "Enter the dBASE file name: ", DBFName$
IF INSTR(DBFName$, ".") = 0 THEN
  DBFName$ = DBFName$ + ".DBF"
END IF

CALL OpenDBF(1, DBFName$, Header, FldStruc())

Record$ = SPACE$(Header.RecLen)
GoodRecs& = 0

FOR Rec& = 1 TO Header.TRecs
  CALL GetRecord(1, Rec&, Record$, Header)
  IF NOT Deleted%(Record$) THEN
    CALL SetRecord(1, GoodRecs& + 1, Record$, Header)
    GoodRecs& = GoodRecs& + 1
  END IF
NEXT

'This trick truncates the file
RecOff& = (GoodRecs& * Header.RecLen) + Header.FirstRec
Eof$ = CHR$(26)
PUT #1, RecOff&, Eof$
SEEK #1, RecOff& + 1

Registers.AX = &H4000          'service to write to a file 
Registers.BX = FILEATTR(1, 2)  'get the DOS handle
Registers.CX = 0               'write 0 bytes to truncate
CALL Interrupt(&H21, Registers, Registers)
CALL CloseDBF(1, GoodRecs&)

PRINT "All of the deleted records were removed from "; 
PRINT DBFName$
PRINT GoodRecs&; "remaining records"

Limitations of the dBASE III Structure

The primary limitation of the DBF file format is it does not allow complex data types. With support for
only five basic field types—Character, Date, Logical, Memo, and Numeric—it is very limited when
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compared to what BASIC allows. However, you can easily add new data types to the programs you
write using extensions to the standard field format. Since a byte is used to store the field type in the
dBASE file header, as many as 256 different types are possible (0 through 255). You would simply
define additional code numbers for field types such as Money or Time, or perhaps other Logical field
types such as M and F (Male and Female).

Another  useful enhancement  would be to  store numeric values in their  native fixed-length format,
instead of using the much slower ASCII format that dBASE uses. You could also modify the header
structure itself, to improve the performance of your programs. Since BASIC does not offer a single
byte numeric data type, it would make sense to replace the STRING * 1 variables with integers. This
would eliminate repeated use of ASC and CHR$ when reading and assigning single byte strings. You
could also change the date storage method to pack the date fields to three characters—one for the year,
one for the month, and another for the day. Of course, if you do change the header or data format, then
your files will no longer be compatible with the dBASE standard.

Indexing Techniques

At some point, the number of records in a database file will grow to the point where it takes longer and
longer to locate information in the file. This is where indexing can help. Some of the principles of
indexed file access were already described in Chapter 5, in the section that listed the BASIC PDS
ISAM compiler switches. In this section I will present more details on how indexing works, and also
show some simple  methods you can  create  yourself.  Although there  are  nearly  as  many indexing
systems as there are programmers, one of the most common is the sorted list. 

Sorted Lists

A sorted  list  is  simply  a  parallel  TYPE array  that  holds  the  key  field  and  a  record  number  that
corresponds to the data in the main file. By maintaining the array in sorted order based on the key field
information, the entire database may be accessed in sorted, rather than sequential order. A typical TYPE
array used as a sorted list for indexing would look like this:

TYPE IndexType
  LastName AS STRING * 15
  RecNum   AS LONG
END TYPE
REDIM IArray(1 TO TotalRecords) AS IndexType

Assuming each record in the data file has a corresponding element in the TYPE array, locating a given
record is as simple as searching the array for a match. Since array searches in memory are much faster
than reading a disk file, this provides an enormous performance boost when compared to reading each
record sequentially. To conserve memory and also further improve searching speed, you might use a
shorter string portion for the last name.
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The following short program shows how such an index array could be sorted.

FOR X% = MaxEls TO 1 STEP -1
  FOR Y% = 1 TO X% - 1
    IF IArray(Y%).LastName > IArray(Y% + 1).LastName THEN
      SWAP IArray(Y%), IArray(Y% + 1)
    END IF
  NEXT
NEXT

Here, the sorting is based on the last name portion of the TYPE elements. Once the array is sorted, the
data file may be accessed in order by walking through the record numbers contained in the RecNum
portion of each element: 

DIM RecordVar AS IndexType
FOR X% = 1 TO MaxEls
  GET #1, IArray(X%).RecNum, RecordVar
  PRINT RecordVar.LastName
NEXT

Likewise, to find a given name you would search the index array based on the last name, and then use
the record number from the same element once it is found:

Search$ = "Cramer"
FOR X% = 1 TO MaxEls
  IF RTRIM$(IArray(X%).LastName) = Search$ THEN
    Record% = IArray(X%).RecNum
    GET #1, Record%, RecordVar
    PRINT "Found "; Search$; " at record number"; Record%
    EXIT FOR
  END IF
NEXT

Chapter 8 will discuss sorting and searching in detail using more sophisticated algorithms than those
shown here,  and  you would  certainly  want  to  use  those  for  your  program.  However,  one  simple
improvement you could make is to reduce the number of characters in each index entry. For example,
you could keep only the first four characters of each last name. Although this might seem to cause a
problem—searching for Jackson would also find Jack—you would have the same problem if there were
two Jacksons. The solution, therefore, is to retrieve the entire record if a partial match is found, and
compare the complete information in the record with the search criteria.

Inserting an entry into a sorted list requires searching for the first entry that is greater than or equal to
the one you wish to insert, moving the rest of the entries down one notch and inserting the new entry.
The code for such a process might look something like this:

FOR X% = 2 TO NumRecs%
  IF Item.LastName <= Array(X%).LastName THEN
    IF Item.LastName >= Array(X% - 1).LastName THEN
      FOR Y% = NumRecs% TO X% STEP -1
        SWAP Array(Y%), Array(Y% + 1)
      NEXT
      Array(X%) = Item
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      EXIT FOR
    END IF
  END IF
NEXT

Understand that this code is somewhat simplified. For example, it will not correctly handle inserting an
element before the first existing entry or after the last. Equally important, unless you are dealing with
less than a few hundred entries, this code will be extremely slow. The loop that inserts an element by
swapping all of the elements that lie beyond the insertion point will never be as efficient as a dedicated
subroutine written in assembly language. Commercial toolbox products such as Crescent Software's
QuickPak Professional include memory moving routines that are much faster than one written using
BASIC.

Finally, you must have dimensioned the array to at least one more element than there are records, to
accommodate the inserted element. Many programs that use in-memory arrays for indexing dimension
the arrays to several hundred extra elements to allow new data to be entered during the course of the
session. Since BASIC 7.1 offers the REDIM PRESERVE command, that too could be used to extend
an array as new data is added. 

Expression Evaluation

Expression evaluation, in the context of data management, is the process of evaluating a record on the
basis of some formula. Its uses include the creation of index keys, reports, and selection criteria. This is
where the application of independent file structures such as the dBASE example shows a tremendous
advantage. For example, if the user wants to be able to view the file sorted first by Zip code and then
by last name, some means of performing a multi-key sort is required.

Another example of expression evaluation is when multiple conditions using AND and OR logic are
needed. You may want to select only those records where the balance due is greater than $100 and the
date of last payment is more than 30 days prior to the current date. Admittedly, writing an expression
parser is not trivial; however, the point is that data-driven programming is much more suitable than
code-driven programming in this case.

Without some sort of look-up table in which you can find the field names and byte offsets, you are
going to have a huge number of SELECT CASE statements, none of which are reusable in another
application. Indeed, one of the most valuable features of AJS Publishing's db/LIB add-on database
library is the expression evaluator it includes. This routine lets you maintain the data structure in a file,
and the same code can be used to process all file search operations.

Relational Databases

Most programmers are familiar with traditional random access files, where a fixed amount of space is
set aside in each record to hold a fixed amount of information. For very simple applications this method
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is sensible, and allows for fast access to each record provided you know the record number. As you
learned earlier in this chapter, indexing systems can eliminate the need to deal with record numbers,
instead letting you locate records based on the information they contain. Relational databases take this
concept one step further,  and let  you locate records in  one file  based on information contained in
another file. As you will see, this lets you create applications that are much more powerful than those
created using standard file handling methods.

Imagine  you  are  responsible  for  creating  an  order  entry  program for  an  auto  parts  store.  At  the
minimum, three sets of information must be retained in such a system: the name, address, and phone
number of each customer; a description of each item that is stocked and its price; and the order detail
for each individual sale. A simplistic approach would be to define the records in a single database with
fields to hold the customer information and the products purchased, with a new record used for each
transaction. A TYPE definition for these records might look like this:

TYPE RecordType
  InvoiceNum AS INTEGER
  CustName   AS STRING * 32
  CustStreet AS STRING * 32
  CustCity   AS STRING * 15
  CustState  AS STRING * 2
  CustZip    AS STRING * 5
  CustPhone  AS STRING * 10
  Item1Desc  AS STRING * 15
  Item1Price AS SINGLE
  Quantity1  AS INTEGER
  Item2Desc  AS STRING * 15
  Item2Price AS SINGLE
  Quantity2  AS INTEGER
  Item3Desc  AS STRING * 15
  Item3Price AS SINGLE
  Quantity3  AS INTEGER
  Item4Desc  AS STRING * 15
  Item4Price AS SINGLE
  Quantity4  AS INTEGER
  TaxPercent AS SINGLE
  InvoiceTot AS SINGLE
END TYPE

As sensible as this may seem at first glance, there are a number of problems with this record structure.
The primary limitation is that each record can hold only four purchase items. How could the sales clerk
process an order if someone wanted to buy five items? While room could be set aside for ten or more
items, that would waste disk space for sales of fewer items. Worse, that still doesn't solve the inevitable
situation when someone needs to buy eleven or more items at one time.

Another  important  problem is  that  the customer name and address will  be repeated for  each sale,
further wasting space when the same customer comes back a week later. Yet another problem is that the
sales personnel are responsible for knowing all of the current prices for each item. If they have to look
up the price in a printout each time, much of the power and appeal of a computerized system is lost.
Solving these and similar problems is therefore the purpose of a relational database.
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In a relational database, three separate files would be employed. One file will hold only the customer
names and addresses, a second will hold just the item information, and a third is used to store the
details of each invoice. In order to bind the three files together, a unique number must be assigned in
each record. This is shown as a list of field names in Figure 7-1 below.

Now, when Bob Jones goes into the store to buy a radiator cap and a case of motor oil, the clerk can 
enter the names Jones and see if Bob is already a customer. If so, the order entry program will retrieve 
Bob's full name and address from the customer file and display it on the screen. Otherwise it would 
prompt the clerk to enter Bob's name and address. When Bob tells the clerk what he wants to buy, the 
clerk would enter the part number or name, and the program will automatically look up the price in the 
products file. A smart program would even subtract the number of radiator caps from the "Quantity on 
Hand" field, so a report run at the end of each day can identify items that need to be ordered. Once the 
sale is finalized, two new records will be written to the invoice file—one for the radiator cap and one 
for the motor oil.

Each  invoice  record  would  store  Bob's  customer  number,  a  program-generated  sequential  invoice
number, the product number, the quantity of this product sold, and the unit price. There's no need to
store the subtotal, since that information could be recreated at any time from the quantity and unit price
fields. If sales tax is charged, that field could hold just the rate. Again the actual tax amount could be
computed at any time. The beauty of this organization is that there is never a need to store duplicated
information, and thus there is no wasted disk space.
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CUSTOMER.DAT

Customer Number 
Customer Name 
Customer Address 
Customer Zip 
Customer Phone 
Available Credit

PRODUCTS.DAT

Product Number 
Product Name 
Customer Address 
Product Price 
Quantity on Hand

INVOICE.DAT

Customer Number 
Invoice Number 
Product Number 
Product Quantity 
Product Price 
Tax Perfect

Figure  7-1:  How  a  relational  database  ties  related  data  in
separate files using a unique value in each record.



The relational aspect of this system becomes clear when it is time to produce a report. To print an
invoice, the program searches the invoice file for every record with the unique invoice number. From
the customer number field the customer's name and address are available, by searching for a match
between the customer number in the invoice record and that same unique number in the customer file.
And from the part number field the part name can be retrieved, based on finding the same part number
in the products file. Thus, the term relational is derived from the ability to relate information in one file
to information in a different file, based on unique identifying values. In this case, those values are the
invoice number, the customer number, and the part number.

SQL: The Black Box

An important current trend in data processing is the use of Structured Query Language (SQL). The
appeal  of  SQL is  that  it  eliminates  explicit  coding in  a  conventional  high-level  language such as
BASIC. Instead, SQL is an even higher-level language that performs most of the low-level details for
you. SQL is based on passing SQL commands—called requests—as strings, which are evaluated by the
SQL engine. The short example program below shows some typical SQL commands in context.

SELECT lastname, firstname, accountcode, phone
FROM customers
WHERE unpaid > credit * .75
 AND today - duedate > 30
ORDER BY accountcode

When these commands are sent to the SQL server, the server responds by filling in an array with the
resultant data. The beauty of SQL, therefore, is that it eliminates the SELECT CASE statements that
you would have to write, and that would be specific to a given data file. In SQL, the data fields are
accessed by name instead of by numeric offsets. The SQL program does not have to specify which data
is double precision, and which is text, and so forth. Rather, all that is needed is the name of the data
being reported on, the selection criteria, and the order in which the data is to be returned.

This program asks to report on the lastname, firstname, accountcode, and phone fields of the data set
(file) named customers. It then specifies that only those customers who owe more than 75 percent of
their available credit and are more than 30 days overdue should be listed. Finally, the customers are to
be listed in order based on their customer account code number.

As a further example of the power of the SQL language, imagine you have written an application to
manage a publishing business. In this hypothetical situation, three of the tables in your database are
Stores, Titles, and Sales, which hold the names of each retail store, the book titles offered for sale, and
the details of each sale.

Now, consider the problem of producing a report showing the total sales in dollars, with individual
subtotals for each store. This would first require you generate a list of stores from the Stores table. You
would then have to examine each sale in the Sales table, and each entry there would refer to a title
which must be looked up in the Titles file to determine the price. You would then multiply this price by
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the quantity and add that to a running total being kept for each store, perhaps storing the result in a
multi-dimensional array.

As you can see, this is potentially a lot of coding if you attempt to tackle the job using BASIC. While
the sequence of SQL commands necessary to retrieve this information is not trivial either, it is certainly
less work than writing an equivalent report in BASIC. Here are the SQL commands that perform the
store sales report described above:

SELECT stores.storename, sum(sales.qty * titles.price)
FROM stores, titles, sales
WHERE stores.store_id = sales.store_id
 AND titles.title_id = sales.title_id
GROUP BY storename

As you can see from these short examples, SQL is a simple and intuitive language, and it may well be
worth your effort to learn if you specialize in database programming or plan to. One excellent product
you may wish to become familiar with is DataEase, a popular PC database product. One of the earliest
adopters of SQL-style methods,  DataEase lets  even the novice user create  sophisticated data  entry
forms and reports in a very short time. Contrast that with procedural languages such as that used by
dBASE which require as much effort as programming in BASIC.

There are several good books that go into far greater detail about SQL than can possibly be offered
here.  One  I  recommend  is  The  Practical  SQL Handbook:  Using  Structured  Query  Language, by
Emerson, Darnovsky, and Bowman; Addison-Wesley Publishing Company; 1989. This book is clearly
written, avoids the use of jargon, and contains numerous good explanations of what SQL is all about
without getting bogged down in esoteric details. 

Programming for a Network

Although network file access has been supported since QuickBASIC version 1.0, many programmers
do not fully understand how to use this important feature. However, the concepts are simple once you
know the commands. In the earlier auto parts store example, it was assumed that only one computer
would be used to enter sales information. But when there are many sales people entering information
all at once, some means is needed to let each computer access simultaneously a single group of files
from a remote file server.

In this section I will discuss two methods for sharing files—one which is supported by BASIC, and the
other supported only indirectly. I will also discuss methods for protecting data across the network and
detecting which type of network is being used.

File Sharing and Locking
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BASIC  offers  three  commands  to  allow  multiple  programs  to  share  files  from a  central,  remote
computer: OPEN, LOCK, and UNLOCK. Chapter 6 discussed the OPEN command in great detail, but
mentioned the various file sharing options only briefly. OPEN provides four variations that let you
specify what other processes have access to the file being opened. For simplicity, the discussions that
follow assume the files are being opened for random access; this is the most common access method
when writing databases. But only very slight changes are needed to adapt this information for use with
binary file access as shown in the earlier dBASE examples.

When you add SHARED to the list of OPEN arguments, you are telling the operating system that any 
other program may also open the file while you are using it. 

Without SHARED, another program that tries to open a
file you have opened will receive an "Access denied"
error message.

Once the other programs have opened the file they may freely read from it or write to it. If you need to 
restrict what operations other programs may perform, you would replace SHARED with either LOCK 
READ, LOCK WRITE, or LOCK READ WRITE. 

LOCK READ prevents other program from reading the file while you have it open, although they
could write to it. Likewise, LOCK WRITE lets another process read from the file but not write to it.
LOCK READ WRITE of course prevents another program from either reading or writing the file.

Because of these complications and limitations, you will most likely use SHARED to allow full file
sharing. Then, the details of who writes what and when can be handled by logic in your program, or by
locking individual records.

Note that with most networks you cannot open a file for shared access, unless you have previously
loaded SHARE.EXE that comes with DOS 3.0 and later versions. SHARE.EXE is a TSR (terminate
and stay resident) program that manages  lock tables for your machine. These tables comprise a list
showing which portions of what files are currently locked. A short utility that reports if SHARE.EXE is
installed is presented later in this chapter. Some networks, however, require SHARE to be installed
only on the computer that is acting as the file server.

Record Locking

The most  difficult  problem you will  encounter when writing a  program that runs on a  network is
arbitrating when each user will be allowed to read and write data. Since more than one operator may
call up a given record at the same time, it is possible—even likely—that changes made by one person
will be overwritten later by another. Imagine that two operators have just called up the same customer
record on their screens. Further, one operator has just changed the customer's address and the other has
just changed the phone number. Then the first operator then saves the record with the new address, but
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two seconds later the second operator saves the same record with a new phone number. In this case, the
second disk write stores the old address on top of the same record that was saved two seconds earlier!

To prevent this from happening requires some type of file locking, whereby the second operator is
prevented from even loading the record; the program instead gives them a message saying the record is
already in use. There are two primary ways to do this. A hard lock is implemented using the BASIC
LOCK statement, and it causes the network operating system to deny access to the record if the first
program has locked it. A soft lock is similar, except it uses program logic that you design to determine
if the file is already in use. Let's take a closer at each of these locking methods.

Hard Locks

A hard lock is handled by the network software, and is controlled by the BASIC LOCK and UNLOCK
statements. Hard locks may be specified for all or just a part of a file. When a program imposes a hard
lock, all other programs are prevented from either reading or writing that portion of the file. You may
lock either one record or a range of records: LOCK #1, 3 locks record 3, and UNLOCK #1, 1 TO
10 unlocks records 1 through 10. Files that have been opened for binary access may also be locked, by
specifying a range of bytes instead of one or more record numbers.

Because access to the specified record or range of records is denied to all other applications, it  is
important to unlock the records as soon as you are done with them. A code fragment that shows how to
manipulate a record using hard locking would look like this:

OPEN "CUST.DAT" SHARED AS #1 LEN = RecordLength%
LOCK #1, RecNum%
GET #1, RecNum%, RecData

'allow the user to edit the record here

PUT #1, RecNum%, RecData
UNLOCK #1, RecNum%
CLOSE #1

There are several fundamental problems with hard locks you must be aware of. First, they prevent
another application from even looking at the data that is locked. If a record is tied up for a long period
of time, this prevents another program from reporting on that data. Another is that all locks must be
removed before the file is closed.  The BASIC PDS language reference manual warns, "Be sure to
remove all locks with an UNLOCK statement before closing a file or terminating your program. Failing
to remove locks produces unpredictable results." As in "Yo, get out the Norton disk doctor".

Yet another problem is that each LOCK must have an exactly corresponding UNLOCK statement. It is
therefore up to your program to know exactly which record or range of records were locked earlier, and
unlock the exact same records later on.

Finally, the last problem with hard locking is that it requires you to use ON ERROR. If someone else
has locked a record and you attempt to read it, BASIC will generate a "Permission denied" error that
must be trapped. Since there's no way for you to know ahead of time if a record is available or locked
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you must be prepared to handle the inevitable errors. Similarly, if you attempt to lock a record when it
has already been locked by another program, BASIC will create an error. It is possible to lock and
unlock records behind BASIC's back using CALL Interrupt and detect those errors manually; however,
soft locks often provide an even better solution. 

Soft Locks

A soft lock is implemented using logic you design, which has the decided advantage of letting you
customize that logic to your exact needs. Most programs implement a soft lock by reserving a single
byte at the beginning of each data record. This is similar to the method dBASE uses to identify deleted
records. Understand that the one important limitation of soft locks is that all programs must agree on
the method being used. Unless you wrote or at least control all of the other programs that are sharing
the file, soft locks will probably not be possible.

One way to implement a soft lock is to use a special character—perhaps the letter "L"—to indicate that
a record is in use and may not be written to. Therefore, to lock a record you would first retrieve it, and
then check to be sure it isn't already locked. If it is not currently locked you would assign an "L" to the
field reserved for that purpose, and finally write the record back to disk. Thereafter, any other program
can tell that the record is locked by simply examining that first byte.

If someone tries to access a record that is locked, the program can display the message "Record in use"
or something along those lines. A simple enhancement to this would store a user identification number
in the lock field, rather than just a locked identifier. This way the program could also report who is
using the record, and not just that it is locked. This is shown in context below.

GET #1, RecNum%, RecData$
Status$ = LEFT$(RecData$, 1)
SELECT CASE Status$
  CASE " "          'Record is okay to write, lock it now
    MID$(RecData$, 1) = CHR$(UserID)
    PUT #1, RecNum%, RecData$
    GOTO EditRecord
  CASE "*"          'Record is deleted, say so
    PRINT "Record number"; RecNum%; " is deleted."
    GOTO SelectAnotherRecord
  CASE ELSE         'Status$ contains the user number
    PRINT "Record already in use by user: "; Status$
    GOTO ReadOnly
END SELECT
  ...
  ...
SaveRecord:
  MID$ (RecData$, 1) = " "     'clear the lock status
  PUT #1, RecNum%, RecData$    'save the new data to disk

Additional Network Considerations
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Many networks require that SHARE.EXE be installed before a file may be opened for shared access.
You can avoid runtime errors by being able to determine ahead of time if  this  file is  loaded. The
following short function and example returns either -1 or 0 to indicate if SHARE is currently loaded or
not, respectively.

DEFINT A-Z
DECLARE FUNCTION ShareThere% ()

'$INCLUDE: 'regtype.bi'

FUNCTION ShareThere% STATIC
  DIM Registers AS RegType
  ShareThere% = -1              'assume Share is loaded
  Registers.AX = &H1000         'service 10h
  CALL Interrupt(&H2F, Registers, Registers)
  AL = Registers.AX AND 255     'isolate the result in AL
  IF AL <> &HFF THEN ShareThere% = 0
END FUNCTION

Then, at  the start of your program you would invoke ShareThere,  and display an error message if
SHARE has not been run:

IF NOT ShareThere% () THEN
  PRINT "SHARE.EXE is not installed"
  END
END IF

Operating System Confirmation

Another feature of a well-behaved network application is to determine if the correct network operating
system is installed. In most cases, unless you are writing a commercial application for others to use,
you'll already know which operating system is expected. However, it  is possible to determine with
reasonable certainty what network software is currently running. The three functions that follow must
be invoked in the order shown, and they help you determine the brand of network your program is
running under.

'********** NETCHECK.BAS, identifies the network brand

DEFINT A-Z
'$INCLUDE: 'regtype.bi'

DECLARE FUNCTION NWThere% ()
DECLARE FUNCTION BVThere% ()
DECLARE FUNCTION MSThere% ()
DIM SHARED Registers AS RegType

PRINT "I think the network is ";
IF NWThere% THEN
  PRINT "Novell Netware"
ELSEIF BVThere% THEN
  PRINT "Banyon Vines"
ELSEIF MSThere% THEN
  PRINT "Lantastic or other MS compatible"
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ELSE
  PRINT "Something I don't recognize, or no network"
END IF
END

FUNCTION BVThere% STATIC
     BVThere% = -1
     Registers.AX = &HD701
     CALL Interrupt(&H2F, Registers, Registers)
     AL = Registers.AX AND 255
     IF AL <> 0 THEN BVThere% = 0
END FUNCTION

FUNCTION MSThere% STATIC
  MSThere% = -1
  Registers.AX = &HB800
  CALL Interrupt(&H2F, Registers, Registers)
  AL = Registers.AX AND 255
  IF AL = 0 THEN MSThere% = 0
END FUNCTION

FUNCTION NWThere% STATIC
  NWThere% = -1
  Registers.AX = &H7A00
  CALL Interrupt(&H2F, Registers, Registers)
  AL = Registers.AX AND 255
  IF AL <> &HFF THEN NWThere% = 0
END FUNCTION

Third-Party Database Tools

There are several tools on the market that can help you to write database applications. Although BASIC
includes  many  of  the  primitive  services  necessary  for  database  programming,  there  are  several
limitations. Four such products are described briefly below, and all are written in assembly language
for fast performance and small code size. You should contact the vendors directly for more information
on these products.

AJS Publishing's db/LIB

This  is  one of the most  popular  database add-on products  for  use with BASIC, and rightfully  so.
db/LIB comes in both single and multi-user versions, and handles all aspects of creating, updating, and
indexing relational database files. db/LIB uses the dBASE III+ file format which lets you access files
from  many  different  applications.  Besides  its  database  handling  routines,  db/LIB  includes  a
sophisticated expression evaluator that lets you select records based on multiple criteria. Compared to
many other database libraries, db/LIB is extremely fast, and is also very easy to use.

db/LIB
AJS Publishing, Inc.
P.O. Box 83220
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Los Angeles, CA  90083
213-215-9145

Novell's Btrieve

Btrieve has been around for a very long time, and like db/LIB it lets you easily manipulate all aspects
of a relational database. Unlike db/LIB, however, Btrieve can be used with nearly any programming
language. The downside is that Btrieve is more complicated to use with BASIC. Also, a special TSR
program must be run before your program can call its routines, further complicating matters for your
customers. But Btrieve has a large and loyal following, and if you write programs using more than one
language it is certainly a product to consider.

Btrieve
Novell, Inc.
122 East 1700 SOuth
Provo, UT  84606
801-429-7000

CDP Consultants' Index Manager

Index Manager is an interesting and unique product, because it handles only the indexing portion of a
database program. Where most of the other database add-ons take over all aspects of file creation and
updating, Index Manager lets you use any file format you want. Each time a record is to be retrieved
based on a key field, a single call obtains the appropriate record number. Index Manager is available in
single and multi-user versions, and is designed to work with compiled BASIC only. 

Index Manager
CDP Consultants
1700 Circo del Cielo Drive
El Cajon, CA  92020
619-440-6482

Ocelot

Ocelot is unique in that it uses SQL commands instead of the more traditional approach used by the
other products mentioned. Ocelot supports both standalone and networked access, and it is both fast
and flexible.  Although Ocelot  is  meant  for  use  with several  different  programming languages,  the
company provides full support for programmers using BASIC. 

Ocelot Computer Services
#1502, 10025-106 Street
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Edmonton, Alberta
Canada  T5J 1G7
403-421-4187

Summary

In this chapter you learned the principles of data-driven programming, and the advantages this method
offers.  Unlike  the  TYPE  definition  method  that  Microsoft  recommends,  storing  record  and  field
information  as  variables  allows  your  programs  to  access  any  type  of  data  using  the  same  set  of
subroutines.

You also learned how to create and access data using the popular dBASE file format, which has the
decided advantage of being compatible with a large number of already successful commercial products.
A complete set of dBASE file access tools was presented, which may be incorporated directly into your
own programs.

This chapter also explained indexing methods, to help you quickly locate information stored in your
data files. Besides providing fast access, indexes help to maintain your data in sorted order, facilitating
reports  on  that  data.  Relational  databases  were  described  in  detail,  using  examples  to  show  the
importance of maintaining related information in separate files. As long as a unique key value is stored
in each record, the information can be joined together at any time for reporting and auditing purposes.
SQL was also mentioned, albeit briefly, to provide a glimpse into the future direction that database
programming is surely heading.

In the section about programming for a network, a comparison of the various file sharing and locking
methods was given. You learned the importance of preventing one program from overwriting data from
another, and examined specific code fragments showing two different locking techniques.

Finally, several third-party library products were mentioned. In many situations it is more important to
get  the job  done than  to  write  all  of  the code yourself.  When the  absolute  fastest  performance is
necessary, a well written add-on product can often be the best solution to a complex data management
problem.

The next chapter discusses searching and sorting data both in memory and on disk, and provides a 
logical extension to the information presented here. In particular, there are a number of ways that you 
can speed up index searches using either smarter algorithms, assembly language, or both.
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8
Sorting and Searching

Two fundamental operations required of many applications are searching and sorting the data they
operate on. Many different types of data are commonly sorted, such as customer names, payment due
dates, or even a list of file names displayed in a file selection menu. If you are writing a programmer's
cross reference utility, you may need to sort a list of variable names without regard to capitalization. In
some cases, you may want to sort several pieces of related information based on the contents of only
one of them. One example of that is a list of names and addresses sorted in ascending Zip code order.

Searching is equally important; for example, to locate a customer name in an array or disk file. In some
cases you may wish to search for a complete match, while in others a partial match is needed. If you are
searching a list of names for, say, Leonard, you probably would want to ignore Leonardo. But when
searching a list of Zip codes you may need to locate all that begin with the digits 068. There are many
different ways sorting and searching can be accomplished, and the subject is by no means a simple one.

Most programmers are familiar with the Bubble Sort, because it is the simplest to understand. Each
adjacent pair of items is compared, and then exchanged if they are out of order. This process is repeated
over and over, until the entire list has been examined as many times as there are items. Unfortunately,
these repeated comparisons make the Bubble Sort  an extremely poor performer.  Similarly,  code to
perform a linear search that simply examines each item in succession for a match is easy to grasp, but it
will be painfully slow when there are many items.

In this chapter you will learn how sophisticated algorithms that handle these important programming
chores operate. You will also learn how to sort data on more than one key. Often, it is not sufficient to
merely sort a list of customers by their last name. For example, you may be expected to sort first by last
name, then by first name, and finally by balance due. That is, all of the last names would first be sorted.
Then within all of the Smiths you would sort again by first name, and for all of the John Smiths sort
that subgroup based on how much money is owed.

For completeness I will start each section by introducing sorting and searching methods that are easy to
understand,  and  then  progress  to  the  more  complex  algorithms  that  are  much  more  effective.
Specifically, I will show the Quick Sort and Binary Search algorithms. When there are many thousands
of data items, a good algorithm can make the difference between a sort routine that takes ten minutes to
complete, and one that needs only a few seconds.

Finally,  I  will  discuss both BASIC and assembly language sort  routines. As important as the right
algorithm is for good performance, an assembly language implementation will be even faster. Chapter
12 describes how assembly language routines are written and how they work, and in this chapter I will
merely show how to use the routines included with this book. 
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Sorting Fundamentals

Although there are many different ways to sort an array, the simplest sorting algorithm is the Bubble 
Sort. The name Bubble is used because a FOR/NEXT loop repeatedly examines each adjacent pair of 
elements in the array, and those that have higher values rise to the top like bubbles in a bathtub. The 
most common type of sort is ascending, which means that "A" comes before "B", which comes before 
"C", and so forth. Figure 8-1 shows how the name Zorba ascends to the top of a five-item list of first 
names.

The Bubble Sort routine that follows uses a FOR/NEXT loop to repeatedly examine an array and 
exchange elements as necessary, until all of the items are in the correct order.

DEFINT A-Z
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Figure  8.1:  Data  ascending  a  list
during a bubble sort.

Initial array contents:

  Element 4    Kathy
  Element 3    Barbara
  Element 2    Cathy
  Element 1    Zorba <

      After 1 pass:

        Element 4    Kathy
        Element 3    Barbara
        Element 2    Zorba <
        Element 1    Cathy

            After 2 passes:

              Element 4    Kathy
              Element 3    Zorba <
              Element 2    Barbara
              Element 1    Cathy

                After 3 passes:

                  Element 4    Zorba <
                  Element 3    Kathy
                  Element 2    Barbara
                  Element 1    Cathy



DECLARE SUB BubbleSort (Array$())

CONST NumItems% = 20
CONST False% = 0
CONST True% = -1

DIM Array$(1 TO NumItems%)
FOR X = 1 TO NumItems%
  READ Array$(X)
NEXT

CALL BubbleSort(Array$())

CLS
FOR X = 1 TO NumItems%
  PRINT Array$(X)
NEXT

DATA Zorba, Cathy, Barbara, Kathy, Josephine
DATA Joseph, Joe, Peter, Arnold, Glen
DATA Ralph, Elli, Lucky, Rocky, Louis
DATA Paula, Paul, Mary Lou, Marilyn, Keith
END

SUB BubbleSort (Array$()) STATIC
DO
  OutOfOrder = False%                 'assume it's sorted
  FOR X = 1 TO UBOUND(Array$) - 1
    IF Array$(X) > Array$(X + 1) THEN
      SWAP Array$(X), Array$(X + 1)   'if we had to swap
      OutOfOrder = True%              'we may not be done
    END IF
  NEXT
LOOP WHILE OutOfOrder
END SUB

This routine is simple enough to be self-explanatory, and only a few things warrant discussing. One is
the OutOfOrder flag variable. When the array is nearly sorted to begin with, fewer passes through the
loop are needed. The OutOfOrder variable determines when no more passes are necessary. It is cleared
at the start of each loop, and set each time two elements are exchanged. If, after examining all of the
elements in one pass no exchanges were required, then the sorting is done and there's no need for the
DO loop to continue.

The other item worth mentioning is that the FOR/NEXT loop is set to consider one element less than
the array actually holds. This is necessary because each element is compared to the one above it. If the
last element were included in the loop, then BASIC would issue a "Subscript out of range" error on the
statement that examines Array$(X + 1).

There are a number of features you can add to this Bubble Sort routine. For example, you could sort
without regard to capitalization. In that case "adams" would come before "BAKER", even though the
lowercase letter "a" has a higher ASCII value than the uppercase letter "B". To add that capability
simply use BASIC's UCASE$ (or LCASE$) function as part of the comparisons: 

IF UCASE$(Array$(X)) > UCASE$(Array$(X + 1)) THEN
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And to sort based on the eight-character portion that starts six bytes into each string you would use this:

IF MID$(Array$(X), 5, 8) > MID$(Array$(X + 1), 5, 8) THEN 

Although  the  comparisons  in  this  example  are  based  on just  a  portion  of  each  string,  the  SWAP
statement must exchange the entire elements. This opens up many possibilities as you will see later in
this chapter.

If there is a chance that the strings may contain trailing blanks that should be ignored, you can use
RTRIM$ on each pair of elements: 

IF RTRIM$(Array$(X)) > RTRIM$(Array$(X + 1)) THEN

Of course, you can easily combine these enhancements to consider only the characters in the middle
after they have been converted to upper or lower case.

Sorting in reverse (descending) order is equally easy; you'd simply replace the greater-than symbol (>)
with a less-than symbol (<).

Finally, you can modify the routine to work with any type of data by changing the array type identifier.
That is,  for every occurrence of Array$ you will  change that  to Array% or Array# or whatever is
appropriate.  If  you are  sorting  a  numeric  array,  then different  modifications  may be in  order.  For
example, to sort ignoring whether the numbers are positive or negative you would use BASIC's ABS
(absolute value) function: 

IF ABS(Array!(X)) > ABS(Array!(X + 1)) THEN

It is important to point out that all of the simple modifications described here can also be applied to the
more sophisticated sort routines we will look at later in this chapter.

Indexed Sorts

Besides the traditional sorting methods—whether a Bubble Sort or Quick Sort or any other type of sort
—there is another category of sort routine you should be familiar with. Where a conventional sort
exchanges elements in an array until they are in order, an Index Sort instead exchanges elements in a
parallel numeric array of  pointers. The original data is left intact, so it may still be accessed in its
natural order. However, the array can also be accessed in sorted order by using the element numbers
contained in the index array.

As with a conventional sort, the comparisons in an indexed sort routine examine each element in the
primary array, but based on the element numbers in that index array. If it is determined that the data is
out of order, the routine exchanges the elements in the index array instead of the primary array. A
modification to the Bubble Sort routine to sort using an index is shown below.
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DEFINT A-Z
DECLARE SUB BubbleISort (Array$(), Index())

CONST NumItems% = 20
CONST False% = 0
CONST True% = -1

DIM Array$(1 TO NumItems%)  'this holds the string data
DIM Ndx(1 TO NumItems%)     'this holds the index

FOR X = 1 TO NumItems%
  READ Array$(X)            'read the string data
  Ndx(X) = X                'initialize the index array
NEXT

CALL BubbleISort(Array$(), Ndx())

CLS
FOR X = 1 TO NumItems%
  PRINT Array$(Ndx(X))      'print based on the index
NEXT

DATA Zorba, Cathy, Barbara, Kathy, Josephine
DATA Joseph, Joe, Peter, Arnold, Glen
DATA Ralph, Elli, Lucky, Rocky, Louis
DATA Paula, Paul, Mary lou, Marilyn, Keith

SUB BubbleISort (Array$(), Index()) STATIC
DO
  OutOfOrder = False%                 'assume it's sorted
  FOR X = 1 TO UBOUND(Array$) - 1
    IF Array$(Index(X)) > Array$(Index(X + 1)) THEN
      SWAP Index(X), Index(X + 1)     'if we had to swap
      OutOfOrder% = True%             'we're not done yet
    END IF
  NEXT
LOOP WHILE OutOfOrder%
END SUB

In  this  indexed  sort,  all  references  to  the  data  are  through the  index  array.  And when  a  swap  is
necessary, it is the index array elements that are exchanged. Note that an indexed sort requires that the
index array be initialized to increasing values—even if the sort routine is modified to be descending
instead of ascending. Therefore, when BubbleISort is called Ndx(1) must hold the value 1, Ndx(2) is
set to 2, and so forth.

In this example the index array is initialized by the caller. However, it would be just as easy to put that
code into the subprogram itself.  Since you can't  pass an array that hasn't yet been dimensioned, it
makes the most sense to do both steps outside of the subprogram. Either way, the index array must be
assigned to these initial values.

As I mentioned earlier, one feature of an indexed sort is that it lets you access the data in both its
original and sorted order. But there are other advantages, and a disadvantage as well. The disadvantage
is that each comparison takes slightly longer, because of the additional overhead required to first look
up the element number in the index array, to determine which elements in the primary array will be
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compared. In some cases, though, that can be more than offset  by requiring less time to exchange
elements.

If you are sorting an array of 230-byte TYPE variables, the time needed for SWAP to exchange the
elements can become considerable. Every byte in both elements must be read and written, so the time
needed increases linearly as the array elements become longer. Contrast that with the fixed two bytes in
the integer index array that are swapped.

Another advantage of an indexed sort is that it lends itself to sorting more data than can fit in memory.
As you will see later in the section that shows how to sort files, it is far easier to manipulate an integer
index than an entire file. Further, sorting the file data using multiple passes requires twice as much disk
space as the file already occupies. 

Data Manipulation Techniques

Before I show the Quick Sort algorithm that will be used as a basis for the remaining sort examples in
this chapter, you should also be aware of a few simple tricks that can help you maintain and sort your
data. One was described in Chapter 6, using a pair of functions that pack and unpack dates such that the
year is stored before the month, which in turn is before the day. Thus, date strings are reduced to only
three characters each, and they can be sorted directly.

Another useful speed-up trick is to store string data as integers or long integers. If you had a system of
four-digit  account  numbers  you  could  use  an  integer  instead  of  a  string.  Besides  saving  half  the
memory and disk space, the integer comparisons in a sort routine will be many times faster than a
comparison on string equivalents.  Zip codes are also suited to this,  and could be stored in a  long
integer. Even though the space savings is only one byte, the time needed to compare the values for
sorting will be greatly reduced.

This brings up another important point. As you learned in Chapter 2, all conventional (not fixed-length)
strings require more memory than might be immediately apparent. Besides the amount of memory
needed to hold the data itself,  four additional bytes are used for a string descriptor, and two more
beyond those for a back pointer. Therefore, a Zip code stored as a string will actually require eleven
bytes rather than the five you might expect. With this in mind, you may be tempted to think that using a
fixed-length string to hold the Zip codes will solve the problem. Since fixed-length strings do not use
either descriptors or back pointers, they do not need the memory they occupy. And that leads to yet
another issue.

Whenever a fixed-length string or the string portion of a TYPE variable is compared, it must first be
converted to a regular descriptor string. BASIC has only one string comparison routine, and it expects
the addresses for two conventional string descriptors. Every time a fixed-length string is used as an
argument for comparison, BASIC must create a temporary copy, call its comparison routine, and then
delete the copy. This copying adds code and wastes an enormous amount of time; in many cases the
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copying will take longer than the comparison itself.  Therefore, using integers and long integers for
numeric data where possible will provide more improvement than just the savings in memory use.

In some cases, however, you must use fixed-length string or TYPE arrays. In particular, when sorting
information from a random access disk file it is most sensible to load the records into a TYPE array.
And as you learned in Chapter 2,  the string components of a TYPE variable or array element are
handled by BASIC as a fixed-length string. So how can you effectively sort fixed-length string arrays
without  incurring the penalty BASIC's overhead imposes? With assembly language subroutines,  of
course!

Rather than ask BASIC to pass the data using its normal methods, assembly language routines can be
invoked passing the data segments and addresses directly. When you use SEG, or a combination of
VARSEG and  VARPTR with  fixed-length  and TYPE variables,  BASIC knows that  you want  the
segmented address of the variable or array element. Thus, you are tricking BASIC into not making a
copy as it usually would when passing such data. An assembly language subroutine or function can be
designed to accept data addresses in any number of ways. As you will see later when we discuss sorting
on multiple keys, extra trickery is needed to do the same thing in a BASIC procedure.

The three short assembly language functions that follow compare two portions of memory, and then
return a result that can be tested by your program.

;COMPARE.ASM - compares two ranges of memory

.Model Medium, Basic

.Code

Compare Proc Uses DS ES DI SI, SegAdr1:DWord, _
  SegAdr2:DWord, NumBytes:Word

    Cld                ;compare in the forward direction
    Mov  SI,NumBytes   ;get the address for NumBytes%
    Mov  CX,[SI]       ;put it into CX for comparing below 
    Les  DI,SegAdr1    ;load ES:DI with the first
                       ;  segmented address
    Lds  SI,SegAdr2    ;load DS:SI with the second
                       ;  segmented address

    Repe Cmpsb         ;do the compare
    Mov  AX,0          ;assume the bytes didn't match
    Jne  Exit          ;we were right, skip over
    Dec  AX            ;wrong, decrement AX down to -1

Exit:
    Ret                ;return to BASIC

Compare Endp
End

;COMPARE2.ASM - compares memory case-insensitive

.Model Medium, Basic

.Code
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Compare2 Proc Uses DS ES DI SI, SegAdr1:DWord, _
  SegAdr2:DWord, NumBytes:Word

    Cld                ;compare in the forward direction
    Mov  BX,-1         ;assume the ranges are the same

    Mov  SI,NumBytes   ;get the address for NumBytes%
    Mov  CX,[SI]       ;put it into CX for comparing below     
    Jcxz Exit          ;if zero bytes were given, they're
                       ;  the same
    Les  DI,SegAdr1    ;load ES:DI with the first address
    Lds  SI,SegAdr2    ;load DS:SI with the second address 
Do:
    Lodsb              ;load the current character from
                       ;  DS:SI into AL
    Call Upper         ;capitalize as necessary
    Mov  AH,AL         ;copy the character to AH
    
    Mov  AL,ES:[DI]    ;load the other character into AL
    Inc  DI            ;point at the next one for later
    Call Upper         ;capitalize as necessary

    Cmp  AL,AH         ;now, are they the same?
    Jne  False         ;no, exit now and show that
    Loop Do            ;yes, continue
    Jmp  Short Exit    ;if we get this far, the bytes are
                       ;  all the same
False:
    Inc  BX            ;increment BX to return zero
    
Exit:
    Mov  AX,BX         ;assign the function output
    Ret                ;return to BASIC

Upper:
    Cmp  AL,"a"        ;is the character below an "a"?
    Jb   Done          ;yes, so we can skip it
    Cmp  AL,"z"        ;is the character above a "z"?
    Ja   Done          ;yes, so we can skip that too
    Sub  AL,32         ;convert to upper case

Done:
    Retn               ;do a near return to the caller

Compare2 Endp
End

;COMPARE3.ASM - case-insensitive, greater/less than

.Model Medium, Basic

.Code

Compare3 Proc Uses DS ES DI SI, SegAdr1:DWord, _
  SegAdr2:DWord, NumBytes:Word

    Cld               ;compare in the forward direction
    Xor  BX,BX        ;assume the ranges are the same

    Mov  SI,NumBytes  ;get the address for NumBytes%
    Mov  CX,[SI]      ;put it into CX for comparing below
    Jcxz Exit         ;if zero bytes were given, they're
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                      ;  the same
    Les  DI,SegAdr1   ;load ES:DI with the first address
    Lds  SI,SegAdr2   ;load DS:SI with the second address

Do:
    Lodsb             ;load the current character from
                      ;  DS:SI into AL
    Call Upper        ;capitalize as necessary, remove for                       

     ;  case-sensitive
    Mov  AH,AL        ;copy the character to AH

    Mov  AL,ES:[DI]   ;load the other character into AL
    Inc  DI           ;point at the next character for later
    Call Upper        ;capitalize as necessary, remove for                       

     ;  case-sensitive

    Cmp  AL,AH        ;now, are they the same?
    Loope Do          ;yes, continue
    Je   Exit         ;we exhausted the data and they're
                      ;  the same
    Mov  BL,1         ;assume block 1 was "greater"
    Ja   Exit         ;we assumed correctly
    Dec  BX           ;wrong, bump BX down to -1
    Dec  BX

Exit:
    Mov  AX,BX        ;assign the function output
    Ret               ;return to BASIC

Upper:
    Cmp  AL,"a"       ;is the character below an "a"?
    Jb   Done         ;yes, so we can skip it
    Cmp  AL,"z"       ;is the character above a "z"?
    Ja   Done         ;yes, so we can skip that too
    Sub  AL,32        ;convert to upper case

Done:
    Retn              ;do a near return to the caller

Compare3 Endp
End

The first Compare routine above simply checks if all of the bytes are identical, and returns -1 (True) if
they are, or 0 (False) if they are not. By returning -1 or 0 you can use either depending on which logic
is clearer for your program:

IF Compare%(Type1, Type2, NumBytes%) THEN

or
IF NOT Compare%(Type1, Type2, NumBytes%) THEN

Compare2 is similar to Compare, except it ignores capitalization. That is, "SMITH" and "Smith" are
considered equal.  The Compare3 function also compares memory and ignores capitalization,  but it
returns either  -1, 0, or 1 to indicate if the first data range is less than, equal to, or greater than the
second.
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The correct declaration and usage for each of these routines is shown below. Note that Compare and
Compare2 are declared and used in the same fashion.

Compare and Compare2:

DECLARE FUNCTION Compare%(SEG Type1 AS ANY, SEG Type2 AS ANY, NumBytes%)
Same = Compare%(Type1, Type2, NumBytes%)

or
DECLARE FUNCTION Compare%(BYVAL Seg1%, BYVAL Adr1%, BYVAL Seg2%, BYVAL Adr2%, 
NumBytes%)
Same = Compare%(Seg1%, Adr1%, Seg2%, Adr2%, NumBytes%)

Here, Same receives -1 if the two TYPE variables or ranges of memory are the same, or 0 if they are
not. NumBytes% tells how many bytes to compare. 

Compare3:

DECLARE FUNCTION Compare3%(SEG Type1 AS ANY, SEG Type2 AS ANY, NumBytes%)
Result = Compare3%(Type1, Type2, NumBytes%)

or
DECLARE FUNCTION Compare3%(BYVAL Seg1%, BYVAL Adr1%, BYVAL Seg2%, BYVAL Adr2%, 
NumBytes%)
Result = Compare3%(Seg1%, Adr1%, Seg2%, Adr2%, NumBytes%) 

Result receives 0 if the two type variables or ranges of memory are the same, -1 if the first is less when
compared  as  strings,  or  1  if  the  first  is  greater.  NumBytes% tells  how many  bytes  are  to  be  to
compared. In the context of a sort routine you could invoke Compare3 like this: 

IF Compare3%(TypeEl(X), TypeEl(X + 1), NumBytes%) = 1 THEN
  SWAP TypeEl(X), TypeEl(X + 1)
END IF

As you can see, these routines may be declared in either of two ways. When used with TYPE arrays the
first is more appropriate and results in slightly less setup code being generated by the compiler. When
comparing fixed-length strings or arbitrary blocks of memory (for example, when one of the ranges is
on the display screen) you should use the second method. Since SEG does not work correctly with
fixed-length strings, if you want to use that more efficient version you must create a dummy TYPE
comprised solely of a single string portion:

TYPE FixedLength
  Something AS STRING * 35
END TYPE

Then simply use DIM to create a single variable or an array based on this or a similar TYPE, depending
on what your program needs. The requirement to create a dummy TYPE was discussed in Chapter 2.
These comparison routines will be used extensively in the sort routines presented later in this chapter;
however, their value in other, non-sorting situations should also be apparent.
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Although  these  routines  are  written  in  assembly  language,  they  are  fairly  simple  to  follow.  It  is
important to understand that you do not need to know anything about assembly language to use them.
All of the files you need to add these and all of the other routines in this book are contained on the
accompanying ZIP file with this text. Chapter 12 discusses assembly language in great detail, and you
can refer there for further explanation of the instructions used.

If you plan to run the programs that follow in the QuickBASIC editor, you must load the BASIC.QLB
Quick Library as follows:

qb program /l basic

Later when you compile these or other programs you must link with the parallel BASIC.LIB file:

bc program [/o];
link program , , nul , basic;

If you are using BASIC PDS start QBX using the BASIC7.QLB file, and then link with BASIC7.LIB
to produce a stand-alone .EXE program. (VB/DOS users will also use the BASIC7 version.)

The Quick Sort Algorithm

It should be obvious to you by now that a routine written in assembly language will always be faster
than an equivalent written in BASIC. However, simply translating a procedure to assembly language is
not  always  the  best  solution.  Far  more  important  than  which  language  you  use  is  selecting  an
appropriate algorithm. The best sorting method I know is the Quick Sort, and a well-written version of
Quick Sort using BASIC will be many times faster than an assembly language implementation of the
Bubble Sort.

The  main  problem  with  the  Bubble  Sort  is  that  the  number  of  comparisons  required  grows
exponentially as the number of elements increases. Since each pass through the array exchanges only a
few elements, many passes are required before the entire array is sorted. The Quick Sort was developed
by C.A.R. (Tony) Hoare, and is widely recognized as the fastest algorithm available. In some special
cases, such as when the data is already sorted or nearly sorted, the Quick Sort may be slightly slower
than other methods. But in most situations, a Quick Sort is many times faster than any other sorting
algorithm.

As with the Bubble Sort, there are many different variations on how a Quick Sort may be coded. You
may have noticed that the Bubble Sort shown in Chapter 7 used a nested FOR/NEXT loop, while the
one shown here uses a FOR/NEXT loop within a DO/WHILE loop.  A Quick Sort divides the array into
sections—sometimes  called  partitions—and  then  sorts  each  section  individually.  Many
implementations therefore use recursion to invoke the subprogram from within itself,  as each new
section is about to be sorted. However, recursive procedures in any language are notoriously slow, and
also consume stack memory at an alarming rate.
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The Quick Sort version presented here avoids recursion, and instead uses a local array as a form of
stack. This array stores the upper and lower bounds showing which section of the array is currently
being considered. Another refinement I have added is to avoid making a copy of elements in the array.
As a Quick Sort progresses, it examines one element selected arbitrarily from the middle of the array,
and compares it to the elements that lie above and below it. To avoid assigning a temporary copy this
version simply keeps track of the selected element number.

When sorting numeric data, maintaining a copy of the element is reasonable. But when sorting strings
—especially strings whose length is not known ahead of time—the time and memory required to keep a
copy can become problematic. For clarity, the generic Quick Sort shown below uses the copy method.
Although this version is meant for sorting a single precision array, it can easily be adapted to sort any
type of data by simply changing all instances of the "!" type declaration character.

'******** QSORT.BAS, Quick Sort algorithm demonstration

'Copyright (c) 1991 Ethan Winer

DEFINT A-Z
DECLARE SUB QSort (Array!(), StartEl, NumEls)

RANDOMIZE TIMER         'generate a new series each run

DIM Array!(1 TO 21)             'create an array
FOR X = 1 TO 21                 'fill with random numbers
  Array!(X) = RND(1) * 500      'between 0 and 500
NEXT

FirstEl = 6                     'sort starting here
NumEls = 10                     'sort this many elements

CLS
PRINT "Before Sorting:"; TAB(31); "After sorting:"
PRINT "==============="; TAB(31); "=============="

FOR X = 1 TO 21                 'show them before sorting
  IF X >= FirstEl AND X <= FirstEl + NumEls - 1 THEN
    PRINT "==>";
  END IF
  PRINT TAB(5); USING "###.##"; Array!(X)
NEXT
CALL QSort(Array!(), FirstEl, NumEls)

LOCATE 3
FOR X = 1 TO 21                 'print them after sorting
  LOCATE , 30
  IF X >= FirstEl AND X <= FirstEl + NumEls - 1 THEN
    PRINT "==>";                'point to sorted items
  END IF
  LOCATE , 35
  PRINT USING "###.##"; Array!(X)
NEXT

SUB QSort (Array!(), StartEl, NumEls) STATIC
REDIM QStack(NumEls \ 5 + 10)  'create a stack array

First = StartEl                'initialize work variables
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Last = StartEl + NumEls - 1
StackPtr = 0  
DO
  DO
    Temp! = Array!((Last + First) \ 2)  'seek midpoint
    I = First
    J = Last

    DO     'reverse both < and > below to sort descending
      WHILE Array!(I) < Temp!
        I = I + 1
      WEND
      WHILE Array!(J) > Temp!
        J = J - 1
      WEND
      IF I > J THEN EXIT DO
      IF I < J THEN SWAP Array!(I), Array!(J)
      I = I + 1
      J = J - 1
    LOOP WHILE I <= J

    IF I < Last THEN
      QStack(StackPtr) = I              'Push I
      QStack(StackPtr + 1) = Last       'Push Last
      StackPtr = StackPtr + 2
    END IF

    Last = J
  LOOP WHILE First < Last

  IF StackPtr = 0 THEN EXIT DO          'Done
  StackPtr = StackPtr - 2
  First = QStack(StackPtr)              'Pop First
  Last = QStack(StackPtr + 1)           'Pop Last
LOOP

ERASE QStack               'delete the stack array
END SUB

Notice that I have designed this routine to allow sorting only a portion of the array. To sort the entire
array  you'd  simply  omit  the  StartEl  and  NumEls  parameters,  and  assign  First  and  Last  from the
LBOUND and UBOUND element numbers. That is, you will change these:

First = StartEl

and
Last = StartEl + NumEls - 1

to these:

First = LBOUND(Array!)

and
Last = UBOUND(Array!)

As I mentioned earlier, the QStack array serves as a table of element numbers that reflect which range
of elements is currently being considered. You will need to dimension this array to one element for
every five elements in  the primary array being sorted,  plus a few extra  for good measure.  In this
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program I added ten elements, because one stack element for every five main array elements is not
enough for very small arrays. For data arrays that have a large amount of duplicated items, you will
probably need to increase the size of the stack array.

Note that this ratio is not an absolute. The exact size of the stack that is needed depends on how badly
out of order the data is to begin with. Although it is possible that one stack element for every five in the
main array is insufficient in a given situation, I have never seen this formula fail. Because the stack is a
dynamic integer array that is stored in far memory, it will not impinge on near string memory. If this
routine were designed using the normal recursive method, BASIC's stack would be used which is in
near memory.

Each of the innermost DO loops searches the array for the first  element in each section about the
midpoint that belongs in the other section. If the elements are indeed out of order (when I is less than J)
the elements are exchanged. This incrementing and comparing continues until I and J cross. At that
point, assuming the variable I has not exceeded the upper limits of the current partition, the partition
bounds are saved and Last is assigned to the top of the next inner partition level. When the entire
partition has been processed, the previous bounds are retrieved, but as a new set of First and Last
values. This process continues until no more partition boundaries are on the stack. At that point the
entire array is sorted.

In the accompanying ZIP you will find a program called SEEQSORT.BAS that contains an enhanced
version  of  the  QSort  demo  and  subprogram.  This  program  lets  you  watch  the  progress  of  the
comparisons and exchanges as they are made, and actually see this complex algorithm operate. Simply
load SEEQSORT.BAS into the BASIC editor and run it. A constant named Delay! is defined at the
beginning of the program. Increasing its  value makes the program run more slowly;  decreasing it
causes the program to run faster.

An Assembly Language Quick Sort

As fast as the BASIC QuickSort routine is, we can make it even faster. The listing below shows an
assembly language version that is between ten and twenty percent faster, depending on which compiler
you are using and if the BASIC PDS /fs (far strings) option is in effect.

;SORT.ASM - sorts an entire BASIC string array

.Model Medium, Basic

.Data
    S          DW 0
    F          DW 0
    L          DW 0
    I          DW 0
    J          DW 0
    MidPoint   DW 0

.Code
    Extrn B$SWSD:Proc   ;this swaps two strings
    Extrn B$SCMP:Proc   ;this compares two strings
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Sort Proc Uses SI DI ES, Array:Word, Dir:Word

    Cld                 ;all fills and compares are forward
    Push DS             ;set ES = DS for string compares
    Pop  ES
    
    Xor  CX,CX          ;clear CX
    Mov  AX,7376h       ;load AL and AH with the opcodes
                        ;  Jae and Jbe in preparation for
                        ;  code self-modification
    Mov  BX,Dir         ;get the sorting direction
    Cmp  [BX],CX        ;is it zero (ascending sort)?
    Je   Ascending      ;yes, skip ahead
    Xchg AL,AH          ;no exchange the opcodes

Ascending:
    Mov  CS:[X1],AH     ;install correct comparison opcodes     
    Mov  CS:[X2],AL     ;  based on the sort direction

    Mov  BX,Array       ;load the array descriptor address     
    Mov  AX,[BX+0Eh]    ;save the number of elements
    Dec  AX             ;adjust the number to zero-based
    Jns  L0             ;at least 1 element, continue
    Jmp  L4             ;0 or less elements, get out now!

L0:
    Mov  BX,Array       ;reload array descriptor address
    Mov  BX,[BX]        ;Array$(LBOUND) descriptor address     
    Mov  S,SP           ;StackPtr = 0 (normalized to SP)
    Mov  F,CX           ;F = 0
    Mov  L,AX           ;L = Size%

;----- calculate the value of MidPoint
L1:
    Mov  DI,L           ;MidPoint = (L + F) \ 2
    Add  DI,F
    Shr  DI,1
    Mov  MidPoint,DI

    Mov  AX,F           ;I = F
    Mov  I,AX

    Mov  AX,L           ;J = L
    Mov  J,AX

;----- calculate the offset into the descriptor table for Array$(MidPoint
L1_2:
    Shl  DI,1           ;multiply MidPoint in DI times 4
    Shl  DI,1           ;now DI holds how far beyond Array$(Start)               

 ;Array$(MidPoint)'s descriptor is     
    Add  DI,BX          ;add the array base address to produce the final         

 ;address for Array$(MidPoint)

;----- calculate descriptor offset for Array$(I)
L2:
    Mov  SI,I           ;put I into SI
    Shl  SI,1           ;as above
    Shl  SI,1           ;now SI holds how far beyond Array$(Start)               

 ;  Array$(I)'s descriptor is
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    Add  SI,BX          ;add the base to produce the final descriptor            
 ;  address

    ;IF Array$(I) < Array$(MidPoint) THEN I = I + 1: GOTO L2
    Push BX             ;save BX because B$SCMP trashes it
    Push SI
    Push DI
    Call B$SCMP         ;do the compare
    Pop  BX             ;restore BX

X1 Label Byte           ;modify the code below to "Jbe" if descending sort
    Jae  L2_1           ;Array$(I) isn't less, continue on 
    Inc  Word Ptr I     ;I = I + 1
    Jmp  Short L2       ;GOTO L2

;----- calculate descriptor offset for Array$(J)
L2_1:
    Mov  SI,J           ;put J into SI
    Shl  SI,1           ;as above
    Shl  SI,1           ;now SI holds how far beyond Array$(Start)               

 ;  Array$(J)'s descriptor is
    Add  SI,BX          ;add the base to produce the final descriptor            

 ;  address

    ;IF Array$(J) > Array$(MidPoint) THEN J = J - 1: GOTO L2.1
    Push BX             ;preserve BX
    Push SI
    Push DI
    Call B$SCMP         ;do the compare
    Pop  BX             ;restore BX

X2 Label Byte           ;modify the code below to "Jae" if descending sort
    Jbe  L2_2           ;Array$(J) isn't greater, continue on 
    Dec  Word Ptr J     ;J = J - 1
    Jmp  Short L2_1     ;GOTO L2.1

L2_2:
    Mov  AX,I           ;IF I > J GOTO L3
    Cmp  AX,J
    Jg   L3             ;J is greater, go directly to L3
    Je   L2_3           ;they're the same, skip the swap

    ;Swap Array$(I), Array$(J)
    Mov  SI,I           ;put I into SI
    Mov  DI,J           ;put J into DI

    Cmp  SI,MidPoint    ;IF I = MidPoint THEN MidPoint = J
    Jne  No_Mid1        ;not equal, skip ahead
    Mov  MidPoint,DI    ;equal, assign MidPoint = J
    Jmp  Short No_Mid2  ;don't waste time comparing again

No_Mid1:
    Cmp  DI,MidPoint    ;IF J = MidPoint THEN MidPoint = I
    Jne  No_Mid2        ;not equal, skip ahead
    Mov  MidPoint,SI    ;equal, assign MidPoint = I

No_Mid2:
    Mov  SI,I           ;put I into SI
    Shl  SI,1           ;multiply times four for the
    Shl  SI,1           ;  for the descriptors
    Add  SI,BX          ;add address for first descriptor
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    Mov  DI,J           ;do the same for J in DI
    Shl  DI,1
    Shl  DI,1
    Add  DI,BX

    Push BX             ;save BX because B$SWSD destroys it
    Call B$SWSD         ;and swap 'em good
    Pop  BX

L2_3:
    Inc  Word Ptr I     ;I = I + 1
    Dec  Word Ptr J     ;J = J - 1

    Mov  AX,I           ;IF I <= J GOTO L2
    Cmp  AX,J
    Jg   L3             ;it's greater, skip to L3
    Mov  DI,MidPoint    ;get MidPoint again
    Jmp  L1_2           ;go back to just before L2

L3:
    Mov  AX,I           ;IF I < L THEN PUSH I: PUSH L
    Cmp  AX,L
    Jnl  L3_1           ;it's not less, so skip Pushes

    Push I              ;Push I
    Push L              ;Push L

L3_1:
    Mov  AX,J           ;L = J
    Mov  L,AX

    Mov  AX,F           ;IF F < L GOTO L1
    Cmp  AX,L
    Jnl  L3_2           ;it's not less, jump ahead to L3_2
    Jmp  L1             ;it's less, go to L1

L3_2:
    Cmp  S,SP           ;IF S = 0 GOTO L4
    Je   L4
    Pop  L              ;Pop L
    Pop  F              ;Pop F
    Jmp  L1             ;GOTO L1

L4:
    Ret                 ;return to BASIC

Sort Endp
End

Besides being faster than the BASIC version, the assembly language Sort routine is half the size. This
version also supports sorting either forward or backward, but not just a portion of an array. The general
syntax is:

CALL Sort(Array$(), Direction)

Where Array$() is any variable-length string array, and Direction is 0 for ascending, or any other value
for  descending.  Note  that  this  routine  calls  upon  BASIC's  internal  services  to  perform the  actual
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comparing and swapping;  therefore,  the exact same code can be used with either  QuickBASIC or
BASIC PDS. Again, I refer you forward to Chapter 12 for an explanation of the assembly language
commands used in SORT.ASM.

Sorting on Multiple Keys

In many situations, sorting based on one key is sufficient. For example, if you are sorting a mailing list
to  take  advantage  of  bulk  rates  you  must  sort  all  of  the  addresses  in  order  by  Zip  code.  When
considering complex data such as a TYPE variable, it is easy to sort the array based on one component
of each element. The earlier Bubble Sort example showed how MID$ could be used to consider just a
portion of each string, even though the entire elements were exchanged. Had that routine been designed
to operate on a TYPE array, the comparisons would have examined just one component, but the SWAP
statements would exchange entire elements:

IF Array(X).ZipCode > Array(X + 1).ZipCode THEN
  SWAP Array(X), Array(X + 1)
END IF

This way, each customer's last name, first name, street address, and so forth remain connected to the
Zip codes that are being compared and exchanged.

There are several ways to sort on more than one key, and all are of necessity more complex than simply
sorting based on a single key. One example of a multi-key sort first puts all of the last names in order.
Then within each group of identical last names the first names are sorted, and within each group of
identical last and first names further sorting is performed on yet another key—perhaps Balance Due. As
you can see, this requires you to sort based on differing types of data, and also to compare ranges of
elements for the subgroups that need further sorting.

The biggest complication with this method is designing a calling syntax that lets you specify all of the
information. A table array must be established to hold the number of keys, the type of data in each key
(string, double precision, and so forth), and how many bytes into the TYPE element each key portion
begins. Worse, you can't simply use the name of a TYPE component in the comparisons inside the sort
routine—which  would  you  use:  Array(X).LastName,  Array(X).FirstName,  or  Array(X).ZipCode?
Therefore, a truly general multi-key sort must be called passing the address where the array begins in
memory, and a table of offsets beyond that address where each component being considered is located.

To avoid this  added complexity I will  instead show a different method that has only a few minor
restrictions, but is much easier to design and understand. This method requires you to position each
TYPE component into the key order you will sort on. You will also need to store all numbers that will
be used for a sort key as ASCII digits. To sort first on last name, then first name, and then on balance
due, the TYPE might be structured as follows:

TYPE Customer
  LastName   AS STRING * 15
  FirstName  AS STRING * 15
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  BalanceDue AS STRING * 9
  Street     AS STRING * 32
  City       AS STRING * 15
  State      AS STRING * 2
  ZipCode    AS STRING * 5
  AnyNumber  AS DOUBLE
END TYPE

In most cases the order in which each TYPE member is placed has no consequence. When you refer to
TypeVar.LastName, BASIC doesn't care if LastName is defined before or after FirstName in the TYPE
structure. Either way it translates your reference to LastName into an address. Having to store numeric
data as strings is a limitation, but this is needed only for those TYPE fields that will be used as a sort
key.

The key to sorting on multiple items simultaneously is by treating the contiguous fields as a single long
field. Since assignments to the string portion of a TYPE variable are handled internally by BASIC's 
LSET routine, the data in each element will be aligned such that subsequent fields can be treated as an 
extension of the primary field. Figure 8-2 below shows five TYPE array elements in succession, as they
would be viewed by a string comparison routine. This data is defined as a subset of the name and 
address TYPE shown above, using just the first three fields. Notice that the balance due fields must be 
right-aligned (using RSET) for the numeric values to be considered correctly.

Thus, the sort routine would be told to start at the first field, and consider the strings to be 15 + 15 + 9 
= 39 characters long. This way all three fields are compared at one time, and treated as a single entity. 
Additional fields can of course follow these, and they may be included in the comparison or not at your
option.

The combination demonstration and subroutine below sorts such a TYPE array on any number of keys
using this method, and it has a few additional features as well. Besides letting you confine the sorting to
just a portion of the array, you may also specify how far into each element the first key is located. As
long as the key fields are contiguous, they do not have to begin at the start of each TYPE. Therefore,
you could sort just on the first name field, or on any other field or group of fields.

'TYPESORT.BAS - performs a multi-key sort on TYPE arrays
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Type.LastName

Munro 
Smith 
Johnson 
Rasmussen 
Hudson 

Field 1 
starts here

Type.FirstName

Jay 
John 
Alfred 
Peter 
Cindy 

Field 2 
starts here

Type.BalanceDue

Field 3 
starts here

8000.00 
122.03 

14637.89 
100.90 

21.22

Figure  8-2:  Multiple  contiguous  fields  in  a  TYPE can be
treated as a single long field.



'Copyright (c) 1991 Ethan Winer
DEFINT A-Z
DECLARE FUNCTION Compare3% (BYVAL Seg1, BYVAL Adr1, BYVAL Seg2, _   
  BYVAL Adr2, NumBytes)
DECLARE SUB SwapMem (BYVAL Seg1, BYVAL Adr1, BYVAL Seg2, BYVAL Adr2, _
  BYVAL Length)
DECLARE SUB TypeSort (Segment, Address, ElSize, Offset, KeySize, NumEls) 
CONST NumEls% = 23              'this keeps it all on the screen 
TYPE MyType
  LastName  AS STRING * 10
  FirstName AS STRING * 10
  Dollars   AS STRING * 6
  Cents     AS STRING * 2
END TYPE
REDIM Array(1 TO NumEls%) AS MyType

'---- Disable (REM out) all but one of the following blocks to test 
Offset = 27                 'start sorting with Cents
ElSize = LEN(Array(1))      'the length of each element
KeySize = 2                 'sort on the Cents only

Offset = 21                 'start sorting with Dollars
ElSize = LEN(Array(1))      'the length of each element
KeySize = 8                 'sort Dollars and Cents only

Offset = 11                 'start sorting with FirstName
ElSize = LEN(Array(1))      'the length of each element
KeySize = 18                'sort FirstName through Cents

Offset = 1                  'start sorting with LastName
ElSize = LEN(Array(1))      'the length of each element
KeySize = ElSize            'sort based on all 4 fields

FOR X = 1 TO NumEls%        'build the array from DATA
  READ Array(X).LastName
  READ Array(X).FirstName
  READ Amount$              'format the amount into money
  Dot = INSTR(Amount$, ".")
  IF Dot THEN
    RSET Array(X).Dollars = LEFT$(Amount$, Dot - 1)
    Array(X).Cents = LEFT$(MID$(Amount$, Dot + 1) + "00", 2)
  ELSE
    RSET Array(X).Dollars = Amount$
    Array(X).Cents = "00"
  END IF
NEXT

Segment = VARSEG(Array(1))      'show where the array is
Address = VARPTR(Array(1))      '  located in memory
CALL TypeSort(Segment, Address, ElSize, Offset, KeySize, NumEls%) 
CLS                             'display the results
FOR X = 1 TO NumEls%
  PRINT Array(X).LastName, Array(X).FirstName,
  PRINT Array(X).Dollars; "."; Array(X).Cents
NEXT

DATA Smith, John, 123.45
DATA Cramer, Phil, 11.51
DATA Hogan, Edward, 296.08
DATA Cramer, Phil, 112.01
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DATA Malin, Donald, 13.45
DATA Cramer, Phil, 111.3
DATA Smith, Ralph, 123.22
DATA Smith, John, 112.01
DATA Hogan, Edward, 8999.04
DATA Hogan, Edward, 8999.05
DATA Smith, Bob, 123.45
DATA Cramer, Phil, 11.50
DATA Hogan, Edward, 296.88
DATA Malin, Donald, 13.01
DATA Cramer, Phil, 111.1
DATA Smith, Ralph, 123.07
DATA Smith, John, 112.01
DATA Hogan, Edward, 8999.33
DATA Hogan, Edward, 8999.17
DATA Hogan, Edward, 8999.24
DATA Smith, John, 123.05
DATA Cramer, David, 1908.80
DATA Cramer, Phil, 112
END

SUB TypeSort (Segment, Address, ElSize, Displace, KeySize, NumEls) STATIC 
REDIM QStack(NumEls \ 5 + 10) 'create a stack array

First = 1                  'initialize working variables
Last = NumEls
Offset = Displace - 1      'decrement once now rather than                       

    '  repeatedly later
DO
  DO
    Temp = (Last + First) \ 2   'seek midpoint
    I = First
    J = Last

    DO
      WHILE Compare3%(Segment, Address + Offset + (I - 1) * ElSize, Segment, _   

 Address + Offset + (Temp-1) * ElSize, KeySize) = -1 '< 1 for descending     
 I = I + 1

      WEND
      WHILE Compare3%(Segment, Address + Offset + (J - 1) * ElSize, Segment, _   

 Address + Offset + (Temp-1)  * ElSize, KeySize) = 1 '< -1 for descending    
 J = J - 1

      WEND
      IF I > J THEN EXIT DO
      IF I < J THEN
        CALL SwapMem(Segment, Address + (I - 1) * ElSize, Segment, _             

Address + (J - 1) * ElSize, ElSize)
        IF Temp = I THEN
          Temp = J
        ELSEIF Temp = J THEN
          Temp = I
        END IF
      END IF
      I = I + 1
      J = J - 1
    LOOP WHILE I <= J

    IF I < Last THEN
      QStack(StackPtr) = I              'Push I
      QStack(StackPtr + 1) = Last       'Push Last
      StackPtr = StackPtr + 2
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    END IF

    Last = J
  LOOP WHILE First < Last

  IF StackPtr = 0 THEN EXIT DO          'Done
  StackPtr = StackPtr - 2
  First = QStack(StackPtr)              'Pop First
  Last = QStack(StackPtr + 1)           'Pop Last
LOOP

ERASE QStack                    'delete the stack array
END SUB

As you can see, this version of the Quick Sort subprogram is derived from the one shown earlier. The
important difference is that all of the incoming information is passed as segments, addresses, and bytes,
rather than using an explicit array name. But before describing the inner details of the subprogram
itself, I'll address the demonstration portion and show how the routine is set up and called.

As with some of the other procedures on the disk that comes with this book, you will extract the
TypeSort subprogram and add it to your own programs by loading it as a module, and then using the
Move option of BASIC's View Subs menu. You can quickly access this menu by pressing F2, and then
use Alt-M to select Move. Once this is done you will unload TYPESORT.BAS using the Alt-F-U menu
selection, and answer "No" when asked if you want to save the modified file. You could also copy the
TypeSort subprogram into a separate file, and then load that file as a module in each program that
needs it.

Although the example TYPE definition here shows only four components, you may of course use any
TYPE structure. TypeSort expects six parameters to tell it where in memory the array is located, how
far into each element the comparison routines are to begin, the total length of each element, the length
of the key fields, and the number of elements to sort.

After defining MyType, the setup portion of TYPESORT.BAS establishes the offset, element size, and
key size parameters. As you can see, four different sample setups are provided, and you should add
remarking apostrophes to all but one of them. If the program is left as is, the last setup values will take
precedence.

The  next  section  reads  sample  names,  addresses  and  dollar  amounts  from DATA statements,  and
formats the dollar amounts as described earlier. The dollar portion of the amounts are right justified
into the Dollars field of each element, and the Cents portion is padded with trailing zeros as necessary
to provide a dollars and cents format. This way, the value 12.3 will be assigned as 12.30, and 123 will
be formatted to 123.00 which gives the expected appearance.

The final setup step is to determine where the array begins in memory. Since you specify the starting
segment and address, it is simple to begin sorting at any array element. For example, to sort elements
100  through  200—even  if  the  array  is  larger  than  that—you'd  use  VARSEG(Array(100))  and
VARPTR(Array(100) instead of element 1 as shown in this example.
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In addition to the starting segment and address of the array, TypeSort also requires you to tell it how
many elements to consider. If you are sorting the entire array and the array starts with element 1, this
will simply be the UBOUND of the array. If you are sorting just a portion of the array then you give it
only the number of elements to be sorted. So to sort elements 100 through 200, the number of elements
will  be  101.  A general  formula  you  can  use  for  calculating  this  based  on  element  numbers  is
NumElements = LastElement - FirstElement + 1.

Now let's consider the TypeSort subprogram itself. Since it is more like the earlier QSort program than
different,  I  will  cover  only  the  differences  here.  In  fact,  the  primary  difference  is  in  the  way
comparisons and exchanges are handled. The Compare3 function introduced earlier is used to compare
the array elements with the midpoint. Although QSort made a temporary copy of the midpoint element,
that would be difficult to do here. Since the routine is designed to work with any type of data—and the
size of each element can vary depending on the TYPE structure—it is impractical to make a copy.

While SPACE$ could be used to claim a block of memory into which the midpoint element is copied,
there's a much better way: the Temp variable is used to remember the element number itself. The only
complication is that once elements I and J are swapped, Temp must be reassigned if it was equal to
either of them. (This happens just below the call to SwapMem.) But the simple integer IF test and
assignment required adds far less code and is much faster than making a copy of the element.

TypeSort is designed to sort the array in ascending order, and comments in the code show how to
change it to sort descending instead. If you prefer to have one subprogram that can do both, you should
add an extra parameter, perhaps called Direction. Near the beginning of the routine before the initial
outer DO you would add this:

IF Direction = 0 THEN     'sort ascending
  ICompare = -1
  JCompare = 1
ELSE                      'sort descending
  ICompare = 1
  JCompare = -1
END IF

Then, where the results from Compare3 are compared to -1 and 1 replace those comparisons (at the end
of each WHILE line) to instead use ICompare and JCompare:

WHILE Compare3%(...) = ICompare
  I = I + 1
WEND
WHILE Compare3%(...) = JCompare
  J = J - 1
WEND

This way, you are using variables to establish the sorting direction, and those variables can be set either
way each time TypeSort is called.

The last  major  difference  is  that  elements  are  exchanged using  the  SwapMem routine  rather  than
BASIC's SWAP statement. While it is possible to call SWAP by aliasing its name as shown in Chapter
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5, it was frankly simpler to write a new routine for this purpose. Further, BASIC's SWAP is slower than
SwapMem  because  it  must  be  able  to  handle  variables  of  different  lengths,  and  also  exchange
fixed-length and conventional strings. SwapMem is extremely simple, and it works very quickly.

As I  stated earlier,  the only way to write  a  truly generic  sort  routine is  by passing segments  and
addresses and bytes, instead of array names. Although it would be great if BASIC could let you declare
a subprogram or function using the AS ANY option to allow any type of data, that simply wouldn't
work. As BASIC compiles your program, it needs to know the size and type of each parameter. When
you reference TypeVar.LastName, BASIC knows where within TypeVar the LastName portion begins,
and uses that in its address calculations. It is not possible to avoid this limitation other than by using
addresses as is done here.

Indeed, this is the stuff that C and assembly language programs are made of. In these languages—
especially assembly language—integer pointer variables are used extensively to show where data is
located and how long it is. However, the formulas used within the Compare3 and SwapMem function
calls are not at all difficult to understand.

The formula  Address + Offset - (I - 1) * ElSize indicates where the key field of
element I begins. Address holds the address of the beginning of the first element, and Offset is added to
identify  the  start  of  the  first  sort  key.  (I  - 1)  is  used  instead  of  I  because  addresses  are  always
zero-based. That is, the first element in the array from TypeSort's perspective is element 0, even though
the calling program considers it to be element 1. Finally, the element number is multiplied times the
length of each element, to determine the value that must be added to the starting address and offset to
obtain the final address for the data in element I. Please understand that calculations such as these are
what the compiler must do each time you access an array element.

Note that if you call TypeSort incorrectly or give it illegal element numbers, you will not receive a
"Subscript out of range" error from BASIC. Rather, you will surely crash your PC and have to reboot.
This is the danger, and fun, of manipulating pointers directly.

As I stated earlier, the SwapMem routine that does the actual exchanging of elements is very simple,
and it merely takes a byte from one element and exchanges it with the corresponding byte in the other.
This task is greatly simplified by the use of the XCHG assembly language command, which is similar
to BASIC's SWAP statement. Although XCHG cannot swap a word in memory with another word in
memory, it can exchange memory with a register. SwapMem is shown in the listing below.

;SWAPMEM.ASM, swaps two sections of memory

.Model Medium, Basic

.Code

SwapMem Proc Uses SI DI DS ES, Var1:DWord, Var2:DWord, NumBytes:Word 
    Lds  SI,Var1      ;get the segmented address of the
                      ;  first variable
    Les  DI,Var2      ;and for the second variable
    Mov  CX,NumBytes  ;get the number of bytes to exchange     
    Jcxz Exit         ;we can't swap zero bytes!
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DoSwap:
    Mov  AL,ES:[DI]   ;get a byte from the second variable     
    Xchg AL,[SI]      ;swap it with the first variable
    Stosb             ;complete the swap and increment DI
    Inc  SI           ;point to the next source byte
    Loop DoSwap       ;continue until done

Exit:
    Ret               ;return to BASIC

SwapMem Endp
End

Indexed Sorting on Multiple Keys

Earlier I showed how to modify the simple Bubble Sort routine to sort a parallel index array instead of
the primary array. One important reason you might want to do that is to allow access to the primary
array in both its original and sorted order. Another reason, and one we will get to shortly, is to facilitate
sorting disk files. Although a routine to sort the records in a file could swap the actual data, it takes a
long time to read and write that much data on disk. Further, each time you wanted to access the data
sorted on a different key, the entire file would need to be sorted again.

A much better solution is to create one or more sorted lists of record numbers, and store those on disk
each in a separate file. This lets you access the data sorted by name, or by Zip code, or by any other
field, without ever changing the actual file. The TypeISort subprogram below is adapted from TypeSort,
and it sorts an index array that holds the element numbers of a TYPE array.

'TYPISORT.BAS, indexed multi-key sort for TYPE arrays

DEFINT A-Z

DECLARE FUNCTION Compare3% (BYVAL Seg1, BYVAL Adr1, BYVAL Seg2, _
  BYVAL Adr2, NumBytes)
DECLARE SUB SwapMem (BYVAL Seg1, BYVAL Adr1, BYVAL Seg2, _
  BYVAL Adr2, BYVAL Length)
DECLARE SUB TypeISort (Segment, Address, ElSize, Offset, KeySize, _
  NumEls, Index())

CONST NumEls% = 23              'this keeps it all on the screen 
TYPE MyType
  LastName  AS STRING * 10
  FirstName AS STRING * 10
  Dollars   AS STRING * 6
  Cents     AS STRING * 2
END TYPE
REDIM Array(1 TO NumEls%) AS MyType
REDIM Index(1 TO NumEls%)   'create the index array

Offset = 1                  'start sorting with LastName
ElSize = LEN(Array(1))      'the length of each element
KeySize = ElSize            'sort based on all 4 fields

FOR X = 1 TO NumEls%        'build the array from DATA
  READ Array(X).LastName
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  READ Array(X).FirstName
  READ Amount$            
   ...                      'this continues as already
   ...                      '  shown in TypeSort
NEXT

FOR X = 1 TO NumEls%            'initialize the index
  Index(X) = X - 1              'but starting with 0
NEXT

Segment = VARSEG(Array(1))      'show where the array is
Address = VARPTR(Array(1))      '  located in memory
CALL TypeISort(Segment, Address, ElSize, Offset, KeySize, NumEls%, Index()) 
CLS                             'display the results
FOR X = 1 TO NumEls%            '+ 1 adjusts to one-based
  PRINT Array(Index(X) + 1).LastName,
  PRINT Array(Index(X) + 1).FirstName,
  PRINT Array(Index(X) + 1).Dollars; ".";
  PRINT Array(Index(X) + 1).Cents
NEXT

DATA Smith, John, 123.45        'this continues as already
  ...                           '  shown in TypeSort
  ...

END

SUB TypeISort (Segment, Address, ElSize, Displace, KeySize, NumEls, _
  Index()) STATIC
REDIM QStack(NumEls \ 5 + 10) 'create a stack

First = 1                     'initialize working variables Last = NumEls
Offset = Displace - 1         'make zero-based now for speed later 
DO
  DO
    Temp = (Last + First) \ 2 'seek midpoint
    I = First
    J = Last

    DO  'change -1 to 1 and 1 to -1 to sort descending
      WHILE Compare3%(Segment, Address + Offset + (Index(I) * ElSize), _         

 Segment, Address + Offset + (Index(Temp) * ElSize), KeySize) = -1
        I = I + 1
      WEND
      WHILE Compare3%(Segment, Address + Offset + (Index(J) * ElSize), _         

 Segment, Address + Offset + (Index(Temp) * ElSize), KeySize) = 1
        J = J - 1
      WEND
      IF I > J THEN EXIT DO
      IF I < J THEN
        SWAP Index(I), Index(J)
        IF Temp = I THEN
          Temp = J
        ELSEIF Temp = J THEN
          Temp = I
        END IF
      END IF
      I = I + 1
      J = J - 1
    LOOP WHILE I <= J
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    IF I < Last THEN
      QStack(StackPtr) = I              'Push I
      QStack(StackPtr + 1) = Last       'Push Last
      StackPtr = StackPtr + 2
    END IF

    Last = J
  LOOP WHILE First < Last

  IF StackPtr = 0 THEN EXIT DO          'Done
  StackPtr = StackPtr - 2
  First = QStack(StackPtr)              'Pop First
  Last = QStack(StackPtr + 1)           'Pop Last
LOOP

ERASE QStack                    'delete the stack array
END SUB

As with TypeSort, TypeISort is entirely pointer based so it can be used with any type of data and it can
sort multiple contiguous keys. The only real difference is the addition of the Index() array parameter,
and the extra level of indirection needed to access the index array each time a comparison is made.
Also, when a swap is required, only the integer index elements are exchanged, which simplifies the
code and reduces its size. Like TypeSort, you can change the sort direction by reversing the -1 and 1
values used with Compare3, or add a Direction parameter to the list and modify the code to use that.

As  with  BubbleISort,  the  index  array  is  initialized  to  increasing  values  by  the  calling  program;
however, here the first element is set to hold a value of 0 instead of 1. This reduces the calculations
needed within the routine each time an address must be obtained. Therefore, when TypeISort returns,
the caller must add 1 to the element number held in each index element. This is shown within the FOR/
NEXT loop that displays the sorted results.

Sorting Files

With the development of TypeISort complete, we can now use that routine to sort disk files. The sorting
strategy will be to determine how many records are in the file, to determine how many separate passes
are needed to process the entire file. TypeISort and TypeSort are restricted to working with arrays no
larger than 64K (32K in the editing environment), so there is a limit as to how much data may be
loaded into memory at  one time. These sort  routines can accommodate more data  when compiled
because address calculations that result in values larger than 32767 cause an overflow error in the QB
editor. This overflow is in fact harmless, and is ignored in a compiled program unless you use the /d
switch.

Although the routines could be modified to perform segment and address arithmetic to accommodate
larger arrays, that still wouldn't solve the problem of having more records than can fit in memory at
once.  Therefore,  separate  passes must  be used to sort  the file  contents in  sections,  with each pass
writing a temporary index file to disk. A final merge pass then reads each index to determine which
pieces fits where, and then writes the final index file. The program FILESORT.BAS below incorporates
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all of the sorting techniques shown so far, and includes a few custom BASIC routines to improve its
performance.

'FILESORT.BAS, indexed multi-key random access file sort

DEFINT A-Z

DECLARE FUNCTION Compare3% (BYVAL Seg1, BYVAL Adr1, BYVAL Seg2, _
  BYVAL Adr2, NumBytes)
DECLARE FUNCTION Exist% (FileSpec$)
DECLARE SUB DOSInt (Registers AS ANY)
DECLARE SUB FileSort (FileName$, NDXName$, RecLength, Offset, KeySize) 
DECLARE SUB LoadFile (FileNum, Segment, Address, Bytes&)
DECLARE SUB SaveFile (FileNum, Segment, Address, Bytes&)
DECLARE SUB SwapMem (BYVAL Seg1, BYVAL Adr1, BYVAL Seg2, BYVAL Adr2, _
  BYVAL Length)
DECLARE SUB TypeISort (Segment, Address, ElSize, Offset, KeySize, _
  NumEls, Index())

RANDOMIZE TIMER                 'create new data each run
DEF FnRand% = INT(RND * 10 + 1) 'returns RND from 1 to 10

TYPE RegType                    'used by DOSInt
  AX AS INTEGER
  BX AS INTEGER
  CX AS INTEGER
  DX AS INTEGER
  BP AS INTEGER
  SI AS INTEGER
  DI AS INTEGER
  FL AS INTEGER
  DS AS INTEGER
  ES AS INTEGER
END TYPE

DIM SHARED Registers AS RegType 'share among all subs
REDIM LastNames$(1 TO 10)       'we'll select names at
REDIM FirstNames$(1 TO 10)      '  random from these

NumRecords = 2988               'how many test records to use 
FileName$ = "TEST.DAT"          'really original, eh?
NDXName$ = "TEST.NDX"           'this is the index file name 
TYPE RecType
  LastName  AS STRING * 11
  FirstName AS STRING * 10
  Dollars   AS STRING * 6
  Cents     AS STRING * 2
  AnyNumber AS LONG         'this shows that only key
  OtherNum  AS LONG         '  information must be ASCII
END TYPE

FOR X = 1 TO 10             'read the possible last names
  READ LastNames$(X)
NEXT

FOR X = 1 TO 10             'and the possible first names
  READ FirstNames$(X)
NEXT

DIM RecordVar AS RecType    'to create the sample file
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RecLength = LEN(RecordVar)  'the length of each record
CLS
PRINT "Creating a test file..."

IF Exist%(FileName$) THEN   'if there's an existing file
  KILL FileName$            'kill the old data from prior
END IF                      '  runs to start fresh

IF Exist%(NDXName$) THEN    'same for any old index file
  KILL NDXName$
END IF

'---- Create some test data and write it to the file
OPEN FileName$ FOR RANDOM AS #1 LEN = RecLength
  FOR X = 1 TO NumRecords
    RecordVar.LastName = LastNames$(FnRand%)
    RecordVar.FirstName = FirstNames$(FnRand%)
    Amount$ = STR$(RND * 10000)
    Dot = INSTR(Amount$, ".")
    IF Dot THEN
      RSET RecordVar.Dollars = LEFT$(Amount$, Dot - 1)
      RecordVar.Cents = LEFT$(MID$(Amount$, Dot + 1) + "00", 2)
    ELSE
      RSET RecordVar.Dollars = Amount$
      RecordVar.Cents = "00"
    END IF
    RecordVar.AnyNumber = X
    PUT #1, , RecordVar
  NEXT
CLOSE

'----- Created a sorted index based on the main data file
Offset = 1                  'start sorting with LastName
KeySize = 29                'sort based on first 4 fields
PRINT "Sorting..."
CALL FileSort(FileName$, NDXName$, RecLength, Offset, KeySize) 

'----- Display the results
CLS
VIEW PRINT 1 TO 24
LOCATE 25, 1
COLOR 15
PRINT "Press any key to pause/resume";
COLOR 7
LOCATE 1, 1

OPEN FileName$ FOR RANDOM AS #1 LEN = RecLength
OPEN NDXName$ FOR BINARY AS #2
  FOR X = 1 TO NumRecords
    GET #2, , ThisRecord            'get next rec. number
    GET #1, ThisRecord, RecordVar   'then the actual data

    PRINT RecordVar.LastName;       'print each field
    PRINT RecordVar.FirstName;
    PRINT RecordVar.Dollars; ".";
    PRINT RecordVar.Cents

    IF LEN(INKEY$) THEN             'pause on a keypress
      WHILE LEN(INKEY$) = 0: WEND
    END IF
  NEXT

291



CLOSE

VIEW PRINT 1 TO 24                  'restore the screen
END

DATA Smith, Cramer, Malin, Munro, Passarelli
DATA Bly, Osborn, Pagliaro, Garcia, Winer
DATA John, Phil, Paul, Anne, Jacki
DATA Patricia, Ethan, Donald, Tami, Elli
END

FUNCTION Exist% (Spec$) STATIC  'reports if a file exists
DIM DTA AS STRING * 44          'the work area for DOS
DIM LocalSpec AS STRING * 60    'guarantee the spec is in
LocalSpec$ = Spec$ + CHR$(0)    '  DGROUP for BASIC PDS

Exist% = -1                     'assume true for now

Registers.AX = &H1A00           'assign DTA service
Registers.DX = VARPTR(DTA)      'show DOS where to place it 
Registers.DS = VARSEG(DTA)
CALL DOSInt(Registers)

Registers.AX = &H4E00           'find first matching file
Registers.CX = 39               'any file attribute okay
Registers.DX = VARPTR(LocalSpec)
Registers.DS = VARSEG(LocalSpec)
CALL DOSInt(Registers)          'see if there's a match

IF Registers.FL AND 1 THEN      'if the Carry flag is set
  Exist% = 0                    '  there were no matches
END IF
END FUNCTION

SUB FileSort (FileName$, NDXName$, RecLength, Displace, KeySize) STATIC 
CONST BufSize% = 32767  'holds the data being sorted
Offset = Displace - 1   'make zero-based for speed later

'----- Open the main data file
FileNum = FREEFILE
OPEN FileName$ FOR BINARY AS #FileNum

'----- Calculate the important values we'll need
NumRecords = LOF(FileNum) \ RecLength
RecsPerPass = BufSize% \ RecLength
IF RecsPerPass > NumRecords THEN RecsPerPass = NumRecords

NumPasses = (NumRecords \ RecsPerPass) - ((NumRecords MOD RecsPerPass) <> 0)
IF NumPasses = 1 THEN
  RecsLastPass = RecsPerPass
ELSE
  RecsLastPass = NumRecords MOD RecsPerPass
END IF

'----- Create the buffer and index sorting arrays
REDIM Buffer(1 TO 1) AS STRING * BufSize
REDIM Index(1 TO RecsPerPass)
IndexAdjust = 1
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'----- Process all of the records in manageable groups
FOR X = 1 TO NumPasses

  IF X < NumPasses THEN         'if not the last pass
    RecsThisPass = RecsPerPass  'do the full complement
  ELSE                          'the last pass may have
    RecsThisPass = RecsLastPass '  fewer records to do
  END IF

  FOR Y = 1 TO RecsThisPass     'initialize the index
    Index(Y) = Y - 1            'starting with value of 0
  NEXT

  '----- Load a portion of the main data file
  Segment = VARSEG(Buffer(1))   'show where the buffer is
  CALL LoadFile(FileNum, Segment, Zero, RecsThisPass * CLNG(RecLength))
  CALL TypeISort(Segment, Zero, RecLength, Displace, KeySize, _                  

RecsThisPass, Index())

  '----- Adjust the zero-based index to record numbers
  FOR Y = 1 TO RecsThisPass
    Index(Y) = Index(Y) + IndexAdjust
  NEXT

  '----- Save the index file for this pass
  TempNum = FREEFILE
  OPEN "$$PASS." + LTRIM$(STR$(X)) FOR OUTPUT AS #TempNum
  CALL SaveFile(TempNum, VARSEG(Index(1)), Zero, RecsThisPass * 2&)
  CLOSE #TempNum

  '----- The next group of record numbers start this much higher
  IndexAdjust = IndexAdjust + RecsThisPass

NEXT

ERASE Buffer, Index             'free up the memory

'----- Do a final merge pass if necessary
IF NumPasses > 1 THEN

  NDXNumber = FREEFILE
  OPEN NDXName$ FOR BINARY AS #NDXNumber
  REDIM FileNums(NumPasses)        'this holds the file numbers
  REDIM RecordNums(NumPasses)      'this holds record numbers 
  REDIM MainRec$(1 TO NumPasses)   'holds main record data
  REDIM Remaining(1 TO NumPasses)  'tracks index files
  '----- Open the files and seed the first round of data
  FOR X = 1 TO NumPasses
    FileNums(X) = FREEFILE
    OPEN "$$PASS." + LTRIM$(STR$(X)) FOR BINARY AS #FileNums(X)
    Remaining(X) = LOF(FileNums(X))   'this is what remains
    MainRec$(X) = SPACE$(RecLength)   'holds main data file 
    GET #FileNums(X), , RecordNums(X) 'get the next record number                

RecOffset& = (RecordNums(X) - 1) * CLNG(RecLength) + 1
    GET #FileNum, RecOffset&, MainRec$(X) 'then get the data   
  NEXT

  FOR X = 1 TO NumRecords
    Lowest = 1               'assume this is the lowest data in the group     
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    WHILE Remaining(Lowest) = 0 'Lowest can't refer to a dead index       
      Lowest = Lowest + 1       'so seek to the next higher active index
    WEND

    FOR Y = 2 TO NumPasses      'now seek out the truly lowest element
      IF Remaining(Y) THEN      'consider only active indexes
        IF Compare3%(SSEG(MainRec$(Y)), _    '<-- use VARSEG with QB             

     SADD(MainRec$(Y)) + Offset,   _
          SSEG(MainRec$(Lowest)),       _    '<-- use VARSEG with QB             

     SADD(MainRec$(Lowest)) + Offset, KeySize) = -1 THEN
            Lowest = Y
        END IF
      END IF
    NEXT

    PUT #NDXNumber, , RecordNums(Lowest)     'write the main index     
Remaining(Lowest) = Remaining(Lowest) - 2

    IF Remaining(Lowest) THEN                'if the index is still active       
 GET #FileNums(Lowest), , RecordNums(Lowest)

      RecOffset& = (RecordNums(Lowest) - 1) * CLNG(RecLength) + 1
      GET #FileNum, RecOffset&, MainRec$(Lowest)
    END IF

  NEXT

ELSE
  '----- Only one pass was needed so simply rename the index file
  NAME "$$PASS.1" AS NDXName$
END IF

CLOSE                       'close all open files

IF Exist%("$$PASS.*") THEN  'ensure there's a file to kill
  KILL "$$PASS.*"           'kill the work files
END IF

ERASE FileNums, RecordNums  'erase the work arrays
ERASE MainRec$, Remaining
END SUB

SUB LoadFile (FileNum, Segment, Address, Bytes&) STATIC
  IF Bytes& > 32767 THEN Bytes& = Bytes& - 65536
  Registers.AX = &H3F00         'read from file service
  Registers.BX = FILEATTR(FileNum, 2) 'get the DOS handle
  Registers.CX = Bytes&         'how many bytes to load
  Registers.DX = Address        'and at what address
  Registers.DS = Segment        'and at what segment
  CALL DOSInt(Registers)
END SUB

SUB SaveFile (FileNum, Segment, Address, Bytes&) STATIC
  IF Bytes& > 32767 THEN Bytes& = Bytes& - 65536
  Registers.AX = &H4000         'write to file service
  Registers.BX = FILEATTR(FileNum, 2) 'get the DOS handle
  Registers.CX = Bytes&         'how many bytes to load
  Registers.DX = Address        'and at what address
  Registers.DS = Segment        'and at what segment
  CALL DOSInt(Registers)
END SUB
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SUB TypeISort (....) STATIC     'as shown in TYPISORT.BAS
END SUB

FILESORT.BAS begins  by  defining  a  function  that  returns  a  random number  between  1  and  10.
Although  the  earlier  sort  demonstrations  simply  read  the  test  data  from DATA statements,  that  is
impractical when creating thousands of records. Instead, two arrays are filled—one with ten last names
and another with ten first names—and these names are drawn from at random.

The Registers TYPE variable that is defined is used by three of the supporting routines in this program.
RegType is normally associated with CALL Interrupt and InterruptX, but I have written a small-code
replacement to mimic InterruptX that works with DOS Interrupt &H21 only. DOSInt accepts just a
single  Registers  argument,  instead  of  the  three  parameters  that  BASIC's  Interrupt  and  InterruptX
require. Besides adding less code each time it is used, the routine itself is smaller and simpler than
InterruptX.

The remainder of the demonstration program should be easy to follow, so I won't belabor its operation;
the real action is in the FileSort subprogram.

Like TypeSort and TypeISort, FileSort is entirely pointer based, to accommodate TYPE elements of
any size and structure. You provide the name of the main data file to be sorted, the name of an index
file to create, and the length and offset of the keys within the disk records. The Displace parameter tells
how far into the TYPE structure the key information is located. When calling TypeISort this value is
should be one-based, but in the final merge pass where Compare3 is used, a zero-based number is
required. Therefore, a copy is made (Offset = Displace - 1) near the beginning of the routine. This way,
both are available quickly without having to calculate - 1 repeatedly slowing its operation.

The initial steps FileSort performs are to determine how many records are in the data file, and from that
how many records can fit  into memory at  one time. Once these are known, the number of passes
necessary can be easily calculated. An extra step is needed to ensure that RecsPerPass is not greater
than the number of records in the file. Just because 200 records can fit into memory at once doesn't
mean there are that many records. In most cases where multiple passes are needed the last pass will
process fewer records than the others. If there are, say, 700 records and each pass can sort 300, the last
pass will sort only 100 records.

Once the pass information is determined, a block of memory is created to hold each portion of the file
for sorting. This is the purpose of the Buffer array. REDIM is used to create a 32K chunk of memory
that doesn't impinge on available string space.

For each pass that is needed, the number of records in the current pass is determined and the index
array is initialized to increasing values. Then, a portion of the main data file is read using the LoadFile
subprogram. BASIC does not allow you to read records from a random access file directly into a buffer
specified by its address. And even if it did, we can load data much faster than pure BASIC by reading a
number of records all at once.
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Once the current block of records has been loaded, TypeISort is called to sort the index array. The index
array is also saved very quickly using SaveFile, which is the compliment to LoadFile. A unique name is
given to each temporary index file such that the first one is named $$PASS.1, the second $$PASS.2,
and so forth. By using dollar signs in the name it is unlikely that the routine will overwrite an existing
file from another application. Of course, you may change the names to anything else if you prefer.

Notice the extra step that manipulates the IndexAdjust variable. This adjustment is needed because
each sort pass returns the index array holding record numbers starting at 0. The first time through, 1
must be added to each element to reflect BASIC's use of record numbers that start at 1. If the first pass
sorts, say, 250 records, then the index values 1 through 250 are saved to disk. But the second pass is
processing records 251 through 500, so an adjustment value of 251 must be added to each element prior
to writing it to disk.

If the data file is small and only one pass was needed, the $$PASS.1 file is simply renamed to whatever
the caller specified. Otherwise, a merge pass is needed to determine which record number is the next in
sequence based on the results of each pass. Believe it or not, this is the trickiest portion of the entire
program. For the sake of discussion, we'll assume that four passes were required to sort the file.

Each of the four index files contains a sequence of record numbers, and all of the records within that
sequence are in sorted order. However, there is no relationship between the data records identified in
one index file and those in another. Thus, each index file and corresponding data record must be read in
turn. A FOR/NEXT loop then compares each of the four records, to see which is truly next in the final
sequence. The complication arises as the merge nears completion, because some of the indexes will
have become exhausted. This possibility is handled by the Remaining array.

Elements in the Remaining array are initialized to the length of each index file as the indexes are
opened. Then, as each index entry is read from disk, the corresponding element is decremented by two
to  show that  another  record number was read.  Therefore,  the  current  Remaining element  must  be
checked to see if that index has been exhausted. Otherwise, data that was already processed might be
considered in the merge comparisons.

The final steps are to close all the open files, delete the temporary index files, and erase the work arrays
to free the memory they occupied.

One important point to observe is the use of SSEG to show Compare3 where the MainRec$ elements
are located. SSEG is for BASIC 7 only; if you are using QuickBASIC you must change SSEG to
VARSEG. SSEG can be used with either near or far strings in BASIC 7, but VARSEG works with near
strings only. SSEG is used as the default, so an error will be reported if you are using QuickBASIC.
The cursor will then be placed near the comment in the program that shows the appropriate correction.

Searching Fundamentals
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As with sorting, searching data effectively also requires that you select an appropriate algorithm. There
are many ways to search data, and we will look at several methods here. The easiest to understand is a
linear search, which simply examines each item in sequence until a match is found: 

FoundAt = 0                   'assume no match

FOR X = 1 TO NumElements      'search all elements
  IF Array$(X) = Sought$ THEN
    FoundAt = X               'remember where it is
    EXIT FOR                  'no need to continue
  END IF
NEXT

IF FoundAt THEN               'if it was found
  PRINT "Found at element"; FoundAt
ELSE
  PRINT "Not found"           'otherwise
END IF

For small arrays a linear search is effective and usually fast enough. Also, integer and long integer
arrays can be searched reasonably quickly even if there are many elements. But with string data, as the
number of elements that must be searched increases, the search time can quickly become unacceptable.
This  is  particularly true when additional  features are  required such as searching without regard to
capitalization or comparing only a portion of each element using MID$. Indeed, many of the same
techniques that enhance a sort routine can also be employed when searching.

To search ignoring capitalization you would first capitalize Sought$ outside of the loop, and then use
UCASE$ with each element in the comparisons. Using UCASE$(Sought$) repeatedly within the loop
is both wasteful and unnecessary:

Sought$ = UCASE$(Sought$)
 .
 .
IF UCASE$(Array$(X)) = Sought$ THEN

Likewise, comparing only a portion of each string will require MID$ with each comparison, after using
MID$ initially to extract what is needed from Sought$:

Sought$ = MID$(Sought$, 12, 6)
 .
 .
IF MID$(Array$(X), 12, 6) = Sought$ THEN

And again, as with sorting, these changes may be combined in a variety of ways. You could even use
INSTR to see if the string being searched for is within the array, when an exact match is not needed:

IF INSTR(UCASE$(Array$(X)), Sought$) THEN

However,  each  additional  BASIC  function  you  use  will  make  the  searching  slower  and  slower.
Although BASIC's INSTR is very fast, adding UCASE$ to each comparison as shown above slows the
overall process considerably.
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There are three primary ways that searching can be sped up. One is to apply simple improvements
based on understanding how BASIC works, and knowing which commands are fastest. The other is to
select a better algorithm. The third is to translate selected portions of the search routine into assembly
language. I will use all three of these techniques here, starting with enhancements to the linear search,
and culminating with a very fast binary search for use with sorted data.

One of the slowest operations that BASIC performs is comparing strings. For each string, its descriptor
address must be loaded and passed to the comparison routine. That routine must then obtain the actual
data  address,  and examine each byte  in  both  strings  until  one of  the  characters  is  different,  or  it
determines that both strings are the same. As I mentioned earlier, if one or both of the strings are
fixed-length, then copies also must be made before the comparison can be performed.

There  is  another  service  that  the  string  comparison  routine  must  perform,  which  is  probably  not
obvious to most programmers and which also impacts its speed. BASIC frequently creates and then
deletes temporary strings without your knowing it. One example is the copy it makes of fixed-length
strings before comparing them. But there are other, more subtle situations in which this can happen.

For example, when you use IF X$ + Y$ > Z$ BASIC must create a temporary string comprised
of X$ + Y$, and then pass that to the comparison routine. Therefore, that routine is also responsible for
determining if the incoming string is a temporary copy, and deleting it if so. In fact, all of BASIC's
internal routines that accept string arguments are required to do this.

Therefore, one good way to speed searching of conventional (not fixed-length) string arrays is to first
compare the lengths. Since strings whose lengths are different can't possibly be the same, this will
quickly weed those out. BASIC's LEN function is much faster than its string compare routine, and it
offers  a  simple  but  effective  opportunity  to  speed things  up.  LEN is  made even faster  because  it
requires only a single argument, as opposed to the two required for the comparison routine. 

SLen = LEN(Sought$)       'do this once outside the loop
FOR X = 1 TO NumElements
  IF LEN(Array$(X)) = SLen THEN   'maybe...
  IF Array$(X) = Sought$ THEN     'found it!
      FoundAt = X
      EXIT FOR
    END IF
  END IF
NEXT

Similarly, if the first characters are not the same then the strings can't match either. Like LEN, BASIC's
ASC is much faster than the full string comparison routine, and it too can improve search time by
eliminating elements that can't possibly match. Depending on the type and distribution of the data in
the array, using both LEN and ASCII can result in a very fast linear search:

SLen = LEN(Sought$)
SAsc = ASC(Sought$)
FOR X = 1 TO NumElements
  IF LEN(Array$(X)) = SLen THEN
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    IF ASC(Array$(X)) = SAsc THEN
      IF Array$(X) = Sought$ THEN
        ...
      END IF
    END IF
  END IF
NEXT

Notice that the LEN test must always be before the ASC test, to avoid an "Illegal function call" error if
the array element is a null string. If all or most of the strings are the same length, then LEN will not be
helpful, and ASC should be used alone.

As I  mentioned before,  when comparing  fixed-length  string  arrays  BASIC makes  a  copy of  each
element  into  a  conventional  string,  prior  to  calling  its  comparison  routine.  This  copying  is  also
performed when using ASC is used, but not LEN. After all, the length of a fixed-length never changes,
and BASIC is smart enough to know the length directly. But then, comparing the lengths of these string
is pointless anyway.

Because of the added overhead to make these copies, the performance of a conventional linear search
for fixed-length data is generally quite poor. This is a shame, because fixed-length strings are often the
only choice when as much data as possible must be kept in memory at once. And fixed-length strings
lend themselves perfectly to names and addresses. It should be apparent by now that the best solution
for quickly comparing fixed-length string arrays—and the string portion of TYPE arrays too—is with
the various Compare functions already shown.

If you are searching for an exact match, then either Compare or Compare2 will be ideal, depending on
whether you want to ignore capitalization. If you have only a single string element in each array, you
should define a dummy TYPE. This avoids the overhead of having to use both VARSEG and VARPTR
as separate  arguments.  The short  example program and SearchType functions that  follow search a
fixed-length string array for a match.

DEFINT A-Z
DECLARE FUNCTION Compare% (SEG Type1 AS ANY, SEG Type2 AS ANY, NumBytes)
DECLARE FUNCTION Compare2% (SEG Type1 AS ANY, SEG Type2 AS ANY, NumBytes) 
DECLARE FUNCTION SearchType% (Array() AS ANY, Sought AS ANY) 
DECLARE FUNCTION SearchType2% (Array() AS ANY, Sought AS ANY) 
DECLARE FUNCTION SearchType3% (Array() AS ANY, Searched AS ANY) 
CLS
TYPE FLen                       'this lets us use SEG
  LastName AS STRING * 15
END TYPE

REDIM Array(1 TO 4000) AS FLen  '4000 is a lot of names
DIM Search AS FLen              'best comparing like data

FOR X = 1 TO 4000 STEP 2        'impart some realism
  Array(X).LastName = "Henderson"
NEXT

Array(4000).LastName = "Henson" 'almost at the end
Search.LastName = "Henson"      'find the same name
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'----- first time how long it takes using Compare
Start! = TIMER                  'start timing

FOR X = 1 TO 5                  'search five times
   FoundAt = SearchType%(Array(), Search)
NEXT

IF FoundAt >= 0 THEN
  PRINT "Found at element"; FoundAt
ELSE
  PRINT "Not found"
END IF

Done! = TIMER
PRINT USING "##.## seconds with Compare"; Done! - Start!
PRINT

'----- then time how long it takes using Compare2
Start! = TIMER                  'start timing

FOR X = 1 TO 5                  'as above
   FoundAt = SearchType2%(Array(), Search)
NEXT

IF FoundAt >= 0 THEN
  PRINT "Found at element"; FoundAt
ELSE
  PRINT "Not found"
END IF

Done! = TIMER
PRINT USING "##.## seconds with Compare2"; Done! - Start!
PRINT

'---- finally, time how long it takes using pure BASIC
Start! = TIMER

FOR X = 1 TO 5
   FoundAt = SearchType3%(Array(), Search)
NEXT

IF FoundAt >= 0 THEN
  PRINT "Found at element"; FoundAt
ELSE
  PRINT "Not found"
END IF

Done! = TIMER
PRINT USING "##.## seconds using BASIC"; Done! - Start!
END

FUNCTION SearchType% (Array() AS FLen, Sought AS FLen) STATIC 
SearchType% = -1                'assume not found

FOR X = LBOUND(Array) TO UBOUND(Array)
  IF Compare%(Array(X), Sought, LEN(Sought)) THEN
    SearchType% = X             'save where it was found
    EXIT FOR                    'and skip what remains
  END IF
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NEXT
END FUNCTION

FUNCTION SearchType2% (Array() AS FLen, Sought AS FLen) STATIC 
SearchType2% = -1               'assume not found

FOR X = LBOUND(Array) TO UBOUND(Array)
  IF Compare2%(Array(X), Sought, LEN(Sought)) THEN
    SearchType2% = X            'save where it was found
    EXIT FOR                    'and skip what remains
  END IF
NEXT
END FUNCTION

FUNCTION SearchType3% (Array() AS FLen, Searched AS FLen) STATIC 
SearchType3% = -1               'assume not found

FOR X = LBOUND(Array) TO UBOUND(Array)
  IF Array(X).LastName = Searched.LastName THEN
    SearchType3% = X            'save where it was found
    EXIT FOR                    'and skip what remains
  END IF
NEXT 
END FUNCTION

When you run this program it will be apparent that the SearchType function is the fastest, because it
uses Compare which doesn't perform any case conversions. SearchType2 is only slightly slower with
that added overhead, and the purely BASIC function, SearchType3, lags far behind at half the speed.
Note that the array is searched five times in succession, to minimize the slight errors TIMER imposes.
Longer timings are generally more accurate than short ones, because of the 1/18th second resolution of
the PC's system timer.

Binary Searches

This is about as far as we can go using linear searching, and to achieve higher performance requires a
better algorithm. The Binary Search is one of the fastest available; however, it requires the data to
already be in sorted order. A Binary Search can also be used with a sorted index, and both methods will
be described.

Binary searches are very fast, and also very simple to understand. Unlike the Quick Sort algorithm 
which achieves great efficiency at the expense of being complicated, a Binary Search can be written 
using only a few lines of code. The strategy is to start the search at the middle of the array. If the value 
of that element value is less than that of the data being sought, a new halfway point is checked and the 
process repeated. This way, the routine can quickly zero in on the value being searched for. Figure 8-3 
below shows how this works.

If you are searching for Mexico, the first element examined is number 7, which is halfway through the 
array. Comparing Mexico to Finland shows that Mexico is greater, so the distance is again cut in half. 
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In this case, a match was found after only two tries—remarkably faster than a linear search that would 
have required ten comparisons. Even when huge arrays must be searched, data can often be found in a 
dozen or so tries. One interesting property of a binary search is that it takes no longer to find the last 
element in the array than the first one.

The program below shows one way to implement a Binary Search.

DEFINT A-Z
DECLARE FUNCTION BinarySearch% (Array$(), Find$)

CLS
PRINT "Creating test data..."

REDIM Array$(1 TO 1000)         'create a "sorted" array
FOR X = 1 TO 1000
  Array$(X) = "String " + RIGHT$("000" + LTRIM$(STR$(X)), 4) NEXT

PRINT "Searching array..."

FoundAt = BinarySearch%(Array$(), "String 0987")
IF FoundAt >= 0 THEN
  PRINT "Found at element"; FoundAt
ELSE
  PRINT "Not found"
END IF

END

FUNCTION BinarySearch% (Array$(), Find$) STATIC
BinarySearch% = -1              'no matching element yet
Min = LBOUND(Array$)            'start at first element
Max = UBOUND(Array$)            'consider through last

DO
  Try = (Max + Min) \ 2         'start testing in middle
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13: Zambia 
12: Sweden 
11: Peru 
10: Mexico 
09: Holland 
08: Germany 
07: Finland 
06: England 
05: Denmark 
04: China 
03: Canada 
02: Austria 
01: Australia

step 2

step 1

Figure  8-3:  How a  Binary
Search  locates  data  in  a
sorted array. 



  IF Array$(Try) = Find$ THEN   'found it!
    BinarySearch% = Try         'return matching element
    EXIT DO                     'all done
  END IF

  IF Array$(Try) > Find$ THEN   'too high, cut in half
    Max = Try - 1
  ELSE
    Min = Try + 1               'too low, cut other way
  END IF
LOOP WHILE Max >= Min
END FUNCTION

The BinarySearch function returns either the element number where a match was found, or  -1 if the
search string was not found. Not using a value of zero to indicate failure lets you use arrays that start
with element number 0. As you can see, the simplicity of this algorithm belies its incredible efficiency.
The only real problem is that the data must already be in sorted order. Also notice that two string
comparisons  must  be made—one to  see if  the  strings  are  equal,  and another  to  see if  the  current
element is too high. Although you could use Compare3 which examines the strings once and tells if the
data is the same or which is greater, a Binary Search is so fast that this probably isn't worth the added
trouble. As you will see when you run the test program, it takes far longer to create the data than to
search it!

Besides the usual enhancements that can be applied to the comparisons using UCASE$ or MID$, this
function could also be structured to use a parallel index array. Assuming the data is not sorted but the
index array is, the modified Binary Search would look like this:

FUNCTION BinaryISearch% (Array$(), Index(), Find$) STATIC
BinaryISearch% = -1             'assume not found
Min = LBOUND(Array$)            'start at first element
Max = UBOUND(Array$)            'consider through last

DO
  Try = (Max + Min) \ 2         'start testing in middle

  IF Array$(Index(Try)) = Find$ THEN    'found it!
    BinaryISearch% = Try        'return matching element
    EXIT DO                     'all done
  END IF

  IF Array$(Index(Try)) > Find$ THEN    'too high, cut
    Max = Try - 1
  ELSE
    Min = Try + 1               'too low, cut other way
  END IF
LOOP WHILE Max >= Min
END FUNCTION

Numeric Arrays
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All of the searching techniques considered so far have addressed string data. In most cases, string array
searches are the ones that will benefit the most from improved techniques. As you have already seen,
BASIC makes copies of fixed-length strings before comparing them, which slows down searching. And
the very nature of strings implies that many bytes may have to be compared before determining if they
are equal or which string is greater. In most cases, searching a numeric array is fast enough without
requiring any added effort, especially when the data is integer or long integer.

However, a few aspects of numeric searching are worth mentioning here. One is avoiding the inevitable
rounding errors that are sure to creep into the numbers you are examining. Another is that in many
cases, you may not be looking for an exact match. For example, you may need to find the first element
that is higher than a given value, or perhaps determine the smallest value in an array.

Unlike strings that are either the same or they aren't, the binary representation of numeric values is not
always so precise. Consider the following test which should result in a match, but doesn't. 

Value! = 1!
Result! = 2!
CLS

FOR X = 1 TO 1000
  Value! = Value! + .001
NEXT

IF Value! = Result! THEN
  PRINT "They are equal"
ELSE
  PRINT "Value! ="; Value!
  PRINT "Result! ="; Result!
END IF

After adding .001 to Value! 1000 times Value! should be equal to 2, but instead it is slightly higher.
This is because the binary storage method used by computers simply cannot represent every possible
value with absolute accuracy. Even changing all of the single precision exclamation points (!) to double
precision pound signs (#) will not solve the problem. Therefore, to find a given value in a numeric
array can require some extra trickery.

What is really needed is to determine if the numbers are very close to each other, as opposed to exactly
the same. One way to accomplish this is to subtract the two, and see if the result is very close to zero.
This is shown below.

Value! = 1!
Result! = 2!
CLS

FOR X = 1 TO 1000
  Value! = Value! + .001
NEXT

IF ABS(Value! - Result!) < .0001 THEN
  PRINT "They are equal"
ELSE
  PRINT "Value! ="; Value!
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  PRINT "Result! ="; Result!
END IF

Here, the absolute value of the difference between the numbers is examined, and if that difference is
very small the numbers are assumed to be the same. Unfortunately, the added overhead of subtracting
before comparing slows the comparison even further. There is no simple cure for this, and an array
search must apply this subtraction to each element that is examined.
Another common use for numeric array searches is when determining the largest or smallest value.
Many programmers make the common mistake shown below when trying to find the largest value in an
array.

MaxValue# = 0

FOR X = 1 TO NumElements
  IF Array#(X) > MaxValue# THEN
    MaxValue# = Array#(X)
    Element = X
  END IF
NEXT

PRINT "The largest value found is"; MaxValue#
PRINT "And it was found at element"; Element

The problem with this routine is that it doesn't account for arrays where all of the elements are negative
numbers!  In that case no element will be greater than the initial  MaxValue#, and the routine will
incorrectly report zero as the result. The correct method is to obtain the lowest element value, and use
that as a starting point:

MaxValue# = Array#(1)

FOR X = 2 TO NumElements
  IF Array#(X) > MaxValue# THEN
    MaxValue# = Array#(X)
  END IF
NEXT

PRINT "The largest value found is"; MaxValue#

Determining the highest value in an array would be handled similarly, except the greater-than symbol
(>) would be replaced with a less-than operator (<).

Soundex

The final searching technique I will show is Soundex. It is often useful to search for data based on its 
sound, for example when you do not know how to spell a person's name. Soundex was invented in the 
1920's and has been used since then by, among others, the U.S. Census Bureau. A Soundex code is an 
alpha-numeric representation of the sound of a word, and it is surprisingly accurate despite its 
simplicity. The classic implementation of Soundex returns a four-character result code. The first 
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character is the same as the first letter of the word, and the other three are numeric digits coded as 
shown in Table 8-1. 

Soundex Code Letters
1 B, F, P, V
2 C, G, J, K, Q, S, X
3 D, T
4 L
5 M, N
6 R

Table 8-1: The Soundex code numbers returned for significant letters of the alphabet.

Letters not shown are simply skipped as being statistically insignificant to the sound of the word. In 
particular, speaking accents often minimize the importance of vowels, and blur their distinction. If the 
string is short and there are fewer than four digits, the result is simply padded with trailing zeros. One 
additional rule is that a code digit is never repeated, unless there is an uncoded letter in between. In the 
listing that follows, two different implementations of Soundex are shown.

'SOUNDEX.BAS, Soundex routines and example

DEFINT A-Z

DECLARE FUNCTION ASoundex$ (Word$)
DECLARE FUNCTION ISoundex% (Word$)

CLS
DO
  PRINT "press Enter alone to exit"
  INPUT "What is the first word"; FWord$
  IF LEN(FWord$) = 0 THEN EXIT DO
  INPUT "What is the second word"; SWord$
  PRINT

  'Test by alpha-numeric soundex
  PRINT "Alpha-Numeric Soundex: "; FWord$; " and ";
  PRINT SWord$; " do ";
  IF ASoundex$(FWord$) <> ASoundex$(SWord$) THEN
    PRINT "NOT ";
  END IF
  PRINT "sound the same."
  PRINT

  'Test by numeric soundex
  PRINT "      Numeric Soundex: "; FWord$; " and ";
  PRINT SWord$; " do ";
  IF ISoundex%(FWord$) <> ISoundex%(SWord$) THEN
    PRINT "NOT ";
  END IF
  PRINT "sound the same."
  PRINT
LOOP
END

FUNCTION ASoundex$ (InWord$) STATIC
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  Word$ = UCASE$(InWord$)
  Work$ = LEFT$(Word$, 1) + "000"
  WkPos = 2
  PrevCode = 0

  FOR L = 2 TO LEN(Word$)
    Temp = INSTR("BFPVCGJKQSXZDTLMNR", MID$(Word$, L, 1))
    IF Temp THEN
      Temp = ASC(MID$("111122222222334556", Temp, 1))
      IF Temp <> PrevCode THEN
        MID$(Work$, WkPos) = CHR$(Temp)
        PrevCode = Temp
        WkPos = WkPos + 1
        IF WkPos > 4 THEN EXIT FOR
      END IF
    ELSE
      PrevCode = 0
    END IF
  NEXT

  ASoundex$ = Work$
END FUNCTION

FUNCTION ISoundex% (InWord$) STATIC
  Word$ = UCASE$(InWord$)
  Work$ = "0000"
  WkPos = 1
  PrevCode = 0

  FOR L = 1 TO LEN(Word$)
    Temp = INSTR("BFPVCGJKQSXZDTLMNR", MID$(Word$, L, 1))
    IF Temp THEN
      Temp = ASC(MID$("111122222222334556", Temp, 1))
      IF Temp <> PrevCode THEN
        MID$(Work$, WkPos) = CHR$(Temp)
        PrevCode = Temp
        WkPos = WkPos + 1
        IF WkPos > 4 THEN EXIT FOR
      END IF
    ELSE
      PrevCode = 0
    END IF
  NEXT

  ISoundex% = VAL(Work$)
END FUNCTION

The first function, ASoundex, follows the standard Soundex definition and returns the result as a string.
The ISoundex version cheats slightly by coding the first letter as a number, but it returns an integer
value instead of a string.  Because integer searches are many times faster than string searches, this
version will be better when thousands—or even hundreds of thousands—of names must be examined.

An additional benefit of the integer-only method is that it allows for variations on the first letter. For
example, if you enter Cane and Kane in response to the prompts from SOUNDEX.BAS ASoundex will
not recognize the names as sounding alike where ISoundex will.
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Linked Data

No discussion of searching and sorting would be complete without a mention of linked lists and other
data links. Unlike arrays where all of the elements lie in adjacent memory locations, linked data is
useful when data locations may be disjointed. One example is the linked list used by the DOS File
Allocation  Table  (FAT)  on every disk.  As I  described in  Chapter  6,  the  data  in  each file  may be
scattered throughout the disk, and only through a linked list can DOS follow the thread from one sector
in a file to another.

Another example where linked data is useful—and the one we will focus on here—is to keep track of 
memo fields in a database. A memo field is a field that can store free-form text such as notes about a 
sales contact or a patient's medical history. Since these fields typically require varying lengths, it is 
inefficient to reserve space for the longest one possible in the main database file. Therefore, most 
programs store memo fields in a separate disk file, and use a pointer field in the main data file to show 
where the corresponding memo starts in the dedicated memo file. Similarly, a back pointer adjacent to 
each memo identifies the record that points to it. This is shown in Figure 8-4 below.

Here, the pointer in the main data file record is a long integer that holds the byte offset into the memo 
file where the corresponding memo text begins. And just before the memo text is an integer record 
number that shows which record this memo belongs to. If you anticipate more than 65,535 records a 
long integer must be used instead. Thus, these pointers provide links between the two files, and relate 
the information they contain.

When a new record is added to the main file, the memo that goes with it is appended to the end of the
memo file. BASIC's LOF function can be used to determine the current end of the memo file, which is
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then  used as  the  beginning offset  for  the new memo text.  And as  the  new memo is  appended to
MEMO.DAT, the first data actually written is the number of the new record in the main data file.

The record number back pointer in the memo file is needed to allow memo data to be edited. Since
there's  no reasonable way to extend memo text  when other  memo data  follows it,  most  programs
simply abandon the old text, and allocate new space at the end of the file. The abandoned text is then
marked as such, perhaps by storing a negative value as the record number. Storing a negative version of
the abandoned data's length is ideal, because that both identifies the data as obsolete, and also tells how
much farther into the file the next memo is located.

The idea here is that you would periodically run a memo file maintenance program that compacts the
file,  thus  eliminating  the  wasted  space  the  abandoned  memos  occupy.  This  is  similar  to  the
DBPACK.BAS utility shown in Chapter 7, and also similar to the way that BASIC compacts string
memory when it becomes full. But when an existing memo is relocated in the memo file, the field in
the main data file that points to the memo must also be updated. And that's why the record number back
pointer is needed: so the compaction program can know which record in the main file must be updated.

The "L" identifier in the memo file in Figure 8-5, shown between the record number and memo text, is
a length byte or word that tells how long the text is. If you plan to limit the memo field lengths to 255
or fewer characters, then a single byte is sufficient. Otherwise an integer must be used. An example of
code that reads a data record and then its associated memo text is shown below.

GET #MainFile, RecNumber, TypeVar
MemoOffset& = TypeVar.MemoOff
GET #MemoFile, MemoOffset& + 2, MemoLength%
Memo$ = SPACE$(MemoLength%)
GET #MemoFile, , Memo$

The first step reads a record from the main data file into a TYPE variable, and the second determines
where in the memo file the memo text begins. Two is added to that offset in the second GET statement,
to skip over the record number back pointer which isn't needed here. Once the length of the memo text
is known, a string is assigned to that length, and the actual text is read into it.

If you are using long integer record numbers you would of course use  MemoOffset& + 4 in the
second GET. And if you're using a single byte to hold the memo length you would define a fixed-length
string to receive that byte:

DIM Temp AS STRING *1
GET #MemoFile, MemoOffset& + 2, Temp
MemoLength = ASC(Temp)

Since BASIC doesn't  offer  a  byte-sized integer  data  type,  ASC and STR$ can be used to  convert
between numeric and string formats.
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Array Element Insertion and Deletion

The last  issue related to array and memory manipulation I  want to cover is inserting and deleting
elements. If you intend to maintain file indexes or other information in memory and in sorted order,
you will need some way to insert a new entry. By the same token, deleting an entry in a database
requires that the parallel index entry also be deleted.

The most obvious way to insert or delete elements in an array is with a FOR/NEXT loop. The first
example below inserts an element, and the second deletes one.

'----- Insert an element:
Element = 200
InsertValue = 999

FOR X = UBOUND(Array) TO Element + 1 STEP -1
  Array(X) = Array(X - 1)
NEXT
Array(Element) = InsertValue

'----- Delete an element:
Element = 200
FOR X = Element TO UBOUND(Array) - 1
  Array(X) = Array(X + 1)
NEXT
Array(UBOUND(Array)) = 0  'optionally clear last element

For integer, long integer, and fixed-length arrays this is about as efficient as you can get,  short  of
rewriting  the  code  in  assembly  language.  However,  with  floating  point  and  string  arrays  the
performance is less than ideal.  Unless a numeric coprocessor is  installed,  floating point values are
assigned using interrupts and support code in the emulator library. This adds an unnecessary level of
complication  that  also  impacts  the  speed.  When  strings  are  assigned  the  situation  is  even  worse,
because of the memory allocation overhead associated with dynamic string management.

A better solution for floating point and string arrays is a series of SWAP statements. The short program
below benchmarks the speed difference of the two methods,  as it  inserts  an element  into a  single
precision array.

REDIM Array(1 TO 500)
CLS
Element% = 200
InsertValue = 999

Start = TIMER
FOR A% = 1 TO 500
  FOR X% = UBOUND(Array) TO Element% + 1 STEP -1
    Array(X%) = Array(X% - 1)
  NEXT
  Array(Element%) = InsertValue
NEXT
Done = TIMER
PRINT USING "##.## seconds when assigning"; Done - Start
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Start = TIMER
FOR A% = 1 TO 500
  FOR X% = UBOUND(Array) TO Element% + 1 STEP -1
    SWAP Array(X%), Array(X% - 1)
  NEXT
  Array(Element%) = InsertValue
NEXT
Done = TIMER
PRINT USING "##.## seconds when swapping"; Done - Start

If you run this program in the BASIC environment, the differences may not appear that significant. But
when the program is compiled to an executable file, the swapping method is more than four times
faster. In fact, you should never compare programming methods using the BASIC editor for exactly
this reason. In many cases, the slowness of the interpreting process overshadows significant differences
between one approach and another.

String arrays also benefit  greatly from using SWAP instead of assignments,  though the amount of
benefit varies depending on the length of the strings. If you modify the previous program to use a string
array, also add this loop to initialize the elements:

FOR X% = 1 TO 500
  Array$(X%) = "String number" + STR$(X)
NEXT

With BASIC PDS far strings the difference is only slightly less at about three to one, due to the added
complexity of far data. Also, SWAP will always be worse than assignments when inserting or deleting
elements  in  a  fixed-length string  or  TYPE array.  An assignment  merely copies  the data  from one
location to another. SWAP, however, must copy the data in both directions.

Understand that when using SWAP with conventional string arrays, the data itself is not exchanged.
Rather, the four-byte string descriptors are copied. But because BASIC PDS program modules store
string data in different segments,  extra work is necessary to determine which descriptor goes with
which segment.  When near strings are being used,  only six bytes are exchanged, regardless of the
length of the strings. Four bytes hold the descriptors, and two more store the back pointers.

Summary

This chapter explained many of the finer points of sorting and searching all types of data in BASIC. It
began with sorting concepts using the simple Bubble Sort as a model, and then went on to explain
indexed and multi-key sorts. One way to implement a multi-key sort is by aligning the key fields into
adjacent TYPE components. While there are some restrictions to this method, it is fairly simple to
implement and also very fast.

The Quick Sort algorithm was shown, and the SEEQSORT.BAS program on the accompanying disk
helps you to understand this complex routine by displaying graphically the progress of the comparisons
and exchanges as they are performed. Along the way you saw how a few simple modifications to any
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string sort routine can be used to sort regardless of capitalization, or based on only a portion of a string
element.

You also learned that writing a truly general sort routine that can handle any type of data requires
dealing  exclusively  with  segment  and  address  pointers.  Here,  assembly  language  routines  are
invaluable for assisting you when performing the necessary comparisons and data exchanges. Although
the actual operation of the assembly language routines will be deferred until Chapter 12, such routines
may easily be added to a BASIC program using .LIB and .QLB libraries.

I mentioned briefly the usefulness of packing and aligning data when possible, as an aid to fast sorting.
In particular, dates can be packed to only three bytes in Year/Month/Day order, and other data such as
Zip codes can be stored in long integers. Because numbers can be compared much faster than strings,
this helps the sorting routines operate more quickly.

Array searching was also discussed in depth, and both linear and binary search algorithms were shown.
As with the sorting routines, searching can also employ UCASE$ and MID$ to search regardless of
capitalization, or on only a portion of each array element. Two versions of the Soundex algorithm were
given, to let you easily locate names and other data based on how they sound.

Besides  showing  the  more  traditional  searching  methods,  I  presented  routines  to  determine  the
minimum and maximum values in a numeric array. I also discussed some of the ramifications involved
when searching floating point data, to avoid the inevitable rounding errors that might cause a legitimate
match to be ignored.

Finally, some simple ways to insert and delete elements in both string and numeric arrays were shown.
Although  making  direct  assignments  in  a  loop  is  the  most  obvious  way  to  do  this,  BASIC's
often-overlooked SWAP command can provide a significant improvement in speed.

The next chapter will conclude this section about hands-on programming by showing a variety of 
program optimization techniques.
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PART 3
Beyond BASIC



9
Program Optimization

Throughout the preceding chapters I  have shown a variety of tips and techniques that can help to
improve the efficiency of your programs. For example, Chapter 6 explained that processing files in
large  pieces  reduces  the  time  needed  to  save  and  load  data.  Likewise,  Chapter  8  discussed  the
improvement that SWAP often provides over conventional assignments. Some optimizations, however,
do not fit into any of the well-defined categories that have been used to organize this book. In this
chapter I will share several general optimization techniques you can employ to reduce the size of your
programs and make them run faster.

The material in this chapter is organized into three principle categories: programming shortcuts and
speed improvements, miscellaneous tips and techniques, and benchmarking. Each section addresses
BASIC programming ideas and methods that are not immediately obvious in most cases.

Programming Shortcuts and Speed Improvements

Chapter 3 discussed the use of AND, OR, and the other logical operations that can be used for both
logical (IF and CASE) tests and also bit operations. But there are a few other related points that are
worth mentioning here. When you need to know if a variable is zero or not, you can omit an explicit
test for zero like this:

IF Variable THEN...

You might be tempted to think that two variables could be tested for non-zero values at one time in the
same way, using code such as this: 

IF Var1 AND Var2 THEN...

However, that will very likely fail. The expression Var1 AND Var2 combines the bits in these variables,
which could result in a value of zero even when both variables are non-zero. As an example, if Var1
currently holds a value of 1, its bits will be set as follows:

0000 0000 0000 0001

Now, if Var2 is assigned the value 2, its bits will be set like this: 

0000 0000 0000 0010

Since no two bits are set in the same position in each variable, the result of Var1 AND Var2 is zero.
An effective solution is IF Var1 * Var2 THEN to ensure that neither variable is zero. And to test
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if either variable is non-zero you'd use OR. Whatever follows the test  IF Var1 OR Var2 THEN
will be executed as long as one (or both) variables are not zero. These are important short cuts to
understand, because the improvement in code size and execution speed can be significant.

Each of the AND, OR, and multiplication tests shown here generates only 11 bytes of code. Contrast
that to the 28 bytes that BC creates for the alternative: IF Var1 <> 0 AND Var2 <> 0 THEN.
Because of the improved method of expression evaluation in BASIC PDS, this last example generates
only 14 bytes when using that version of BC. None the less, if you can avoid explicit comparisons to
zero you will go a long way toward improving the efficiency of your code.

This short cut is equally appropriate with LOOP comparisons as well as IF tests. In the BufIn function
shown in Chapter 6, INSTR was used to see if a CHR$(13) carriage return was present in the buffer. In
the statement CR = INSTR(BufPos, Buffer$, CR$), CR receives either 0 if that character is
present, or a non-zero position in the string where it was found. The LOOP statement that surrounded
the buffer searching uses LOOP WHILE CR, which continues looping as long as CR is not zero.

When an integer variable is compared in a LOOP WHILE condition, seven bytes of code are generated
whether it is compared to zero or not. But when a long integer is used to control the LOOP WHILE
condition, omitting the explicit test for zero results in 11 bytes of compiled code where including it
creates 20 bytes. Note that with floating point values identical code is generated in either case, because
an explicit comparison to zero is required and added by the compiler.

Predefining Variables

Another  important  point  is  illustrated in the same code fragment  that  uses  INSTR to search for a
carriage return. There, the CR$ string variable had been assigned earlier to CHR$(13). Although the
BufIn  code  could  have  used  CR = INSTR(BufPos, Buffer$, CHR$(13)) instead  of  a
previously  defined string  variable  to  replace  the  CHR$(13),  that  would  take  longer  each time the
statement is executed. Since CHR$ is a function, it  must be called each time it is used. If CR$ is
defined once ahead of time, only its address needs to be passed to INSTR. This can be done with four
bytes of assembly language code.

If CHR$(13) will be used only once in a program, then the only savings afforded by predefining it will
be execution speed. But when it  is needed two or more times, several bytes can be saved at each
occurrence by using a replacement string variable. Other common CHR$ values that are used in BASIC
programs are the CHR$(34) quote character, and CHR$(0) which is often used when accessing DOS
services with CALL Interrupt.

Likewise, you should avoid calling any functions more than is absolutely necessary. I have seen many
programmers use code similar to the following, to see if a drive letter has been given as part of a file
name. 

IF INSTR(Path$, ":") THEN 
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  Drive$ = LEFT$(INSTR(Path$, ":") - 1)
END IF

A much better approach is to invoke INSTR only once, and save the results for subsequent testing:

Found% = INSTR(Path$, ":")   'save the result from INSTR
IF Found% THEN
  Drive$ = LEFT$(Path$, Found%) - 1)
END IF

The same situation holds true for UCASE$, MID$, and all of the other BASIC functions. Rather than
this:

IF INSTR(UCASE$(MID$(Work$, 3, 22)), "/A") THEN A = True
IF INSTR(UCASE$(MID$(Work$, 3, 22)), "/B") THEN B = True
IF INSTR(UCASE$(MID$(Work$, 3, 22)), "/C") THEN C = True 

use this instead:

Temp$ = UCASE$(MID$(Work$, 3, 22))
IF INSTR(Temp$, "/A") THEN A = True
IF INSTR(Temp$, "/B") THEN B = True
IF INSTR(Temp$, "/C") THEN C = True

Where the first example generates 138 bytes of code, the second uses only 111. The time savings will
be  even more  significant,  because  BASIC's  UCASE$ and MID$ functions  allocate  and deallocate
memory by making further calls to BASIC's string memory management routines.

Indeed, it is always best to avoid creating new strings whenever possible, precisely because of the
overhead needed to assign and erase string data. Each time a string is assigned, memory must be found
to hold it; add to that the additional code needed to release the older, abandoned version of the string.

This has further ramifications with simple string tests as well. As Chapter 3 explained, testing for single
characters  or  the  first  character  in  a  string is  always  faster  if  you isolate  the  ASCII  value  of  the
character first, and then use integer comparisons later. In the example below, the first series of IF tests
generates 60 bytes of code. This is much less efficient than the second which generates only 46, even
though the steps to obtain and assign the ASCII value of Answer$ comprise 12 of those bytes.

PRINT "Abort, Retry, or Fail? (A/R/F) ";
DO
  Answer$ = UCASE$(INKEY$)
LOOP UNTIL LEN(Answer$)

'----- Method 1:
IF Answer$ = "A" THEN
  REM
ELSEIF Answer$ = "R" THEN
  REM
ELSEIF Answer$ = "F" THEN
  REM
END IF
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'----- Method 2:
A% = ASC(Answer$)
IF A% = 65 THEN
  REM
ELSEIF A% = 82 THEN
  REM
ELSEIF A% = 70 THEN
  REM
END IF

Another prime candidate for speed enhancement is when you need to create a string from individual
characters. The first example below reads the 80 characters in the top row of display memory, and
builds a new string from those characters.

Scrn$ = ""
FOR X = 1 TO 80
  Scrn$ = Scrn$ + CHR$(SCREEN(1, X))
NEXT

Since we already know that 80 characters are to be read, a much better method is to pre-assign the
destination string, and insert the characters using the statement form of MID$, thus:

Scrn$ = SPACE$(80)
FOR X% = 1 TO 80
  MID$(Scrn$, X%, 1) = CHR$(SCREEN(1, X%))
NEXT

An informal timing test that executed these code fragments 100 times using QuickBASIC 4.5 showed
that the second example is nearly twice as fast as the first. Moreover, since BASIC's SCREEN function
is notoriously slow, the actual difference between building a new string and inserting characters into an
existing string is no doubt much greater. 

Integer and Long Integer Assignments

Another facet of compiled BASIC that is probably not immediately obvious is the way that integer and
long integer assignments are handled by the compiler. When many variables are to be assigned the
same value—perhaps cleared to zero—it is often more efficient to assign one of them from that value,
and then assign the rest from the first. To appreciate why this is so requires an understanding of how
BASIC compiles such assignments.

Normally, assigning an integer or long integer variable from a numeric constant requires the same
amount of code as assigning from another variable. The BASIC statement X% = 1234 is compiled to
the following 6-byte assembly language statement.

C7063600D204  MOV WORD PTR [X%],1234
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Assigning the long integer variable Y& requires two such 6-byte instructions—one for the low word
and another for the high word: 

C7063600D204  MOV  WORD PTR [Y&],1234 ;assign the low word
C70638000000  MOV  WORD PTR [Y&+2],0  ;then the high word 

The 80x86 family of microprocessors does not have direct instructions for moving the contents of one
memory location to another. Therefore, the statement X% = Y% is compiled as follows, with the AX
register used as an intermediary.

A13800  MOV  AX,WORD PTR [Y%]     ;move Y% into AX
A33600  MOV  WORD PTR [X%],AX     ;move AX into X%

Assigning one long integer from another as in X& = Y& is handled similarly: 

A13A00    MOV  AX,WORD PTR [Y&]     ;move AX from Y& low
8B163C00  MOV  DX,WORD PTR [Y&+2]   ;move DX from Y& high
A33600    MOV  WORD PTR [X&],AX     ;move X& low from AX
89163800  MOV  WORD PTR [X&+2],DX   ;move X& high from DX 

You may have noticed that instructions that use the AX registers require only three bytes to access a
word of memory, while those that use DX (or indeed, any register other than AX) require four. But
don't be so quick to assume that BASIC is not optimizing your code. The advantage to using separate
registers is that the full value of Y& is preserved. Had AX been used both times, the low word would
be lost when the high word was transferred from Y& to X&.

When assigning one variable to many in a row, BASIC is smart enough to remember which values are
in which registers, and it reuses those values for subsequent assignments. The combination BASIC and
assembly language code shown below was captured from a CodeView session and edited slightly for
clarity. It shows the actual assembly language code bytes generated for a series of assignments.

Plain integer assignments:

A% = 1234
 C7063600D204   MOV  WORD PTR [A%],&H04D2
B% = 1234
 C7063800D204   MOV  WORD PTR [B%],&H04D2
C% = 1234
 C7063A00D204   MOV  WORD PTR [C%],&H04D2
D% = 1234
 C7063C00D204   MOV  WORD PTR [D%],&H04D2
E% = 1234
 C7063E00D204   MOV  WORD PTR [E%],&H04D2

Plain long integer assignments:

V& = 1234
 C7064000D204   MOV  WORD PTR [V&],&H04D2
 C70642000000   MOV  WORD PTR [V&+2],0
W& = 1234
 C7064400D204   MOV  WORD PTR [W&],&H04D2
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 C70642000000   MOV  WORD PTR [W&+2],0
X& = 1234
 C7064800D204   MOV  WORD PTR [X&],&H04D2
 C70642000000   MOV  WORD PTR [X&+2],0
Y& = 1234
 C7064C00D204   MOV  WORD PTR [Y&],&H04D2
 C70642000000   MOV  WORD PTR [Y&+2],0
Z& = 1234
 C7065000D204   MOV  WORD PTR [Z&],&H04D2
 C70642000000   MOV  WORD PTR [Z&+2],0

Assigning multiple integers from another:

A% = 1234
 C7063600D204   MOV  WORD PTR [A%],&H04D2
B% = A%
 A13600         MOV  AX,WORD PTR [A%]
 A33800         MOV  WORD PTR [B%],AX
C% = A%
 A33A00         MOV  WORD PTR [C%],AX
D% = A%
 A33C00         MOV  WORD PTR [D%],AX
E% = A%
 A33E00         MOV  WORD PTR [E%],AX

Assigning multiple long integers from another:

V& = 1234
 C7064000D204   MOV  WORD PTR [V&],&H04D2
 C70642000000   MOV  WORD PTR [V&+2],0
W& = V&
 A14000         MOV  AX,WORD PTR [V&]
 8B164200       MOV  DX,WORD PTR [V&+2]
 A34400         MOV  WORD PTR [W&],AX
 89164600       MOV  WORD PTR [W&+2],DX
X& = V&
 A34800         MOV  WORD PTR [X&],AX
 89164A00       MOV  WORD PTR [X&+2],DX
Y& = V&
 A34C00         MOV  WORD PTR [Y&],AX
 89164E00       MOV  WORD PTR [Y&+2],DX
Z& = V&
 A35000         MOV  WORD PTR [Z&],AX
 89165200       MOV  WORD PTR [Z&+2],DX

The first five statements assign the value 1234 (04D2 Hex) to integer variables, and each requires six
bytes  of  code.  The next  five  instructions  assign the same value to  long integers,  taking two such
instructions for a total of 12 bytes for each assignment. Note that a zero is assigned to the higher word
of  each long integer,  because the full  Hex value being assigned is  actually  &H000004D2. Simple
multiplication shows that the five integer assignments generates five times six bytes, for a total of 30
bytes. The long integer assignments take twice that at 60 bytes total.

But notice the difference in the next two statement blocks. The first integer assignment requires the
usual six bytes, and the second does as well. But thereafter, any number of additional integer variables
will be assigned with only three bytes apiece. Likewise, all but the first two long integer assignments
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are implemented using only seven bytes each. Remembering what values are in each register is yet one
more optimization that BASIC performs as it compiles your program.

Short Circuit Expression Evaluation

Many programming situations require more than one test to determine if a series of instructions are to
be executed or a branch taken. The short example below tests that a string is not null, and also that the
row and column to print at are legal.

IF Work$ <> "" AND Row <= 25 AND Column <= 80 THEN
  LOCATE Row, Column
  PRINT Work$
END IF

When this program is compiled with QuickBASIC, all three of the tests are first performed in sequence,
and the results are then combined to see if the LOCATE and PRINT should be performed. The problem
is that time is wasted comparing the row and column even if the string is null.  When speed is the
primary concern,  you should test  first  for the condition that  is  most likely to  fail,  and then use a
separate test for the other conditions: 

IF Work$ <> "" THEN
  IF Row <= 25 AND Column <= 80 THEN
    LOCATE Row, Column
    PRINT Work$
  END IF
END IF

This separation of tests is called short circuit expression evaluation, because you are bypassing or short
circuiting the remaining tests when the first fails. Although it doesn't really take BASIC very long to
determine if a string is null, the principle can be applied to other situations such as those that involve
file operations like EOF and LOF. Further, as you learned in Chapter 3, a better way to test for a
non-null string is IF LEN(Work$) THEN. However, the point is to perform those tests that are most
likely to fail first, before others that are less likely or will take longer.

Another place where you will find it useful to separate multiple tests is when accessing arrays. If you
are testing both for a legal element number and a particular element value, QuickBASIC will give a
"Subscript out of range" error if the element number is not valid. This is shown below.

IF Element <= MaxEls AND Array(Element) <> 0 THEN

Since QuickBASIC always performs both tests, the second will cause an error if Element is not a legal
value. In this case, you have to implement the tests using two separate statements:

IF Element <= MaxEls THEN
  IF Array(Element) <> 0 THEN
   .
   .
  END IF
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END IF

You  may  have  noticed  the  I  have  referred  to  QuickBASIC  here  exclusively  in  this  discussion.
Beginning with BASIC 7.0, Microsoft has added short circuit testing to the compiler as part of its
built-in decision making process. Therefore, when you have a statement such as this one: 

IF X > 1 AND Y = 2 AND Z < 3 THEN

BASIC PDS substitutes the following logic automatically:

IF X <= 1 THEN GOTO SkipIt
IF Y <> 2 THEN GOTO SkipIt
IF Z >= 3 THEN GOTO SkipIt
 .
 .
SkipIt:

Speaking of THEN and GOTO, it is worth mentioning that the keyword THEN is not truly necessary
when the only thing that follows is a GOTO. That is,  IF X < 1 GOTO Label is perfectly legal,
although the only savings is in the program's source code.

This next and final trick isn't technically a short circuit expression test, but it can reduce the size of
your programs in a similar fashion. Chapter 3 compared the relative advantages of GOSUB routines
and called subprograms, and showed that a subprogram is superior when passing parameters, while a
GOSUB is much faster and smaller. An ideal compromise in some situations is to combine the two
methods.

If you have a called subprogram (or function) that requires a large number of parameters and it is called
many times, you can use a single call within a GOSUB routine. Since a GOSUB statement generates
only three bytes of code each time it is used, this can be an ideal way to minimize the number of times
that the full CALL is required. Of course, GOSUB does not accept parameters, but many of them may
be the same from call to call. In particular, some third-party add-on libraries require a long series of
arguments that are unlikely to change. This is shown below. 

Row = 10
Column = 20
Message$ = "Slap me five"
GOSUB DisplayMsg
 .
 .
DisplayMsg:
CALL ManyParams(Row, Column, Message$, MonType, NoSnow, FGColr, BGColr, _     

HighlightFlag, VideoMode, VideoPage)
RETURN

In many cases you would have assigned permanent values for the majority of these parameters, and it is
wasteful to have BASIC create code to pass them repeatedly. Here, the small added overhead of the
three assignments prior to each GOSUB results in less code than passing all ten arguments repeatedly.

321



Miscellaneous Tips and Techniques

There are many tricks that programmers learn over the years, and the following are some of the more
useful ones I have developed myself, or come across in magazines and other sources.

Formatting and Rounding

One frequent requirement in many programs is having control over how numbers are formatted. Of
course, BASIC has the PRINT USING statement which is adequate in most cases. And Chapter 6 also
showed how to trick BASIC's file handling statements into letting you access a string formatted by
PRINT USING. But there are other formatting issues that are not handled by BASIC directly.

One problem for many programmers is that BASIC adds leading and trailing blanks when printing
numbers on the screen or to a disk file. The leading blank is a placeholder for a possible minus sign,
and is not added when the number is in fact negative. Avoiding the trailing blank is easy; simply use
PRINT STR$(Number). And the easiest way to omit the leading blank for positive numbers is to
use LTRIM$: PRINT LTRIM$(STR$(Number)).

PRINT USING is notoriously slow, because examines each character in a string version of the number,
and reformat the digits while interpreting the many possible options specified in a separate formatting
string. But in many cases all that is really needed is simple right justification. To right-align an integer
value (or series of values) you can use RSET to assign the numbers into a string, and then print that
string as shown below.

Work$ = SPACE$(10)
REST Work$ = STR$(Number)
PRINT TAB(15); Work$

In this case, Work$ could also have been dimensioned as a fixed-length string. Adding leading zeros to
a number is also quite easy using RIGHT$ like this:

PRINT RIGHT$("00000" + LTRIM$(STR$(Number)), 6)

You will need at least as many zeros in the string as the final result requires, less one since STR$
always returns at least one digit. Trailing digits are handled similarly, except you would use LEFT$
instead of RIGHT$.

Rounding numbers is an equally common need, and there are several ways to handle this. Of course,
INT and FIX can be used to truncate a floating point value to an integer result, but neither of these
perform rounding. For that you should use CINT or CLNG, which do round the number to the closest
integer value. For example,  Value = CINT(3.59) will assign 4 to Value, regardless of whether
Value is an integer, single precision, or whatever.
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Some BASICs have a CEIL function, which returns the next higher integer result. That is, CEIL(3) is 3,
but  CEIL(3.01)  returns  the  value  4.  This  function  can  be  easily  simulated  using  Ceil  =
-INT(-Number).

Rounding algorithms are  not  quite  so  simple  to  implement,  as  you can  see  in  the  short  DEF FN
function below.

DEF FnRound# (Value#, Digits%)
  Mult% = 10 ^ Digits%
  FnRound# = FIX((Mult% * Value#) + (SGN(Value#)) * .5#) / Mult%
END DEF

Another important math optimization is to avoid exponentiation whenever possible. Whether you are
using integers or floating point numbers, using  Number ^ 2 and  Number ^ 3 are many times
slower than Number * Number, and Number * Number * Number, respectively.

String Tricks and Minimizing Parameters

There are a few string tricks and issues worth mentioning here too. The fastest and smallest way to
clear a string without actually deleting it is with LSET Work$ = "". Another clever and interesting
string trick lets you delete a string with only nine bytes of code, instead of the usual 13.

In Chapter  6  you learned that  the assembly language routines  within BASIC's runtime library are
accessible if you know their names. You can exploit that by using the B$STDL (string delete) routine,
which requires less code to set  up and call  than the more usual  Work$ = "".  When a string is
assigned to a null value, two parameters—the address of the target string and the address of the null—
are passed to the string assignment routine. But B$STDL needs only the address of the string being
deleted.  You might think that BASIC would be smart enough to see the "" null  and call B$STDL
automatically, but it doesn't. Here is how you would declare and call B$STDL:

DECLARE SUB DeleteStr ALIAS "B$STDL" (Work$)
CALL DeleteStr(Any$)

As with the examples that let you call GET # and PUT # directly, DeleteStr will not work in the QB
environment unless you first create a wrapper subprogram written in BASIC, and include that wrapper
in a Quick Library. And this brings up an important point. Why bother to write a BASIC subprogram
that in turn calls an internal routine, when the BASIC subprogram could just as easily delete the string
itself?  Therefore, the best solution—especially because it's also the easiest—is to write DeleteStr in
BASIC thus:

SUB DeleteStr(Work$)
  Work$ = ""
END SUB

This is an important concept to be sure, because it shows how to reduce the number of parameters
when a particular service is  needed many times.  Other similar situations  are  not hard to envision,
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whereby multiple parameters that do not change from call to call can be placed into a subprogram that
itself requires only one or two arguments.

This technique can be extended to several BASIC statements that use more parameters than might
otherwise be apparent. For example, whenever you use LOCATE, additional hidden parameters are
passed to the B$LOCT routine beyond those you specify. The statement LOCATE X, Y generates 22
bytes of code, even though other called routines that take two parameters need only 13. (Every passed
parameter generates four bytes of code, and the actual CALL adds five more. This is the same whether
the  routine being called is  an  internal  BASIC statement,  a  BASIC subprogram or  function,  or  an
assembly  language  routine).  Therefore,  if  you  use  LOCATE with  two  arguments  frequently  in  a
program,  you  can  save  nine  bytes  for  each  by  creating  a  BASIC  subprogram  that  performs  the
LOCATE:

SUB LocateIt(Row, Column) STATIC
  LOCATE Row, Column
END SUB

Similarly, if you frequently turn the cursor on and off, you should create two subprograms—perhaps
called CursorOn and CursorOff—that invoke LOCATE. Since no parameters are required, the savings
will add up quickly. Calling either of the subprograms below generates only five bytes of code, as
opposed to 18 for the statement LOCATE , , 1 and 20 for LOCATE , , 0. 

SUB CursorOn STATIC
  LOCATE , , 1
END SUB

SUB CursorOff STATIC
  LOCATE , , 0
END SUB

The COLOR statement also requires more parameters than the number of arguments you give. Where
COLOR FG, BG generates 22 bytes of compiled code, CALL ColorIt(FG, BG) creates only 13.
CLOSE is yet another BASIC statement that accepts multiple arguments, and it too requires hidden
parameters. Using CLOSE #X compiles to 13 bytes, and CALL CloseIt(X) is only nine.

The reason that BASIC sends more parameters than you specify is because these routines need extra
information  to  know which  and how many arguments  were  given.  In  the  case  of  LOCATE,  each
argument is preceded with a flag that tells if the next one was given. CLOSE is similar, except the last
parameter tells how many file numbers were specified. Remember, you can use CLOSE alone to close
all open files, or  CLOSE 1, 3, 4 to close only those files numbers. Therefore, BASIC requires
some way to tell the CLOSE statement how many file numbers there are.

Another place where several statements can be consolidated within a single procedure is when peeking
and poking memory. BASIC's PEEK and POKE are limited because they can access only one byte in
memory at a time. But many useful memory locations are in fact organized as a pair of bytes, as you
will see in Chapter 10. Instead of using code to combine or separate the bytes each time memory is
accessed, you can use the following short routines that let you peek and poke two bytes at once.
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DECLARE FUNCTION PeekWord%(Address%)
  PeekWord% = PEEK(Address%) + 256 * PEEK(Address% + 1)
END FUNCTION

DECLARE SUB PokeWord(Address%, Value%)
  POKE Address%, Value% AND 255
  POKE Address% + 1, Value% \ 256
END SUB

Because these routines use BASIC's PEEK and POKE, you still need to use DEF SEG separately. Of
course, the segment could be added as another parameter, and assigned within the routines:

DECLARE FUNCTION PeekWord%(Segment%, Address%)
  DEF SEG = Segment%
  PeekWord% = PEEK(Address%) + 256 * PEEK(Address% + 1)
END FUNCTION

Word Wrapping

A string handling technique you will surely find useful is implementing word wrapping. There are a
number of ways to do this, and the following code shows one that I have found to be very efficient.

DEFINT A-Z
SUB WordWrap (X$, Wide, LeftMargin)
  Length = LEN(X$)   'remember the length
  Pointer = 1        'start at the beginning of the string
  IF LeftMargin = 0 THEN LeftMargin = 1

  'Scan a block of Wide characters backwards, looking for a blank. Stop
  '  at the first blank, or upon reaching the beginning of the string.
  DO
    FOR X = Pointer + Wide TO Pointer STEP -1
      IF MID$(X$, X, 1) = " " OR X = Length + 1 THEN
        LOCATE , LeftMargin
        PRINT MID$(X$, Pointer, X - Pointer);
        Pointer = X + 1
        WHILE MID$(X$, Pointer, 1) = " "
          Pointer = Pointer + 1
        WEND
        IF POS(0) > 1 THEN PRINT
        EXIT FOR
      END IF
    NEXT
  LOOP WHILE Pointer < Length
END SUB

The WordWrap subprogram expects the text for display to be in a single long string. You pass it that
text, a left margin, and a width. You could certainly add enhancements to this routine such as a color
parameter, or the ability to format the text and send it to a printer or disk file. 
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Unusual Ways to Access Display Memory

If you ever tried to print a character in the lower-right corner of the display screen,  you probably
discovered that it cannot be done—as with many BASIC versions—without causing the screen to scroll
up. The only solution I am aware of is to use POKE to assign the character (and optionally its color) to
display memory directly as shown below.

DEF SEG = &HB800     'use &HB000 for a monochrome display    
POKE 3998, 65        'ASCII code for the letter "A"
POKE 3999, 9         'bright blue on black

The second trick also uses display memory in an unconventional manner. All video adapters contain at
least 4096 bytes of on-board memory. Even though a 25 line by 80 column text mode screen uses only
4000 bytes (2000 characters plus 2000 colors), memory chips are built in multiples of 1,024 bytes.
Therefore, you can use the last 96 bytes on the display adapter in your programs. If the adapter supports
multiple video pages, then you can use the last 96 bytes in each 25-line page.

One use for this memory is to provide a way to communicate small amounts of information between
separate programs. When you don't want to structure an application to use CHAIN, the only other
recourse is to use a disk file to pass information between the programs. But if all that is needed is a file
name or drive letter, using a file can be awkward and slow, especially if the program is running from a
floppy disk.

One way to access this video memory is with PEEK and POKE. But PEEK and POKE are awkward
too, and can access only one byte at a time. A better approach is to use an assembly language routine to
copy one contiguous memory block to another location. The MemCopy routine below is designed to do
exactly this.

;MEMCOPY.ASM, copies a block of memory from here to there

.Model Medium, Basic

.Code

MemCopy Proc Uses DS ES SI DI, FromAdr:DWord, ToAdr:DWord, NumBytes:Word 
  Cld               ;copy in the forward direction
  Mov  SI,NumBytes  ;get the address for NumBytes%
  Mov  CX,[SI]      ;put it into CX for copying below

  Les  DI,FromAdr   ;load ES:DI with the source address
  Lds  SI,ToAdr     ;load DS:SI with destination address

  Shr  CX,1         ;copy words instead of bytes for speed
  Rep  Movsw        ;do the copy
  Adc  CX,CX        ;this will set CX to either 0 or 1
  Rep  Movsb        ;copy the odd byte if necessary

  Ret               ;return to BASIC

MemCopy Endp
End
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MemCopy  may  be  declared  and  called  in  two  different  ways.  The  first  uses  SEG  and  is  most
appropriate when you are copying data between variables, for example from a group of elements in one
array to elements in another. The second lets you specify any arbitrary segment and address, and it
requires the BYVAL modifier either in the DECLARE statement, the CALL, or both. Each method is
shown below.

DECLARE SUB MemCopy(SEG AnyVar1, SEG AnyVar2, Numbytes%)    
CALL MemCopy(AnyVar1, AnyVar2, NumBytes%)

DECLARE SUB MemCopy(BYVAL Seg1%, BYVAL Adr1%, BYVAL Seg2%, BYVAL Adr2%, _    
NumBytes%)
CALL MemCopy(SourceSeg%, SourceAdr%, DestSeg%, DestAdr%, NumBytes%) 

You may also use a combination of these, perhaps with SEG for the source argument and BYVAL for
the second.  For example,  to  copy a 20-byte TYPE variable to the area just  past  the end of video
memory on a color display adapter you would do this:

CALL MemCopy(SEG TypeVar, BYVAL &HB800, BYVAL 4000, 20) 

In many cases you may need to use MemCopy in more than one way in the same program. For this
reason it is probably better not to declare it at all. Once a subprogram or function has been declared,
BASIC will refuse to let you change the number or type of parameters. But if you don't include a
declaration at  all,  you are free to use any combination of SEG and BYVAL, and also any type of
variable.

It  is  important to understand that numeric and TYPE variables should be specified using SEG, so
MemCopy will  know the full  address where the variable resides.  You could use a combination of
BYVAL VARSEG(Variable) and BYVAL VARPTR(Variable), but that is not quite as efficient
as SEG. Copying to or from a conventional string using QuickBASIC requires SADD (string address)
instead of VARPTR; far strings in BASIC 7 require SADD, and also SSEG (string segment) instead of
VARSEG.

Rebooting a PC

Another simple trick that is not obvious to many programmers is how to reboot a PC. Although most
PC technical reference manuals show an interrupt service for rebooting, that simply does not work with
most computers. However, every PC has a BIOS routine that is at a fixed address, and which may be
called directly like this:

DEF SEG = &HFFFF
CALL Absolute(0)

The Absolute routine is included in thee QB and QBX libraries that come with BASIC. If a cold boot
with the full memory test and its attendant delay is acceptable, then the code shown above is all that
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you need. Otherwise, you must poke the special value &H1234 in low memory as a flag to the BIOS
routine, so it will know that you want a warm boot instead: 

DEF SEG = 0
POKE &H473, &H12
POKE &H472, &H34
DEF SEG = &HFFFF
CALL Absolute(0)

Integer Values Greater Than 32K

As you learned in Chapter 2, an integer variable can hold any value between -32768 and 32767. When
this range of numbers is considered, the integer is referred to as being a signed number. But the same
range of values can also be treated as unsigned numbers spanning from 0 through 65535. Since BASIC
does not support unsigned integers, additional trickery is often needed to pass values between 32768
and 65535 to assembler routines and DOS and BIOS services you invoke with CALL Interrupt. One
way to do this is to use a long integer first, and add an explicit test for values higher than 32767:

Temp& = NumBytes&
IF Temp& > 32767 THEN
  IntBytes% = Temp& - 65536
ELSE
  IntBytes% = Temp&
END IF

To reverse the process you would test for a negative value: 

IF IntBytes% < 0 THEN
  NumBytes& = IntBytes% + 65536
ELSE
  NumBytes& = IntBytes%
END IF

Although this  method certainly works,  it  is  inefficient  because of the added IF testing.  When you
merely need to pass a variable to a called routine, you can skip this testing and simply pass the long
integer  directly.  This  may appear  counter  to  the rule  that  you must  always pass the same type of
variable that a subroutine expects. But as long as the arguments are not being passed by value using
BYVAL, this method works and adds no extra code.

When a parameter is passed to a subprogram or function, BASIC sends the address of its first byte as 
shown in Figure 9-1.
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Here, B1, B2, and so forth refer to the Bytes 1 through 4 of a long integer variable. Since the assembly 
language routine is expecting a regular integer, it looks at just the first two bytes of the variable. Thus, a
long integer can be used even when a conventional integer is expected. Of course, any excess greater 
than 65535 will be ignored by the routine, since the bits that hold the excess are in the third and fourth 
bytes. 

Benchmarking

Throughout this book I have emphasized the importance of writing code that is as small and fast as
possible. And these goals should be obvious to all but the most novice programmer. But it is not always
obvious how to determine for yourself which of several approaches yields code that is the smallest or
fastest. One way is to use Microsoft CodeView, which lets you count the bytes of assembler code that
are generated. This is how I obtained the byte counts stated throughout this book.

But smaller is not always faster. Further, the code that BASIC generates is not the whole story. In many
cases BASIC makes calls to its runtime library routines, and you would have to trace through those as
well to know the total byte count for a given statement. It is not impossible to trace through the BASIC
runtime using CodeView, but it certainly can be tedious. Many of BASIC's internal routines are very
convoluted—especially those that allocate and deallocate string and other memory. Often it is simpler
to devise a test that executes a series of statements many times, and then time how long the test took.

As an example for this discussion, I will compare two different ways to print three strings in succession
and show how to tell which produces less code, and which is faster. The first statement below prints
each string separately, and the second combines the strings and then prints them as one.

1: PRINT X$; Y$; Z$
2: PRINT X$ + Y$ + Z$

Since the length of each string will certainly influence how long it takes to print them, each of the
strings is first initialized to 80 characters as follows:

X$ = STRING$(80, "X")
Y$ = STRING$(80, "Y")
Z$ = STRING$(80, "Z")
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It is important to understand that the PRINT statement itself will be a factor, since it takes a certain
amount of time to copy the characters from each string to display memory. Worse, if the screen needs to
be scrolled because the text runs past the bottom of the display, that will take additional time. To avoid
the overhead of scrolling, the test program uses LOCATE to start each new print statement at the top of
the screen. Of course, using LOCATE adds further to the overhead, but in this case much less than
scrolling would. To prove this to yourself, disable the line that contains the LOCATE statement. Here's
the complete benchmark program:

CLS
X$ = STRING$(80, "X")    'create the test string
Y$ = STRING$(80, "Y")
Z$ = STRING$(80, "Z")

Synch! = TIMER           'synchronize to TIMER
DO
  Start! = TIMER
LOOP WHILE Start! = Synch!

FOR X = 1 TO 1000        '1000 times is adequate
  LOCATE 1
  PRINT X$; Y$; Z$
NEXT

Done! = TIMER            'calculate elapsed time
Test1! = Done! - Start!

Synch! = TIMER           'as above
DO
  Start! = TIMER
LOOP WHILE Start! = Synch!

FOR X = 1 TO 1000
  LOCATE 1
  PRINT X$ + Y$ + Z$
NEXT

Done! = TIMER
Test2! = Done! - Start!

PRINT USING "##.## seconds using three strings"; Test1!
PRINT USING "##.## seconds using concatenation"; Test2!

Notice the extra step that synchronizes the start  of each test  to BASIC's TIMER function.  As you
probably know, the PC's system time is updated approximately 18 times per second. Therefore, it is
possible that the test loop could begin just before the timer is about to be incremented. In that case the
elapsed time would appear to be 1/18th second longer than the actual time. To avoid this potential
inaccuracy, the DO loop waits until a new time period has just begun. There is still a similar accuracy
loss at the end of the test when Done! is assigned from TIMER. But by synchronizing the start of the
test, the error is limited to 1/18th second instead of twice that.

When you compile and run this program using QuickBASIC 4.5, it will be apparent that the first test is
more than three times faster than the second. However,  with BASIC 7.1—using either near or far
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strings—the second is in fact slightly faster. Therefore, which is better depends on the version of your
compiler, and there is no single best answer. Now let's compare code size.

The disassemblies shown below are valid for both QuickBASIC 4.5 and BASIC 7.1. By counting bytes
you can see that printing the strings using a semicolon generates 27 bytes, while first concatenating the
strings requires 29 bytes.

PRINT X$; Y$; Z$
  B83600          MOV   AX,X$   ;get the address for X$
  50              PUSH  AX      ;pass it on
  9AD125FF4A      CALL  B$PSSD  ;print with a semicolon
  B83A00          MOV   AX,Y$   ;as above for Y$
  50              PUSH  AX
  9AD125FF4A      CALL  B$PSSD
  B83E00          MOV   AX,Z$
  50              PUSH  AX
  9AD625FF4A      CALL  B$PESD  ;print with end of line

PRINT X$ + Y$ + Z$
  B83600          MOV   AX,X$   ;get the address for X$
  50              PUSH  AX      ;pass it on
  B83A00          MOV   AX,Y$   ;get the address for Y$
  50              PUSH  AX      ;pass that on too
  9AD728FF4A      CALL  B$SCAT  ;call String Concatenate
  50              PUSH  AX      ;pass the combined result
  B83E00          MOV   AX,Z$   ;get the address for Z$
  50              PUSH  AX      ;pass it on
  9AD728FF4A      CALL  B$SCAT  ;combine that too
  50              PUSH  AX      ;pass X$ + Y$ + Z$
  9AD625FF4A      CALL  B$PESD  ;print with end of line

Even  though  the  first  example  uses  a  single  PRINT statement,  BASIC treats  it  as  three  separate
commands:

PRINT X$;
PRINT Y$;
PRINT Z$

The second example that concatenates the strings requires slightly more code because of the repeated
calls to the B$SCAT (string concatenate) routine. Therefore, if you are using QuickBASIC it is clear
that printing the strings separately is both smaller and faster. BASIC PDS users must decide between
slightly faster performance, or slightly smaller code.

These  tests  were  repeated  1000 times to  minimize  the  inaccuracies  introduced by the  timer's  low
resolution. Since this method of timing can be off by as much as 1/18th second (55 milliseconds), for
test results to be accurate to 1% the test must take at least 5.5 seconds to complete. In most cases that
much precision is not truly necessary, and other factors such as the time to use LOCATE will prevent
absolute accuracy anyway.

It is important that any timing tests you perform be done after compiling the program to an .EXE file.
The BASIC editor is an interpreter, and is generally slower than a stand-alone program. Further, the
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reduction in speed is not consistent; some statements are nearly as fast as in a compiled program, and
some are much slower.

To obtain more accurate results than those shown here requires some heavy ammunition. I recommend
the Source Profiler from Microsoft. This is a utility program that times procedure calls within a running
program to an accuracy of one microsecond. The Source Profiler  supports  all  Microsoft  languages
including QuickBASIC and BASIC PDS.

To time a program you must compile and link it using the /zi and /co CodeView switches. This tells
BASIC and LINK to add symbolic information that shows where variables and procedures are located,
and also relates each logical line of source code to addresses in the .EXE file. The Source Profiler then
uses this information to know where each source-language statement begins and ends.

You should also understand that there's a certain amount of overhead associated with the timing loop
itself. Any FOR/NEXT loop requires a certain amount of time just to increment the counter variable
and compare it to the ending value. Fortunately, this overhead can be easily isolated, using an empty
loop  with  the  same number  of  iterations.  The  short  complete  program that  follows  shows this  in
context.

Synch! = TIMER
DO
  Start! = TIMER
LOOP WHILE Start! = Synch!

FOR X& = 1 TO 50000
NEXT

Done! = TIMER
Empty! = Done! - Start!
PRINT USING "##.## seconds for the empty loop"; Empty!

Synch! = TIMER
DO
  Start! = TIMER
LOOP WHILE Start! = Synch!

FOR X& = 1 TO 50000
  X! = -Y!
NEXT

Done! = TIMER
Assign! = Done! - Start!
PRINT USING "##.## seconds for the assignments"; Assign!

Actual! = Assign! - Empty!
PRINT USING "##.## seconds actually required"; Actual!

Summary

In this chapter you learned a variety of programming shortcuts and other techniques. You saw firsthand
how it is more efficient to avoid using CHR$ and other BASIC functions repeatedly, in favor a single
call  ahead of time when possible.  In a similar vein,  you can reduce the size of your programs by
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consolidating multiple instances of UCASE$, MID$, LTRIM$, and other functions once before a series
of IF tests, rather than use them each time for each test.

You also learned that assigning multiple variables in succession from another often results in smaller
code than assigning from the same numeric constant. Short circuit expression evaluation was described,
and examples showed you how that technique can improve the efficiency of a QuickBASIC program.
But since BASIC PDS already employs this optimization, multiple AND conditions are not needed
when using that version of compiler.

This chapter explained the importance of reducing the number of parameters you pass to a subprogram
or function, and showed how you can use GOSUB to invoke a central handler that in turn calls the
routine. Likewise, when using BASIC statements such as LOCATE, COLOR, and CLOSE that require
additional arguments beyond those you specify, a substantial amount of code can be saved by creating a
BASIC subprogram wrapper. Examples for turning the cursor on and off were shown, and these can
save 13 and 15 bytes per use respectively.

Several programming techniques were shown, including a word wrap subprogram, a numeric rounding
function, and a simple way to reboot the PC. You also learned how small amounts of data can be safely
stored in the last 96 bytes of video memory, perhaps for use as a common data area between separately
run and non-chained programs.

Finally, this chapter included a brief discussion of some of the issues surrounding benchmarking, and
explained  how  to  obtain  reasonably  accurate  statement  timings.  To  determine  the  size  of  the
compiler-generated code requires disassembling with CodeView.

Chapter 10 continues with a complete list of key addresses in low memory you are sure to find useful, 
and discusses each in depth along with accompanying examples.
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10
Key Memory Areas in the PC

Two very important BASIC keywords that are sadly neglected by many programmers are PEEK and
POKE. Most people understand that these let you read from and write to memory locations. But what
are they really good for?  The whole point of a high-level language like BASIC is to avoid such direct
memory access, and to many programmers these commands may seem like an enigma.

In most  cases,  you don't  need to  access  memory with  PEEK and POKE.  Unlike  C and assembly
language that require direct memory operations to process strings and arrays, BASIC includes a full
complement of commands for this. However, there is at least one important use for PEEK and POKE
that cannot be accomplished in any other way: accessing low memory.

The portion of memory in every PC that begins at Hex address 0000:0400 is called the  BIOS Data
Area, and it contains much useful information. For example, the equipment word at address &H410
tells how many diskette drives are installed, and how many parallel and serial ports there are. The
keyboard status flags at address &H417 can be read (and written), to reflect whether the Caps Lock and
NumLock states are active.

In this chapter I will describe all of the low memory locations that are relevant to a BASIC program,
and present numerous practical examples to show how this data can be utilized. This is by no means a
complete list of every BIOS data address that is available in the PC. Rather, I have purposely limited it
to those that I have found useful.

Improving PEEK and POKE

One potential limitation that needs to be addressed first is how to access full words of data. BASIC's
PEEK and POKE operate on single bytes only, and reading or writing two bytes at a time is a messy
proposition at best.

Chapter  9  introduced  a  pair  of  routines  called  PeekWord  and  PokeWord,  that  allowed  accessing
memory a word at a time. In the context those were presented, a fair amount of code could be saved by
consolidating the necessary code into a subprogram or function. But in the interest of speed and even
further code size reductions, the following assembly language routines are better still.

;PEEKPOKE.ASM, simplifies access to full words

.Model Medium, Basic

.Code

PeekWord Proc Uses ES, SegAddr:DWord
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  Les  BX,SegAddr     ;load the segment and address
  Mov  AX,ES:[BX]     ;read the word into AX
  Ret                 ;return to BASIC
PeekWord Endp

PokeWord Proc Uses ES, SegAddr:DWord, Value:Word
  Les  BX,SegAddr     ;load the segment and address
  Mov  AX,Value       ;and the new value to store there
  Mov  ES:[BX],AX     ;write the value into memory
  Ret                 ;return to BASIC
PokeWord Endp
End

Both of these routines expect the parameters to be passed by value, for faster speed and smaller code.
Therefore, you will declare them as follows:

DECLARE FUNCTION PeekWord%(BYVAL Segment%, BYVAL Address%)
DECLARE SUB 
  PokeWord(BYVAL Segment%, BYVAL Address%, BYVAL Value%) 

Then to read a word of memory,  say,  the address of the LPT1 printer  adapter at  address &H408,
PeekWord would be invoked like this:

LPT1Addr% = PeekWord%(0, &H408)

And to write the letter "A" in the lower left corner of a color display screen in white on blue you could
use PokeWord, thus:

CALL PokeWord(&HB800, 3998, &H1741)

Notice that PeekWord returns a negative value for numbers greater than 32767. This is normal,  as
explained in Chapter 2. However, the same negative value that PeekWord returns can be used as an
argument to PokeWord with the correct results.

Low Memory Addresses

The sections that follow are organized by category, since this is how low memory is arranged in the PC.
That is, one section discusses the RS-232 communications data area, the next shows the portion of
memory used  by the  printer  adapters,  and so forth.  Each address  is  listed  in  ascending order;  by
convention, Hex notation is used exclusively for these addresses. In all of the examples shown here,
you will use a segment value of zero.

It is important to understand that besides memory addresses that are accessed with PEEK and POKE
(or in this case their full-word equivalents), the IBM PC family also has a series of input and output
ports. These ports are accessed using INP and OUT commands instead of PEEK and POKE. I mention
this here because ports are referred to in several places in the discussions that follow. In particular, the
communications ports that are exchanged in the next section are in fact port numbers, and not memory
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addresses. Some useful port numbers are given at the end of this chapter, along with code examples that
show how to read from and write to them.

Table 10-1 provides a summary of all the low memory addresses that are described in this chapter.

Address Meaning

&H400 2 bytes, COM1 port number

&H402 2 bytes, COM2 port number

&H404 2 bytes, COM3 port number

&H406 2 bytes, COM4 port number

&H408 2 bytes, LPT1 port number

&H40A 2 bytes, LPT2 port number

&H40C 2 bytes, LPT3 port number

&H40E 2 bytes, LPT4 port number

&H410 2 bytes, Equipment List

&H413 2 bytes, installed memory (K)

&H417 2 bytes, keyboard status

&H418 2 bytes, enhanced keyboard status

&H41A 2 bytes, keyboard buffer head pointer

&H41C 2 bytes, keyboard buffer tail pointer

&H41E 30 bytes, keyboard buffer

&H43F 1 byte, diskette motor on indicator

&H440 1 byte, diskette motor countdown timer

&H449 1 byte, current video mode
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Address Meaning

&H44A 2 bytes, current screen width (columns)

&H44C 2 bytes, current video page size (bytes)

&H462 1 byte, current video page number

&H463 2 bytes, CRT controller port number

&H46C 4 bytes, long integer system timer count

&H478 4 bytes, LPT1 - LPT4 timeout values

&H484 1 byte, EGA/VGA screen height (rows)

&H485 2 bytes, character height (scan lines)

&H487 1 byte, EGA/VGA Features bits

&H4F0 16 bytes, Inter-Application Area

&H500 1 byte, PrtSc busy flag

&H504 1 byte, active drive for one-diskette PC

Table 10-1: Key low memory addresses in the PC.

 

Communications Port Addresses

The  four  words  starting  at  address  &H400  hold  the  port  numbers  for  each  installed  RS-232
communications adapter. For example, the port number for COM1 is contained in the word at address
&H400, and the port number for COM3 is at address &H404. Because these port numbers are words
rather than bytes, the COM1 port number is contained in both &H400 and &H401. Thus, COM2 starts
at address &H402, and COM3 starts at &H404.
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BASIC allows you to open only COM ports 1 and 2; however by exchanging these addresses you can
substitute ports 3 and 4 if necessary. The complete program that follows first swaps the port numbers
for COM1 and COM3, and then opens COM1 for output. Since the port numbers are swapped, it is
actually COM3 that is being opened.

DEFINT A-Z
DECLARE FUNCTION PeekWord% (BYVAL Segment, BYVAL Address)
DECLARE SUB PokeWord (BYVAL Segment, BYVAL Address, BYVAL Value) 
COM1 = PeekWord%(0, &H400)    'save COM1 port number
COM3 = PeekWord%(0, &H404)    'save COM3 port number
CALL PokeWord(0, &H400, COM3) 'assign COM3 to COM1
CALL PokeWord(0, &H404, COM1) 'and then COM1 to COM3

OPEN "COM1:1200,N,8,1,RS,DS" FOR RANDOM AS #1
PRINT #1, "ATDT 1-555-1212"   'dial information
CLOSE #1

CALL PokeWord(0, &H400, COM1) 'restore the original values 
CALL PokeWord(0, &H404, COM3)

Printer Port Addresses

The four printer port numbers start at address &H408, and they are similar to those used to hold the
communications ports and may also be exchanged if necessary. For example, if you have a program
that uses LPRINT commands, all printed output will be sent to LPT1. If at some later time you want to
use the same program with LPT2, you can exchange the port numbers instead of having to rewrite the
program. A short code fragment that does this is shown following.

DEFINT A-Z
DECLARE FUNCTION PeekWord% (BYVAL Segment, BYVAL Address)
DECLARE SUB PokeWord (BYVAL Segment, BYVAL Address, BYVAL Value)  
LPT1 = PeekWord%(0, &H408)    'save LPT1 port number
LPT2 = PeekWord%(0, &H40A)    'save LPT2 port number
CALL PokeWord(0, &H408, LPT2) 'assign LPT2 to LPT1
CALL PokeWord(0, &H40A, LPT1) 'and LPT1 to LPT2

LPRINT "This is printed on LPT2"
CALL PokeWord(0, &H408, LPT1) 'restore the original values 
CALL PokeWord(0, &H40A, LPT2)
LPRINT "And now we're back to LPT1"    'prove it worked

Like the communications port addresses, each printer port address is a full word, so while the first is
located at address &H408, the second is at &H40A. You will also find PeekWord useful because it does
not require you to change the current DEF SEG setting. Although there is no harm in assigning a new
DEF SEG value in most cases, it is not easy to restore it to the original setting. Therefore, when writing
reusable  subprograms  and  functions  that  need  to  access  memory,  you  don't  have  to  worry  about
affecting a subsequent PEEK or BLOAD in the main program.

System Data
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One of the most valuable data items in low memory is the equipment list in the word starting at address
&H410. The information contained here is bit coded, to indicate which and how many peripherals are
installed in the host PC. Figure 10-1 shows the organization of this word. Bits not identified are either
reserved, or not particularly useful. 

Because the data in this word is bit coded, you must use AND to extract the necessary information. For
example, to see if a math coprocessor is installed you must turn off all but bit 1, and see if the result is
zero or not:

IF PeekWord%(0, &H410) AND 2 THEN
  PRINT "A coprocessor is installed."
ELSE
  PRINT "Sorry, no coprocessor detected."
END IF

This brings up an important point, because it is not immediately obvious what values you should use to
isolate the various bits in a word. It would be terrific if Microsoft BASIC offered the ability to handle
binary values directly. The Microsoft Macro Assembler allows this, as does PowerBasic. In the absence
of &B and a BIN$ function, the following short function can be used to determine the correct integer
value for a given sequence of binary bits.

FUNCTION Bin% (Bit$) STATIC
  Temp& = 0
  Length = LEN(Bit$)
  FOR X = 1 TO Length
    IF MID$(Bit$, Length - X + 1, 1) = "1" THEN
      Temp& = Temp& + 2 ^ (X - 1)
    END IF
  NEXT
  IF Temp& > 32767 THEN
    Bin% = Temp& - 65536
  ELSE
    Bin% = Temp&
  END IF
END FUNCTION

Given a string of binary digits of the form "01011001", the Bin function returns an equivalent integer
value. You could add this function to your programs, or use it to determine constant values ahead of
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time. For example, to determine the number of diskette drives that are installed requires isolating bits 6
and 7. This is simple in assembly language, where you can specify an AND mask using 11000000b as a
value. The example below obtains the equipment word, and then uses the Bin function to disable all but
bits 6 and 7.

Equipment = PeekWord%(0, &H410) 
Floppies = 1 + (Equipment AND Bin%("11000000")) \ 64 
PRINT Floppies; "diskette drive(s) installed" 

 
Although the Bin function is used in the code, I recommend that you create a simple test program first,
to determine the value of 11000000 (192) once ahead of time. Then, the Bin function can be omitted
from the final program and the second line would be changed as follows:

Floppies = 1 + (Equipment AND 192) \ 64

Notice the use of parentheses  to  force BASIC to combine Equipment  and the number 192 before
dividing by 64 with AND. If these are omitted BASIC will instead combine Equipment with the result
of 192 divided by 64, which is not correct.

One final technique you should understand is how to shift bits into the correct position to obtain the
actual value the bits represent. Treated as bits alone, the number of diskette drives is represented as 00,
01, 10, or 11, and the decimal equivalents for these binary numbers are 0, 1, 2, and 3. But because of
their positioning in the equipment word, the bits must be shifted to the right six places. After all, the
value 11000000 (192) is certainly not the same as the value 11 (3).

This is handled simply and elegantly using integer division as shown. To shift a number right one
position divide it by 2; to shift right 2 places divide by 4, and so forth. Since the diskette bits need to be
shifted six places, the equipment variable is divided by 64 after AND is used to mask off the unrelated
bits. Likewise, to shift bits left you can multiply by 2, 4, 8, and so forth. The number to use when
dividing or multiplying can also be determined by raising 2 to the number of bits power. For example,
to shift a number right five places you would divide by 2 ^ 5 = 32.

A problem arises when dealing with the highest order bit, because to BASIC this bit implies a negative
number. Therefore, when bit 15 is set, dividing will not produce the expected results. One workaround
that is admittedly clumsy is to test that bit explicitly, then mask it off and shift the bits as needed, and
finally use an IF test to see if the bit had been set. The only place this is necessary in the equipment list
is when reading the number of parallel printers that are present. The first example below reports the
number of serial ports, and the second tells how many parallel ports are installed.

Equipment = PeekWord%(0, &H410)
Serial = (Equipment AND Bin%("11000000000")) \ 512
PRINT Serial; "serial port(s) installed"

IF Equipment AND Bin%("1000000000000000") THEN
  HiBitSet = -1
END IF
Parallel = (Equipment AND Bin%("0100000000000000")) \ 16384 IF HiBitSet THEN 
Parallel = Parallel + 2
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PRINT Parallel; "parallel port(s) installed"

In the interest of completeness I should point out that it is not strictly necessary to manipulate bit 15
when accessing the equipment word. Since none of the information straddles a byte boundary, BASIC's
PEEK can in fact be used to read just the high byte. Since a byte value is never higher than 255, the
entire issue of saving and then masking that bit can be avoided. But there are other situations you may
encounter where an entire word must be processed and the highest bit may be set.

The final useful item in the equipment word is the initial video mode. I've seen many programmers
read use information to determine if a color or monochrome monitor is installed like this:

DEF SEG = 0
IF (PEEK(&H410) AND &H30) = &H30 THEN
  ' monochrome
ELSE
  ' color
END IF

There are two problems with this approach. The most serious is that this reflects the monitor that was
active when the PC was first powered up. These days, many people have two monitors connected to
their PC, and you usually need to know which is currently active. The other problem is this requires
more code than the better method I showed in Chapter 6 which reads the port address of the currently
active video adapter:

DEF SEG = 0
IF PEEK(&H463) = &HB4 THEN
  ' monochrome
ELSE
  ' color
END IF

Besides the equipment word at address &H410, another word at address &H413 holds the amount of
memory that is installed in Kilobytes. Note that this word does not reflect any extended or expanded
memory that may be present. Also note that a much better indicator of how much memory is actually
available to a program is BASIC's FRE(-1) function. The short code fragment below shows how to
determine the total DOS-accessible memory that is installed.

TotalK = PeekWord%(0, &H413)
PRINT TotalK; "K Bytes present in this PC."

Keyboard Data

As with the equipment word, the keyboard data area also maintains bit-coded information. However,
this word indicates the setting of the various keyboard shift states. Unlike many of the other addresses
in the BIOS data area, some of these bits may be written to as well as read from.
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The byte at address &H417 shows the current status of all of the shift keys, and the upper four bits may
be either read or written. The remaining bits in this byte should not be written to, nor should you alter
any of the bits in the next byte at address &H418. Figure 10-2 shows the meaning of each bit in the
byte at  address &H417, and Figure 10-3 shows the bits  at  address &H418 that relate to  extended
keyboards only.

The various flags in the upper four bits at address &H417 are toggled on and off by the BIOS each time
the corresponding keys are pressed. For example, bit 6 is set while the Caps Lock is active, and bit 5 is
clear when Num Lock is not in effect. Note, however, that the Insert flag is of no practical use, and you
should not rely on that bit in your programs. If you are writing an input routine, or using the one shown
in Chapter 6, you should keep track of the insert status manually.

The lower four bits indicate the current state of the various shift keys, and they are set only while the
associated key is actually being pressed. Bits in the next word at address &H418 let you determine
which Alt and Ctrl keys are pressed, for keyboards that have more than one of those keys. In most cases
you will probably just want to know if these keys are active, and not distinguish between the left and
the right key. Therefore, you will usually ignore the extended keyboard information, unless you need to
detect the SysReq key.
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As with the equipment list, you will use a combination of PeekWord (or PEEK) to read all of the flags,
and  then  use  AND  to  isolate  just  those  bits  you  care  about.  Because  there  is  only  one  bit  that
corresponds to each keyboard state flag, it is not necessary to divide or multiply to convert multiple bits
into a number.

The examples below show how to test each of the bits in the byte at address &H417, without regard to
the extra Ctrl and Alt key information contained at address &H418.

CLS
PRINT "Press the various Shift and Lock keys, ";
PRINT "then press Escape to end this madness."
COLOR 0, 7

DO
  Status = PeekWord%(0, &H417)

  LOCATE 10, 1
  IF Status AND 1 THEN
    PRINT "RightShift"
  ELSE
    GOSUB ClearIt
  END IF

  LOCATE 10, 11
  IF Status AND 2 THEN
    PRINT "Left Shift"
  ELSE
    GOSUB ClearIt
  END IF
   
  LOCATE 10, 21
  IF Status AND 4 THEN
    PRINT "Ctrl key"
  ELSE
    GOSUB ClearIt
  END IF
  LOCATE 10, 31
  IF Status AND 8 THEN
    PRINT "Alt key"
  ELSE
    GOSUB ClearIt
  END IF
  
  LOCATE 10, 41
  IF Status AND 16 THEN
    PRINT "ScrollLock"
  ELSE
    GOSUB ClearIt
  END IF

  LOCATE 10, 51
  IF Status AND 32 THEN
    PRINT "Num Lock"
  ELSE
    GOSUB ClearIt
  END IF

  LOCATE 10, 61
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  IF Status AND 64 THEN
    PRINT "Caps Lock"
  ELSE
    GOSUB ClearIt
  END IF
   
  LOCATE 10, 71
  IF Status AND 128 THEN
    PRINT "Insert"
  ELSE
    GOSUB ClearIt
  END IF

LOOP UNTIL INKEY$ = CHR$(27)
COLOR 7, 0
END

ClearIt:
  COLOR 7, 0
  PRINT SPACE$(10);
  COLOR 0, 7
  RETURN

As you can see, to read a single bit you use AND to isolate it from the rest, and then test if the result is
non-zero. Setting a bit requires slightly more work, because it is important not to disturb the other bits
in that byte. This requires that you first read the current information, change only the bit or bits of
interest, and then write the modified data back to the same location. The next short example shows how
to turn the CapsLock state on and then off again.

CurStatus = PeekWord%(0, &H417)
NewStatus = CurStatus OR Bin%("1000000")
CALL PokeWord(0, &H417, NewStatus)

PRINT "Press a key to turn off CapsLock"
WHILE INKEY$ = "": WEND

NewStatus = NewStatus AND Bin%("10111111")
CALL PokeWord(0, &H417, NewStatus)

Notice the difference between how OR is used in the first example, and how AND is used in the second
one. In the first case we want to set a bit, so only that bit is specified in the binary mask. The remaining
bits stay the same as they were—if they are already set then OR will leave them that way. But to turn
off the CapsLock bit requires that all of the mask bits be set; except the one you wish to force off.
Other bits that were already on will remain on after being combined with AND and 1. 

The Keyboard Buffer

The next group of low memory keyboard addresses relate to the keyboard buffer. As you undoubtedly
know, every PC has a keyboard buffer that can hold up to fifteen keystrokes. When a program is off
doing something and is unable to read the keyboard, the BIOS keyboard routines will store keys that
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have been typed. Then, when the program finally gets around to reading the keyboard, they are waiting
there to be read. The keyboard buffer is therefore also called the type-ahead buffer.

A series of 34 bytes are set aside for the keyboard buffer. Two words (four bytes) are used to hold the
current head and tail pointers that show where the next key will be read from, and where the next will
be stored. The current head address is stored at address &H41A and the tail at address &H41C. Thirty
additional bytes are used to store the actual keystrokes, with two bytes used for each. The keyboard
buffer is called a circular buffer, because the start and end points are constantly revolving.

When a PC is first powered up, the head of the buffer holds the address &H41E, which is the start of
the buffer memory area. The tail is also initially set to that same address, until a key is pressed. When
that happens, the tail pointer is advanced by 2, and the character and its scan code are placed into the
buffer. Each time a new key is pressed the character and scan code are added to the end of the buffer
and the tail pointer is advanced by two; each time a key is read by an application the word at the
current head is returned and the head pointer is advanced.

Note that the head and tail addresses assume a segment of &H40, rather than zero. Therefore, the actual
values  stored  range  from &H1E through  &H3A rather  than  &H41E through  &H43A.  Of  course,
address 0000:041E is the same as address 0040:001E, and you can think of the buffer address either
way. I usually treat all of low memory as being located in segment 0, because that can often save a byte
of code. BASIC (or assembly language, for that matter) can pass the number zero by value using only
three bytes, compared to the four bytes needed to pass any other number.

The program below shows how to determine the number of keys that are currently pending in the
buffer, and also which one will be returned next. 

CLS
PRINT "You have two seconds to press a few keys..."
Pause! = TIMER
WHILE Pause! + 2 > TIMER: WEND

BufferHead = PeekWord%(0, &H41A)
BufferTail = PeekWord%(0, &H41C)

NumKeys = (BufferTail - BufferHead) \ 2
IF NumKeys < 0 THEN NumKeys = NumKeys + 16
PRINT "There are"; NumKeys; "keys pending in the buffer."

PRINT "The next key waiting to be read is ";
NextKey = PeekWord%(&H40, BufferHead)
IF NextKey AND &HFF THEN
  PRINT CHR$(34); CHR$(NextKey AND &HFF); CHR$(34)
ELSE
  PRINT "Extended key scan code"; NextKey \ 256
END IF

This program starts by waiting two seconds giving you a chance to press a few keys. It then reads the
buffer head and tail pointers, and from that calculates the number of keys that are pending in the buffer.
With a circular buffer the head address may be higher the tail address, so a separate test is needed to
account for that.
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Next, the word at the head of the buffer is retrieved, which indicates the next available key. Since the
head and tail  pointers assume segment  &H40, I  used that  instead of segment 0.  PeekWord%(0,
&H41E) produces less code than PeekWord%(&H40, &H1E); however, PeekWord%(0, &H400
+ BufferHead) is  worse  than  PeekWord%(&H40, BufferHead) because  of  the  addition
needed.

Data in the keyboard buffer is always a full word, and it is up to you to determine if it is a normal
ASCII key or an extended key's scan code. A normal key is indicated with a non-zero low byte, and the
high byte then holds the physical hardware scan code which can usually be ignored. If the low byte
instead holds a value of zero, it is an extended key and the scan code in the high byte indicates which
one. Therefore, the BASIC statement  NextKey AND &HFF masks the high byte, to test if the low
byte is non-zero.

If the key is extended, then NextKey \ 256 returns the value in the high byte. This is similar to the
earlier examples that shifted bits to the right by dividing. Unlike the earlier tests that examined only
some of the bits in the equipment flag, we are interested in all of the bits in the upper byte. Dividing by
256 copies the upper byte to the lower byte, thus discarding the lower byte entirely.

You  should  also  refer  back  to  the  StuffBuffer  program  shown  in  Chapter  6,  which  accesses  the
keyboard buffer directly and inserts new keystrokes. 

Diskette Data
There are several bytes in low memory that relate to the floppy and fixed disks in your PC, but most of
them  are  best  left  alone.  One  exception,  however,  is  the  diskette  drive  motor  timeout  duration.
Whenever a diskette drive is accessed, DOS first turns on the motor, and then waits a second or two
until the motor has come up to speed. Once DOS is certain that the disk speed is correct, reading and
writing are allowed.

Because of the time it takes the diskette to become ready, DOS also keeps the motor running for two
more seconds after a read or write has been completed. This way, if another request comes along within
that time, further delays can be avoided because the motor is already running. If you know that the data
your program is accessing is on a floppy disk and there may be pauses in the reading or writing, you
can force the motor to stay on longer than the normal two seconds.

The byte at address &H440 controls the motor hold time, and its value is decremented at every system
timer tick, every 1/18th second. When DOS has finished accessing a diskette, it places a value into this
memory location. And when the value is decremented to zero the motor is turned off. The current motor
on/off state is reflected by the byte at address &H43F. The program that follows shows how you can
modify the timeout value by poking a  new, higher value into address &H440 immediately after a
command that accesses the disk.

PRINT "Place a diskette in drive A and press a key ";
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WHILE INKEY$ = "": WEND
FILES "A:*.*"   'this starts the motor

DEF SEG = 0
POKE &H440, 91  'force drive motor on for five seconds
DO
  LOCATE 10, 1, 0
  PRINT PEEK(&H43F),
  PRINT PEEK(&H440)
LOOP WHILE PEEK(&H440)

BEEP            'watch the diskette light go out when you hear the beep 

The value you store at address &H440 is the number of timer ticks that are to elapse before the motor is
turned off. Since a new timer tick occurs every 18.2 seconds, you will multiply the number of seconds
times this value using Value% = Seconds * 18.2.

Display Adapter Data

As with the diskette data area, a lot of information is available that pertains to the video display, and
most of it is of little use in an application programming context. Therefore, I will discuss only some of
this data.

The byte at address &H449 holds the current video mode. Unfortunately, there is no easy way to relate
the information in this byte to the current BASIC SCREEN setting. Table 10-2 shows all of the possible
values that might be present.

Video Mode Description

0 40 by 25 16-color text

1 40 by 25 16-color text, with color burst

2 80 by 25 16-color text

3 80 by 25 16-color text, with color burst

4 320 by 200 pixels 4-color graphics

5 320 by 200 pixels 4-color

6 640 by 200 pixels 2-color

7 80 by 25 monochrome text

13 320 by 200 pixels 16-color graphics

14 640 by 200 pixels 16-color graphics
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Video Mode Description

15 640 by 350 pixels monochrome EGA graphics

16 640 by 350 pixels 16-color graphics

17 640 by 480 pixels 2-color graphics

18 640 by 480 pixels 16-color graphics

19 320 by 200 pixels 256-color graphics

Table 10-2: The video mode value at Hex address 0000:0449

Since you will always have set the video mode yourself with a SCREEN statement, there is little reason
to have to read the current mode manually.

The word at address &H44A tells how many columns are on the display,  and the word at  address
&H44C holds the total size of the screen in bytes. In a normal 80 column by 25 line screen mode, the
value at address &H44C will be 4096, even though the screen can hold only 4000 characters.

The byte at address &H462 holds the current video page number, starting at page 0. Please understand
that BASIC lets you set pages individually for writing to and displaying, and the page reported here is
that which is visible on the monitor.

We have already looked at the data at address &H463, which holds the CRT controller port address.
Although this address is a full word, only the lower byte needs to be examined to know the type of
display that is active. If the byte value at address &H463 is &HB4, then a monochrome monitor is
connected and being used. If a color adapter is active the value at this byte will instead be &HD4.

System Timer Data

Every 18th second the BIOS timer generates an interrupt that increments the master system timer count
at address &H46C. This counter is stored as a four-byte long integer; the count is initialized to zero at
midnight, and increases to a value of just over one 1.5 million at 11:59:59 pm.

In some cases using the BIOS timer count directly  can help to reduce the size of your programs,
because BASIC's TIMER requires floating point math. Chapter 9 discussed some of the issue involved
in benchmarking a program, and the examples there used TIMER to know when a new 1/18th second
period has just started and how long a sequence of commands took. The following short program times
a long integer assignment within a FOR/NEXT loop, and it uses the PeekWord function to access the
BIOS timer count directly. 

Synch = PeekWord%(0, &H46C)
DO
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  Start = PeekWord%(0, &H46C) 
LOOP WHILE Synch = Start 
 
FOR X& = 1 TO 70000 
  Y& = X& 
NEXT 
 
Done = PeekWord%(0, &H46C) 
PRINT Done - Start; "timer ticks have elapsed" 

Note that it is possible for this program to report an incorrect elapsed time, since it considers only the
lower of the two timer words. If the count exceeded 65,535 during the course of the timing, the lower
word will have wrapped around to a value of zero. An enhancement to this technique would therefore
be to create a PeekLong% function that returns the entire four bytes in one operation. You could write
such a function in assembly language, or use BASIC like this:

FUNCTION PeekLong& (Segment%, Address%) STATIC
  PeekLong& = PeekWord%(Segment%, Address%) + 65536 * _
    PeekWord%(Segment%, Address% + 2)
END FUNCTION

Here, the PeekWord function is used to do most of the work, and the two words are combined into a
single long integer. When many timing operations are needed using these functions can increase the
speed of  your  programs,  as  well  as  help  to  avoid  the inclusion of  the  floating  point  math  library
routines.

Printer Timeout Data

Whenever data is sent to a parallel printer it is routed through a BIOS service that handles the actual
communications with the printer hardware. If the printer is turned off or disconnected, the BIOS can
detect that immediately, and report the error to the calling program. But when the printer is turned on
but deselected (off-line) or if it has run out of paper, the BIOS waits for a certain period of time before
returning with an error condition. This gives the operator a chance to fix the problem.

The amount of time the BIOS waits varies from PC to PC, and even between different models of the
same brand. The original IBM PC waited for only a very short time, and would occasionally report an
error incorrectly when used with very slow printers. Modern PCs wait as long as two minutes before
timing out, which is more than enough time to reload a new ream of paper. Unfortunately, if you want
to test if a printer is ready before using it, your program may appear to hang if the printer is disabled.

Although BASIC provides ON ERROR to trap for printer errors, many programmers prefer to avoid
ON ERROR because it makes the program larger and run more slowly. Also, ON ERROR cannot avoid
the long wait the BIOS imposes. There are several solutions to this problem.

One is to print a flashing message at the bottom of the screen that says something like, "Turn on the
printer!" immediately before printing, and then clear the message afterwards:
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LOCATE 25, 1
COLOR 23
PRINT "Turn on the printer!";
LPRINT Some$
COLOR 7
PRINT SPC(20)

If the printer is in fact on line and ready, the message will be displayed and cleared so quickly that it is
not likely to be noticed. Otherwise, the operator will see the message and take the appropriate action.

This technique can be enhanced to instead test the printer, before sending any data. The most reliable
way I have found to test a printer is to first send it a CHR$(32) space character, and if that is accepted
print a CHR$(8) backspace to cancel the original space. A further enhancement alters the BIOS printer
timeout values stored beginning at address &H478. The combined demonstration and function that
follows performs this  service using CALL Interrupt  to  circumvent  BASIC's normal  error handling
routine.

DEFINT A-Z
DECLARE SUB INTERRUPT (IntNo, InRegs AS ANY, OutRegs AS ANY) 
DECLARE FUNCTION LPTReady% (LPTNumber)

'$INCLUDE: 'REGTYPE.BI'

LPTNumber = 1

IF LPTReady%(LPTNumber) THEN
  PRINT "The printer is on-line and ready to go."
ELSE
  PRINT "Sorry, the printer is not available."
END IF
END

FUNCTION LPTReady% (LPTNumber) STATIC
  DIM Regs AS RegType                'for CALL INTERRUPT
  LPTReady% = 0                      'assume not ready

  Address = &H477 + LPTNumber        'LPT timeout address
  DEF SEG = 0                        'access segment zero
  OldValue = PEEK(Address)           'save current setting
  POKE Address, 1                    '1 retry

  Regs.AX = 32                       'first print a space
  Regs.DX = LPTNumber - 1            'convert to 0-based
  CALL INTERRUPT(&H17, Regs, Regs)   'print the space

  Result = (Regs.AX \ 256) OR 128    'get AH, ignore busy
  Result = Result AND 191            'and acknowledge
  IF Result = 144 THEN               'it worked!
    Regs.AX = 8                      'print a backspace
    CALL INTERRUPT(&H17, Regs, Regs) '  to undo CHR$(32)
    LPTReady% = -1                   'return success
  END IF

  POKE Address, OldValue             'restore original
                                     '  timeout value
END FUNCTION
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There are several important points worth mentioning here. First, you must never use zero for the printer
timeout value, or the timeout will be a lot longer than you anticipated. A value of zero tells the BIOS to
continue trying indefinitely, and is equivalent to using the DOS MODE LPT1: command with the ",p"
argument.

Another point is that you should not use this function many times in a row, without ever printing
anything. All modern printers provide a buffer, which accepts characters as fast as the computer can
send them. If the buffer fills with spaces and backspaces before any printable characters are sent, it may
be impossible to clear the buffer. Therefore, you should perform the printer test only once or twice, just
before you actually need to begin printing.

EGA and VGA Data
The seven bytes starting at address &H484 hold information about an installed EGA or VGA display
adapter. This data should not be relied upon until you have determined that the adapter is in fact an
EGA or VGA. The Monitor function shown in Chapter 6 can be used for this.

The first byte holds the number of rows currently displayed on the screen. The next word at addresses
&H485 and &H486 tells how high each character is in scan lines. For a normal 80 by 25 line screen
this value will be 16. After using WIDTH , 43 or  WIDTH , 50 the height of each character is 8
scan lines. Notice that this value also includes the spacing between each line. Curiously, two bytes are
set aside to hold this value, even though it is extremely unlikely that any video mode would ever
require a number larger than 255.

The only other information you are likely to find useful in this data area is the amount of installed
memory on the EGA or VGA adapter card. Bits 5 and 6 at address &H487 hold the number of 64K
banks, and the code that follows shows how to turn this into a meaningful number:
 
DEF SEG = 0             'look in segment zero
Byte = PEEK(&H487)      'get the byte
Byte = Byte AND 96      'keep what we need (96 = 1100000b)
Byte = Byte \ 32        'shift the bits right five places
Byte = (Byte + 1) * 64  'add 1 because 0 means 64K
PRINT "This EGA/VGA adapter has"; Byte; "K memory"

After reading the EGA Features byte (listed earlier in Figure 10-1), the statement  Byte = Byte
AND 96 masks off all of the bits that are irrelevant. Byte is then divided by 32 to slide those bits into
the lowest position. The number that results is coded such that 0 means 64K of installed video memory,
1 means 128K, 2 means 192K (which is never really possible), and 3 indicates 256K. Because this
value is zero-based, 1 is added to Byte before multiplying by 64.

Miscellaneous Data
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The 16-byte data area that begins at address &H4F0 is called the  inter-application communications
area, and it is available for any arbitrary use by a program. One possibility is for passing just a few
parameters between separate programs, instead of having to use COMMON and CHAIN. Although this
data area has been available since the original IBM PC was introduced, there is a risk involved with
using it because it is possible that another program or TSR has stored information there. Chapter 9
described using the last 96 bytes in the display adapter's memory, which is both a larger buffer and is
probably safer to use.

The byte at address &H500 is used as a flag by the BIOS Print Screen service to detect when it is busy.
When you press Shift-PrtSc, the BIOS routine that handles that key sets this byte to a value of 1 before
beginning to print the screen. This way if you press Shift-PrtSc again before it has finished printing, the
second request can be ignored. When the printing has completed the flag is then reset to zero.

You can set this flag manually to disable the action of the PrtSc key, and then reenable it again later:

DEF SEG = 0
POKE &H500, 1
 .
 .
POKE &H500, 0

In fact,  you must be sure to re-enable PrtSc before ending your  program if  you have disabled it.
Otherwise, that key will be disabled until the PC is rebooted.

The last low memory address I'll describe is also one of the most potentially useful. For systems that
have only one diskette drive, the byte at address &H504 tells which drive (A or B) is currently active.
In this case, that drive serves as both A and B. Most PC users are familiar with DOS' infamous "Insert
disk for drive B" message. This message is displayed whenever you attempt to access one of the logical
drives while the other is currently active.

The problem is that this message will ruin an otherwise attractive screen design, and you have no
control over where or if the message is displayed. Fortunately, you can determine if only one drive is
available, and also which is currently active. Even better, you can set this byte to reflect either drive,
and thus avoid the intervention by DOS.

If the byte at address &H504 is currently zero, then drive A is active; a value of 1 indicates drive B.
The short complete program that follows shows how to detect which drive is current.

DEF SEG = 0
Floppies% = (PEEK(&H410) AND 192) \ 64 + 1
PRINT "This PC has"; Floppies%; "floppy disk drive(s)."

IF Floppies% = 1 THEN
  PRINT "The disk is now acting as drive ";
  CurDrive% = PEEK(&H504)
  IF CurDrive% THEN
    PRINT "B"
  ELSE
    PRINT "A"
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  END IF
END IF

To change from drive A to B simply use POKE &H504,1, assuming that the current DEF SEG value
is already zero. Likewise, to change from B to A you will use POKE &H504, 0. Of course, you must
also prompt the user to change disks as DOS would. But at least you can control how the prompt
message is displayed. If you do switch drives behind DOS' back, it is up to you to prompt the user to
exchange disks as necessary, and also to ensure that files are updated and closed correctly before each
switch. 

Input/Output Ports

Besides the low memory addresses that are reserved for BIOS and DOS uses, every PC also has a
collection of Input/Output (I/O) ports. Like memory, ports are addressed by number, and data may be
read from or to written to them. In truth, some ports are write-only, others may only be read, and still
others can be read and written.

Where conventional memory is often used by the operating system to hold flags, status words, and
other  values,  ports  are  used  to  actually  control  the  hardware.  For  example,  port  number  &H3F2
controls the diskette drive motors, and appropriate OUT commands to that port can turn the motor for
any drive on or off.

For the most part, you should not experiment with the ports unless you know what they are for, and
which  values  are  appropriate.  As  an  example,  it  is  possible  to  damage  your  monitor  by  sending
incorrect values through the display adapter controller  ports. Two useful ports I  will  describe here
control the PC's speaker and the keyboard.

Although BASIC offers the SOUND and PLAY statements, using them can quickly increase the size of
a program. Both of these commands can operate in the background, thereby continuing to produce
sound after they return to your program. As you can imagine, this requires a lot of code to implement.
An informal test showed that adding a single SOUND statement increased the program size by more
than  11K.  Therefore,  if  you  do  not  need  the  ability  to  have  tones  play  in  the  background,  the
combination demonstration and subprogram that follows can be used in place of SOUND. Besides
avoiding the code to plays tones as a background task, this routine also avoids SOUND's inclusion of
floating point math.

DEFINT A-Z
DECLARE SUB BSound (Frequency, Duration)

CLS

PRINT "Sweep sound"
FOR X = 1 TO 10
  READ Frequency
  CALL BSound(Frequency, 1)
NEXT
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DATA 100, 200, 300, 400, 600, 900, 1200, 1500, 1800, 2100

PRINT "Press a key for more..."
WHILE INKEY$ = "": WEND

PRINT "Telephone"
FOR X = 1 TO 10
  CALL BSound(600, 1)
  CALL BSound(800, 1)
NEXT

PRINT "Press a key for more..."
WHILE INKEY$ = "": WEND

PRINT "Siren"
FOR X = 1 TO 2
  FOR Y = 600 TO 1000 STEP 15
    CALL BSound(Y, -1)          'negative values leave
  NEXT                          '  the speaker turned on
  FOR Y = 1000 TO 600 STEP -15
    CALL BSound(Y, -1)
  NEXT
NEXT
CALL BSound(600, 1)             'force the speaker off

SUB BSound (Frequency, Duration) STATIC
  IF Frequency < 33 THEN EXIT SUB

  IF NOT BeenHere THEN          'do this only once for a
    BeenHere = -1               '  smoother sound effect
    OUT &H43, 182               'initialize speaker port
  END IF

  Period = 1190000 \ Frequency  'convert to period
  OUT &H42, Period AND &HFF     'send it as two bytes
  OUT &H42, Period \ 256        '  in succession

  Speaker = INP(&H61)           'read Timer port B
  Speaker = Speaker OR 3        'set the speaker bits on
  OUT &H61, Speaker

  DEF SEG = 0
  FOR X = 1 TO ABS(Duration)    'for each tick specified
    ThisTime = PEEK(&H46C)      '  count changes again
    DO                          'wait until the timer
    LOOP WHILE ThisTime = PEEK(&H46C)
  NEXT

  IF Duration > 0 THEN          'turn off if requested
    Speaker = INP(&H61)         'read Timer port B
    Speaker = Speaker AND &HFC  'set the speaker bits off
    OUT &H61, Speaker
  END IF
END SUB

The  BSound  routine  accepts  the  same  frequency  and  duration  arguments  as  BASIC's  SOUND
statement. Each time it is called it calculates the appropriate period based on the incoming frequency,
which is what the timer ports expect. Period is the reciprocal of frequency. Here, the period is related to
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the PC's clock frequency of 1,190,000 Hz. BSound then turns on the speaker, waits in a loop for the
specified duration, and finally turns off the speaker before returning.

Two extra steps are required to create a smooth effect when BSound is called rapidly in succession.
One is that the speaker port is initialized only once, the very first time BSound is called. The other step
lets you optionally leave the speaker turned on when BSound returns, to avoid the choppiness that
otherwise results with sounds like the siren effect. To tell BSound to leave the speaker on, use an
equivalent negative value for the Duration parameter. Just be sure to call BSound once again with a
positive duration value, or use the same set of INP and OUT statements that BSound uses to turn the
speaker off. This is shown in the last demonstration that creates a siren sound.

Keyboard Ports

There are several ports associated with the keyboard, and one is of particular interest. The enhanced
keyboards that come with AT-class and later computers allow you to control how quickly keystrokes
are repeated automatically. There are actually two values: one sets the initial delay before keys begin to
repeat, and the other establishes the repeat rate. By sending the correct values through the keyboard
port, you can control the keyboard's typematic response. The complete program that follows shows how
to do this, and Table 10-3 shows how the delay and repeat rate values are determined.

OUT &H60, &HF3          'get the keyboard's attention
FOR D& = 1 TO 100: NEXT 'brief delay to give the hardware time to settle
Value = 7               '1/4 second initial delay, 16 CPS
OUT &H60, Value

Initial Delay 0.25 0.50 0.75 1.00

30 characters per second 00 20 40 60

16 characters per second 07 27 47 67

8 characters per second 0F 2F 4F 6F

4 characters per second 17 37 57 77

2 characters per second 1F 3F 5F 7F

NOTE: All values are shown in Hexadecimal.

Table 10-3: AT-style keyboard delay and repeat rates

Table 10-3 shows only some of the possible values that can be used. However, you can interpolate
additional values for delay times and repeat rates between those shown.

Summary
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This  chapter  explained what  the  BIOS low memory data  area  is,  and also discussed many of  the
addresses  that  are  useful  to  application  programs.  A number  of  practical  examples  were  given,
including useful PEEK and POKE replacements that operate on data a word, rather than a byte, at a
time. A simple binary conversion function was shown, to help you determine the correct values to use
with AND and OR.

You learned how to exchange serial and parallel port addresses, and how to access communications
ports 3 and 4 which BASIC normally does not allow. Exchanging printer ports lets you access any
printer as LPT1, perhaps to avoid having to rewrite a large program that relies on existing LPRINT
statements. Other useful printer data that can be accessed is the BIOS timeout value, and a routine was
shown for testing the printer status without the usual delay.

The equipment list word was described in detail, showing how to determine the number of diskette
drives and other peripherals that are installed. Another useful routine showed how to determine if drive
A or B is active on a one-floppy system, and also how to change the current status of that drive. The
various keyboard status bits were also described, and code fragments showed how to read and set the
current state. 

Finally, you learned how the hardware ports are read and written using INP and OUT commands. One
example produced sound with much less generated code than BASIC's SOUND, and another showed
how to alter the typematic rate on enhanced (AT) keyboards.

The next chapter explores using CALL Interrupt in great detail, using many examples that show how to
access DOS and BIOS system services.

356



11
Accessing DOS and BIOS Services

BASIC is  arguably the most capable of all  the popular high-level  languages available  for the PC.
However,  one  area  where  all  PC  languages  are  weak  is  when  accessing  DOS  and  BIOS system
interrupts.  Previous chapters included subroutines and functions that access DOS interrupt services
using CALL Interrupt, but in most cases with little explanation. This chapter explains what interrupts
are, how they are accessed, and how they return information to your program.

Only  assembly  language—the  native  language  of  the  processor  in  every  PC—can  directly  access
interrupts.  Assembly  language  programmers  use  the  Int  instruction,  which  transfers  control  to  an
interrupt  service  routine.  An Int  instruction is  nearly identical  to  a  conventional  CALL statement,
except a slightly different mechanism within the computer's hardware is used to implement it.

BASIC lets you access system interrupts by providing a pair of assembly language interface routines
called Interrupt and InterruptX. These routines accept the interrupt number and other parameters the
interrupt requires, and they then perform the actual interrupt call. InterruptX is similar to Interrupt; the
only real difference is that it lets you access two additional CPU registers.

What is an Interrupt?

The IBM PC family of personal computers supports two types of interrupts: hardware and software. A
hardware interrupt is invoked by an external device or event, such as pressing a key on the keyboard.
When this happens, a signal is sent from the keyboard hardware to the PC's microprocessor telling it to
stop what it's currently doing and instead call one of the routines in the PC's BIOS.

For example, while your PC is currently copying a group of files you may type DIR simultaneously, to
display the results when the copying has finished. Even though DOS is reading and writing the files,
you interrupt those operations for a few microseconds each time a key is pressed. The BIOS routine
that handles the keyboard interrupt is responsible for placing the keystrokes into the PC's 15-character
keyboard buffer. Then when DOS has finished copying your files, the DIR command will already be
there.  Because  there  is  a  direct  physical  connection  between  the  keyboard  circuitry  and the  PC's
microprocessor, you are able to interrupt whatever else is happening at the time.

A software interrupt, on the other hand, doesn't really interrupt anything. Rather, it is a form of CALL
command that an assembly language program may issue. Just like the CALL command in BASIC that
transfers control to  a subroutine,  a software interrupt is  used in an assembly language program to
access DOS and BIOS services. Although assembly language programs may use a CALL statement to
invoke a subroutine, an interrupt instruction is needed to access the operating system routines.
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When  a  program issues  a  subroutine  call,  the  address  of  that  subroutine  must  be  known,  so  the
processor  will  be  able  to  jump  to  the  code  there.  With  most  programs,  subroutine  addresses  are
determined and assigned by LINK.EXE when it combines the various portions of your program into a
single executable file. But this method can't be used with the DOS and BIOS routines, because their
addresses are not known ahead of time. For example, if you compile a BASIC program on an IBM PC,
it must also be able to be run on, say, a Tandy 1000 using a different version of DOS. Of course, it is
impossible for LINK to know where the DOS and BIOS routines are located on the Tandy computer.

To solve this problem and allow a program to call a routine whose address is not known, a list of
addresses is stored in a known place in low memory. This place is called the interrupt vector table. The
first 1,024 bytes in every PC contains a table of addresses for all 256 possible interrupts. Each table
entry requires two words (four bytes): one word is used to hold the routine's segment, and the other
holds its address within that segment. Whenever an assembly language program issues an interrupt
instruction, the PC's processor automatically fetches the segment and address from this table, and then
calls that address. Thus, any program may access any interrupt routine, without having to know where
in memory the routine actually resides. The first four bytes in the interrupt vector table hold the address
for Interrupt 0, the next four show where Interrupt 1 is, and so forth.

DOS and BIOS services are specified by interrupt number, and most interrupt routines also expect a
service number. Nearly all of the DOS services you will find useful are accessed through Interrupt
&H21, with the desired service number specified in the AH register. In many cases, information is also
returned in the CPU registers. For instance, the DOS service that returns the current default disk drive
is specified by placing the value &H19 in the AH register. When the interrupt has finished, the current
drive number is returned in the AL register. Registers will be described in the section that follows. As
with the low memory addresses discussed in Chapter 10, the DOS and BIOS interrupt numbers use
Hexadecimal numbering by convention.

There are also several BIOS interrupts you will find useful, and these include video interrupt &H10,
printer interrupt &H17, Print Screen interrupt 5, and the two equipment interrupts &H11 and &H12.
There are other BIOS and DOS interrupts, but those are mostly useful when accessed from assembly
language.  For  example,  there  is  little  need  to  call  keyboard  interrupt  &H16 to  read  a  key,  since
INKEY$ already does this. Likewise, you are unlikely to find disk interrupt &H13 very interesting,
although it  is used when performing copy protection and other low-level direct disk accesses. But
unless you know what you are doing, it is possible—even likely—to trash your hard disk in the process
of experimenting with this disk interrupt.

I won't attempt to provide all of the information you need to access every possible DOS and BIOS
service  here.  Indeed,  a  complete  discussion  would  fill  several  books.  Two excellent  books  that  I
recommend are Peter Norton's Programmer's Guide to the IBM PC (1988), and Advanced MS-DOS, by
Ray Duncan (1988). Both of these books are published by Microsoft Press, and can be found in most
book stores. These books list every DOS and BIOS interrupt service, and show which registers are used
to exchange information with each interrupt service.
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Also, once you have read and understood the information in this chapter you should go back to some of
the examples presented in earlier chapters. In particular, Chapter 6 shows how to access DOS Interrupt
&H21 to read file  names,  and Chapter  7 includes  routines  that  access  Interrupt  &H2F to see if  a
network is running on the host PC and if so which one. 

Registers

Microprocessors in the Intel 8086 family contain a set of built-in integer variables called  registers.
Each register can hold a single word (two bytes), which nicely corresponds to the size of a BASIC
integer variable. Because these registers are contained within the microprocessor itself, they can be
accessed by the CPU very quickly—much faster than variables which are stored in memory.

The 8086 and 8088 microprocessors contain a total of fourteen registers.

Newer CPUs contain more registers, but they are not
accessible via CALL Interrupt nor are they useful to a
BASIC program.

Some of these registers are intended for a specific use, while others may be used as general purpose 
variables. For example, the CS and DS registers contain the current code and data segments 
respectively, while the CX register is often used as a counter in an assembly language FOR/NEXT 
loop. I'm not going to pursue a lengthy discussion of microprocessor theory here though, because it's 
not really necessary if you simply want to access a few system interrupts. Rather, I will focus on how to
set up and invoke the various interrupt services, and interpret the results they return. Assembly 
language and CPU registers will be discussed more fully in Chapter 12. 

Both  Interrupt  and InterruptX (Interrupt  Extended)  require  a  TYPE variable  with components  that
mirror each of the processor's registers. Table 11-1 lists all of the 8086 registers that are accessible from
BASIC, showing which are available with each of the interrupt routines.

InterruptX Interrupt

AX AX

BS BX

CX CX

DX DX

BP BP

SI SI
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DI DI

Flags Flags

DS

ES

Table 11-1: The registers accessible from BASIC through Interrupt and InterruptX.

 
When you call the either Interrupt routine, the values in a TYPE variable are copied into the CPU's
registers, the interrupt is performed, and then the results returned in each register are copied back into a
TYPE variable again. All of the CALL Interrupt examples Microsoft shows use two TYPE variables
called InRegs and OutRegs. However, you can also use the same TYPE variable to both send and
receive the register values. In fact, using a single TYPE variable will save a few bytes of DGROUP
memory. Therefore, the remaining examples that use CALL Interrupt use a single TYPE variable.

One important issue that needs to be addressed before we can proceed is how the CPU registers are
accessed. I stated earlier that there are fourteen such registers, and each is the same size as an integer
variable: 2 bytes. While this is certainly true, there is more to the story. Four of the registers—AX, BX,
CX, and DX—can also be treated as being two separate one-byte registers.

Each register half uses the designator "H" or "L" to mean High or Low. For example, the high-byte 
portion of AX is called AH, and the low-byte portion of CX is CL. When considered as a composite 
register, the two halves form a single integer word. Figure 11-1 shows how the AX register is 
constructed, with each half contributing to the total combined value.

 In an assembly language program it is simple to access each register half separately. However, BASIC 
does not offer a byte-sized variable type to use within the TYPE declaration. Therefore, a slight amount
of math is required to get at each half separately. Although a fixed-length string with a length of one 
character could be used, the added overhead BASIC imposes to access a string as a number reduces the
usefulness of that approach.

Using Hexadecimal notation and multiplication simplifies access to each register half when it is being
assigned,  and integer  division and BASIC's  AND operator  lets  you separate  the two halves  when
reading them. That is, you can assign the value &H12 to the upper byte in AH and the value &H34 to
the lower byte in AL at one time, like this: 
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Registers.AX = &H1234

In many cases it is necessary to assign only AH, which can be done like this:

Registers.AX = &H0600

Here, the value 6 is placed into AH, and 0 is assigned to AL. Since many of the DOS and BIOS
services ignore what is in AL, assigning a value of zero is the simplest and most effective solution.
Again, using Hexadecimal notation lets you clearly define what is in each register half, because the first
two digits represent the upper portion, and the second two represent the lower byte.

When both the upper and lower bytes are important, you can use multiplication to assign them. By
definition, any byte value in the high portion of a register is 256 times greater than it would be in the
lower part. Thus, to assign the variable Low% to AL and High% to AH is as simple as this:

Registers.AX = Low% + (256 * High%)

In practice the parentheses are not really necessary because multiplication is always performed before
addition. But I included them here for clarity.

When an interrupt routine returns information in one of the combination registers,  you may easily
isolate the high and low portions as follows:

Low% = Registers.DX AND 255
High% = Registers.DX \ 256

Some examples you may have seen use MOD to extract the lower byte, and that will also work:

Low% = Registers.DX MOD 256

Although MOD and AND cause BASIC to generate the same amount of assembly language code (three
bytes), I generally prefer using AND because that instruction is somewhat faster on the older 8088
processors. 

Accessing the BIOS

The simplest BIOS interrupt to call is the Print Screen interrupt, Interrupt 5. No parameters are required
by this interrupt, and no values are returned when it finishes. But since the Interrupt routine expects the
TYPE variable to be present and copies data to it, you must still dimension it in your program.

Because Interrupt and InterruptX are external subroutines as opposed to built-in commands, you will
need to load the Quick Library containing these routines. QuickBASIC comes with the file QB.QLB;
BASIC PDS provides the same routines in a library named QBX.QLB. [And in VB/DOS this file is
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called VBDOS.QLB.]  You must of course use whichever is appropriate for your version of BASIC. To
start QuickBASIC and load the Quick Library that contains these routines use the /L switch like this:

qb /l

Normally, the name of a Quick Library must be given after the /L switch. However, QB and QBX know
that /L by itself means to load the default QB.QLB or QBX.QLB Quick Library.

The following complete program prints a simple pattern on the screen, and then sends it to the printer
designated as LPT1: as if the PrtSc key had been pressed.

DEFINT A-Z
TYPE RegType
  AX AS INTEGER
  BX AS INTEGER
  CX AS INTEGER
  DX AS INTEGER
  BP AS INTEGER
  SI AS INTEGER
  DI AS INTEGER
  Flags AS INTEGER
END TYPE
DIM Registers AS RegType

CLS
FOR X% = 1 TO 24
  PRINT STRING$(80, X% + 64);
NEXT
CALL Interrupt(5, Registers, Registers)

Although the Registers TYPE definition is shown here, the remaining examples in this chapter will 
instead specify the REGTYPE.BI include file that contains this code. QuickBASIC includes a similar 
include file called QB.BI, and BASIC PDS uses the name QBX.BI for the same file.

I created REGTYPE.BI so all of the programs in this
book will run as is with any version of BASIC. But the
BASIC-supplied versions also include DECLARE statements
for the Interrupt routines, where my REGTYPE.BI file
does  not.  Since all  of  these programs use  the CALL
keyword, a declaration is not strictly necessary.

The BIOS Video Interrupt

The next example shows how to call BIOS video interrupt &H10 to clear just a portion of the display
screen. It is designed as a combination demonstration and subprogram, so you can extract just the
subprogram and add it to programs of your own.

DEFINT A-Z
DECLARE SUB ClearScreen (ULRow, ULCol, LRRow, LRCol, Colr) 
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'$INCLUDE: 'REGTYPE.BI'
DIM SHARED Registers AS RegType

CLS
FG = 7: BG = 1           'set the foreground and background colors COLOR FG, BG

FOR X% = 1 TO 24
  PRINT STRING$(80, X% + 64);
NEXT

Colr = FG + 16 * BG      'use the same colors for clearing CALL ClearScreen(5, 
10, 20, 70, Colr)

SUB ClearScreen (ULRow, ULCol, LRRow, LRCol, Colr) STATIC
  Registers.AX = &H600
  Registers.BX = Colr * 256
  Registers.CX = (ULCol - 1) + (256 * (ULRow - 1))
  Registers.DX = (LRCol - 1) + (256 * (LRRow - 1))
  CALL Interrupt(&H10, Registers, Registers)
END SUB

There are two important benefits to using the BIOS for a routine such as this. One is of course the
reduced amount of code that is needed, when compared to manually looping through memory using
POKE to clear each character position. The second is the BIOS is responsible for determining the type
of monitor installed, to select the correct video segment.

The demonstration portion of the program first clears the screen, and then creates a simple test pattern
using a  color  of  white  on blue.  Just  before the  call  to  ClearScreen,  the  correct  Colr  parameter  is
calculated based on the same foreground and background specified to BASIC. Where BASIC accepts
separate foreground and background values, the BIOS requires a single composite color byte.

The simplified formula used in this example will accommodate normal colors, but does not support
adding 16 to the foreground to specify a flashing color. This next formula shows how to derive a single
color byte while also honouring flashing:

Colr = (FG AND 16) * 8 + ((BG AND 7) * 16) + (FG AND 15) 

ClearScreen is then called telling it to clear a rectangular portion of the screen that lies within the
boundary specified by an upper-left corner at location 5, 10 to the lower-right corner at location 20, 70.
The color value calculated earlier is also passed, so the white on blue color will be maintained even
after the screen is cleared.

Within ClearScreen, four of the CPU's registers are assigned to  values needed by the BIOS video
interrupt. The first statement specifies service 6 in AH, which tells the BIOS to scroll the screen. The
number of rows to scroll is then placed into the AL register, which we've set to zero. This particular
BIOS service recognizes zero as a special flag, which tells it to clear the screen rather than scroll it.

Service  6  also  expects  the  color  to  use  for  clearing  in  the  BH  register.  As  I  explained  earlier,
multiplying by 256 is equivalent to assigning just the higher portion of an integer, so the statement
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Registers.BX = Colr * 256 is equivalent to placing the one byte that is actually used by the
Colr variable into BH.

The next two instructions take the upper left and lower right corner arguments, and place them into the
appropriate registers. In this case, the upper left column is placed into CL and the upper left row in CH.
Similarly, the lower right column goes into DL and the lower right row into DH. Even though BASIC
considers screen rows and columns to be numbered beginning at 1, the BIOS routines assume these to
be  zero-based.  Therefore,  1  is  subtracted  from  the  parameters  before  they  are  placed  into  each
component  of  the Registers  TYPE variable.  Finally,  BASIC's Interrupt  routine is  called specifying
Interrupt number &H10.

Note that the same BIOS interrupt service can also be used to scroll a rectangular portion of the screen.
Indeed, this is the primary purpose of service 6. To scroll a portion of the screen up a certain number of
lines, you will place the number of lines into AL:

Registers.AX = NumLines + (6 * 256)

Scrolling the screen downward is also possible, using service 7 like this: 

Registers.AX = NumLines + (7 * 256)

Also note that the Registers TYPE variable was dimensioned to be shared. This allows it to be accessed
from  all  of  the  subprograms  in  a  single  program.  If  Registers  is  dimensioned  in  many  different
subprograms  and  functions,  then  a  new  instance  will  be  created,  with  each  stealing  20  bytes  of
DGROUP  memory.  Beware,  however,  that  this  memory  savings  has  the  potential  drawback  of
introducing subtle bugs due to the same variable being used by different services. Whatever register
values remain after one use of CALL Interrupt will still be present the next time, unless new values are
explicitly assigned. But that is rarely a problem, since you will generally assign all of the registers that
a given interrupt needs just before calling that interrupt.

Although this  short example simply clears or scrolls  a portion of the display screen,  it  provides a
foundation for nearly anything else you may need to do using CALL Interrupt. The DOS interrupt
examples that follow will build on this foundation, and show how to access a wealth of useful services
that are not otherwise possible using BASIC alone. 

Accessing DOS Interrupts

As with the BIOS video interrupt services, DOS interrupt &H21 expects a service number to be given
in  the  AH register.  Many  DOS services  require  additional  information  in  other  registers  as  well,
including integer values and the segments and addresses of variables.

The DOS services that accept or return a string (such as a file or directory name) require the address of
the string, to know where it is located. For example, the DOS service that changes the current directory
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is called with AH set to &H3B, and DS:DX holding the address of a string that contains the name of
the directory to change to.

Likewise, to obtain the current directory you would load AH with the value &H47, and DS:SI with the
address of a string that will receive the current directory's name. It is essential that this string already be
initialized to a sufficient length before calling DOS. Otherwise, the returned directory name will likely
overwrite other existing data. And if that data happens to be a BASIC string descriptor or back pointer
you will likely crash the program and possibly even have to reboot the PC. When a string is sent as a
parameter to a DOS routine, it must be terminated with a CHR$(0), so DOS can tell where it ends.
Likewise, when DOS returns a string to your program such as the current directory, it indicates the end
with a CHR$(0). Therefore, it is up to your program to manually append a CHR$(0) to any file or
directory names you pass to DOS. And when receiving a string from DOS, you must use INSTR to
locate the CHR$(0) that marks the end, and keep only what precedes that character.

I will start with some simple examples that access DOS Interrupt &H21, and proceed to more complex
routines that pass and receive string data. 

Accessing the Default Drive

The first DOS example shows how to determine the current default drive, and it is designed as a DEF
FN-style function. A function is a natural way to design a routine that returns information, as opposed
to  a  called  subprogram.  Further,  using  a  DEF FN-style  function  reduces  the  amount  of  code  that
BASIC generates, and also reduces the code needed each time the function is invoked.

DEFINT A-Z

'$INCLUDE: 'REGTYPE.BI'
DIM Registers AS RegType

DEF FnGetDrive%
  Registers.AX = &H1900
  CALL Interrupt(&H21, Registers, Registers)
  FnGetDrive% = (Registers.AX AND &HFF) + 65
END DEF

PRINT "The current default drive is "; CHR$(FnGetDrive%)

Here, service number &H19 is assigned to the AH portion of AX prior to calling Interrupt &H21, and
the value that DOS returns in AL indicates the current drive. For this service DOS uses 0 to indicate
drive A, 1 for drive B, and so forth. Therefore, you use AND with the value &HFF (255) to keep just
the low portion in AX. Once the DOS drive number has been isolated, the program adds 65 to adjust
that to the equivalent ASCII character value.

Setting  a  new default  drive  is  just  as  easy  as  obtaining  the  current  drive.  Although  BASIC PDS
provides the CHDRIVE command to set a new drive as the current default, QuickBASIC does not. The
ChDrive subprogram that follows affords the same functionality to QuickBASIC users, and it accepts a
single letter to indicate which drive is to be made the new current default.
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DEFINT A-Z
DECLARE SUB ChDrive (Drive$)

'$INCLUDE: 'REGTYPE.BI'
DIM SHARED Registers AS RegType

INPUT "Enter the drive to make current: ", NewDrive$
CALL ChDrive(NewDrive$)

SUB ChDrive (Drive$) STATIC
  Registers.AX = &HE00
  Registers.DX = ASC(UCASE$(Drive$)) - 65
  CALL Interrupt(&H21, Registers, Registers)
END SUB

Now that you know how to set and get the current default drive, you can combine the two and create a
function that tells if a given drive letter is valid. Many DOS services return the success or failure of an
operation using the CPU's Carry flag. However, the service that sets a new drive is a notable exception.
Therefore, to determine if a given drive letter is in fact valid requires more than simply trying to set the
new drive, and then seeing if an error resulted.

The only way to tell if a request to change the current drive was accepted is to make another call to get
the current drive, thereby seeing if the original request took effect. The program that follows accepts a
drive letter as a string, and returns True or False (-1 or 0) to indicate whether or not the drive is valid.

DEFINT A-Z
DECLARE SUB ChDrive (Drive$)

'$INCLUDE: 'REGTYPE.BI'

DIM SHARED Registers AS RegType

DEF FnGetDrive%
  Registers.AX = &H1900
  CALL Interrupt(&H21, Registers, Registers)
  FnGetDrive% = (Registers.AX AND &HFF) + 65
END DEF

DEF FnDriveValid% (TestDrive$)
  STATIC Current                'local to this function
  Current = FnGetDrive%         'save the current drive
  FnDriveValid% = 0             'assume not valid
  CALL ChDrive(TestDrive$)      'try to set a new drive
  IF ASC(UCASE$(TestDrive$)) = FnGetDrive% THEN
     FnDriveValid% = -1         'they match so it's valid
  END IF
  CALL ChDrive(CHR$(Current))   'either way restore it
END DEF

INPUT "Enter the drive to test for validity: ", Drive$
IF FnDriveValid%(Drive$) THEN
   PRINT Drive$; " is a valid drive."
ELSE
   PRINT "Sorry, drive "; Drive$; " is not valid."
END IF
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SUB ChDrive (Drive$) STATIC
  Registers.AX = &HE00
  Registers.DX = ASC(UCASE$(Drive$)) - 65
  CALL Interrupt(&H21, Registers, Registers)
END SUB

The strategy used here is to first save the current default drive, and then set a new drive on a trial basis.
If the current drive is the one that was just set, then the specified drive was indeed valid. In either case,
the original drive must be restored.

Determining if a File Exists

Both of the DOS services we have considered so far use integer arguments to indicate the new drive, or
which drive is the current default. The next example shows how to pass a BASIC string to a DOS
service, which is somewhat more complicated. The situation is made worse by the far strings feature
available in BASIC PDS. Therefore, be sure to observe the comment that shows how to replace SSEG
with VARSEG for use with QuickBASIC.

Chapter 6 showed an admittedly clunky way to determine if a file is present. The example given there
attempted to open the specified file for random access, and then used LOF to see if the file had a length
of zero. The problem with that method—besides requiring a lot of unnecessary DOS activity—is that it
reports a file with a perfectly legal length of zero as not being present, and then deletes it.

The FnFileExist function that follows is intended for use with BASIC PDS, and comments show how
to change it for use with QuickBASIC. Please understand that PDS doesn't really need a File Exist
function, since DIR$ can be used for that purpose. The statement  IF LEN(DIR$(FileSpec$))
THEN will quickly tell if a file is present. However, the point is to show how strings are passed to DOS,
and for that purpose this example serves quite nicely.

DEFINT A-Z
'$INCLUDE: 'REGTYPE.BI'

DIM Registers AS RegType

TYPE DTA                         'used by DOS services
  Reserved  AS STRING * 21       'reserved for use by DOS
  Attribute AS STRING * 1        'the file's attribute
  FileTime  AS STRING * 2        'the file's time
  FileDate  AS STRING * 2        'the file's date
  FileSize  AS LONG              'the file's size
  FileName  AS STRING * 13       'the file's name
END TYPE
DIM DTAData AS DTA

DEF FnFileExist% (Spec$)
  FnFileExist% = -1              'assume the file exists

  Registers.DX = VARPTR(DTAData) 'set a new DOS DTA
  Registers.DS = VARSEG(DTAData)
  Registers.AX = &H1A00
  CALL InterruptX(&H21, Registers, Registers)
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  Spec$ = Spec$ + CHR$(0)      'DOS needs an ASCIIZ string
  Registers.AX = &H4E00        'find file name service
  Registers.CX = 39            'attribute for any file
  Registers.DX = SADD(Spec$)   'show where the spec is
  Registers.DS = SSEG(Spec$)   'use this with BASIC PDS
 'Registers.DS = VARSEG(Spec$) 'use this with QuickBASIC

  CALL InterruptX(&H21, Registers, Registers)
  IF Registers.Flags AND 1 THEN FnFileExist% = 0
END DEF

INPUT "Enter a file name or specification: ", FileSpec$
IF FnFileExist%(FileSpec$) THEN
   PRINT FileSpec$; " does exist"
ELSE
   PRINT "Sorry, no files match "; FileSpec$
END IF

FnFileExist calls upon the DOS Find First service that searches a directory and attempts to locate the
first  file  that  matches  a  given  specification  template.  Therefore,  besides  being  able  to  see  if
ACCOUNTS.DAT or F:\UTILS\NU.EXE exist, you can also use the DOS wild cards.  For example,
given C:\QB45\*.BAS, FnFileExist will report if any files with a .BAS extension are in the \QB45
directory of drive C.

As part  of its  directory searching mechanism, DOS requires a block of memory known as a Disk
Transfer Area, or DTA for short. If a matching file name is found, DOS stores important information
about  the file there,  where your program can read it.  As you can see by examining the DTAType
structure, this includes the file's name and extension, the date and time it was last written to, its current
size, and attribute. The 21-byte string at the beginning identified as Reserved holds sector numbers and
other information, and is used by DOS for subsequent searches. This function doesn't use any of the
information in the DTA; however, it must still be defined for use by DOS.

You will notice that FnFileExist uses the InterruptX routine rather than Interrupt, and this is to provide
support for use with BASIC PDS far strings. Two of the CPU's registers are used to hold the DS and ES
data segment registers. When Interrupt is called, it simply leaves whatever is currently in DS and ES
and then calls the interrupt. InterruptX, on the other hand, loads DS and ES from those components of
the Registers TYPE variable, and those are the values the interrupt itself receives. Were FnFileExist
limited to working with QuickBASIC—where all strings are in the DS segment—Interrupt would be
sufficient and the added complication of using either VARSEG or SSEG could be avoided.

Note that InterruptX can also be told to use the current value of DS for both DS and ES, when the
calling program doesn't need or want to change them. This is specified by placing a value of  -1 into
either or both portions of the Registers TYPE variable. For example, the statement Registers.DS
= -1 tells InterruptX not to assign DS before performing the interrupt. Otherwise, if Registers.DS
were not assigned, DS would receive the value 0 which is incorrect for DOS services that receive a
variable's  address.  In a  similar manner,  Registers.ES =  -1 tells  InterruptX to set  ES to the
current value of DS.
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The Carry Flag

The last item to note in this function is how the Carry flag is tested. As I mentioned earlier, many DOS
services indicate the success or failure of an operation by either clearing or setting the CPU's Carry
flag. This flag is held in one bit in the Flags register, and its primary purpose is to assist multi -word
arithmetic in assembly language programs. But because the 80x86 provides single instructions that
easily set and test this flag, the designers of DOS decided to use it as an error indicator.

The Carry flag is stored in the lowest bit of the Flags register, and can therefore be tested using the
AND instruction with a value of 1. If that bit is set, the result of the AND test will be one; otherwise it
will be zero. Thus, the statement IF Registers.Flags AND 1 THEN will be true if the Carry
flag is set, which indicates an error. In the case of DOS' Find First function this is not really an error in
the strictest sense. But there is no need here to distinguish between, say, an invalid path name and the
lack of any matching files. Either a match was found or it wasn't. 

Improving On Interrupt

Recall that Chapter 8 introduced the DOSInt routine which serves as a small-code replacement for
BASIC's  InterruptX  routine.  Although  the  reduction  in  code  size  gained  by  using  DOSInt  versus
Interrupt or InterruptX is not dramatic, it can save several hundred bytes in a program that calls it many
times. DOSInt is also somewhat easier to set up and use, because it requires only a single Registers
argument.

Of course, DOSInt is meant only for use with DOS Interrupt &H21, and it will not work with any other
DOS or  BIOS interrupt  services.  Because of  the savings that  DOSInt affords,  the remaining DOS
examples in this chapter will use DOSInt instead of Interrupt or InterruptX. Like InterruptX, DOSInt
lets you access the DS and ES registers, and it also recognizes an incoming value of -1 to specify the
current contents of DS. 

Obtaining the Current Directory

Where  FnFileExist  shows how to  pass  a  BASIC string  to  a  DOS interrupt  service,  the  FnGetDir
function  following shows how to receive  a  string  from DOS. Again,  BASIC PDS users  have  the
CURDIR$ function which reports the current directory, but most QuickBASIC programmers will find
this function invaluable.

DEFINT A-Z
'$INCLUDE: 'REGTYPE.BI'

DIM Registers AS RegType

DEF FnGetDir$ (Drive$)
  STATIC Temp$, Drive, Zero     'local variables

  IF LEN(Drive$) THEN           'did they pass a drive?
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    Drive = ASC(UCASE$(Drive$)) - 64
  ELSE
    Drive = 0
  END IF

  Temp$ = SPACE$(65)            'DOS stores the name here

  Registers.AX = &H4700         'get directory service
  Registers.DX = Drive          'the drive goes in DL
  Registers.SI = SADD(Temp$)    'show DOS where Temp$ is
  Registers.DS = SSEG(Temp$)    'use this with BASIC PDS
 'Registers.DS = -1             'use this with QuickBASIC

  CALL DOSInt(Registers)        'call DOS

  IF Registers.Flags AND 1 THEN 'must be an invalid drive
    FnGetDir$ = ""
  ELSE
    Zero = INSTR(Temp$, CHR$(0))    'find the zero byte
    FnGetDir$ = "\" + LEFT$(Temp$, Zero)
  END IF
END DEF

PRINT "Which drive? ";
DO
  Drive$ = INKEY$
LOOP UNTIL LEN(Drive$)
PRINT

Cur$ = FnGetDir$(Drive$)
IF LEN(Cur$) THEN
  PRINT "The current directory is ";
  PRINT Drive$; ":"; FnGetDir$(Drive$)
ELSE
  PRINT "Invalid drive"
END IF

PRINT "The current directory for the default drive is ";
PRINT FnGetDir$("")

The variables Temp$, Drive, and Zero are declared as STATIC to prevent them from conflicting with
variables of the same name in your program. Of course, you could convert this to a formal FUNCTION
procedure if you prefer, which considers variables local by default. Converting to a formal function is
also needed if you plan to access it from multiple source modules.

Unlike the DOS Get Drive and Set Drive services, service &H47 uses a value of one to indicate drive
A, 2 for drive B, and so forth. To request the current directory on the default drive you must use a value
of zero. An explicit test for this is made at the beginning of the function. Later, this value is assigned to
Registers.DX where DOS expects it. Note that it is really DL that will hold the specified drive number.
But assigning DX from Drive as shown does this, and also clears the high (DH) portion in the process.
Since the contents of DH are ignored by this DOS service, no harm is done and the extra code that
would be needed to assign only DL can be avoided.

As I mentioned earlier, it is essential that you set aside space to hold the returned directory name. Since
the longest path name that DOS can accommodate is 65 characters, Temp$ is assigned to that length.
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Then, the segment and address where Temp$ is stored are passed to DOS in the DS and SI registers.
Note that DOS is  not very consistent  in its  use of registers.  Where the service that  finds the first
matching file name uses DS:DX to point to the file specification, this service uses DS:SI to point to the
string.

Like the FnFileExist function, you must change the statement that assigns Registers.DS if you plan to
use this one with QuickBASIC. The BASIC PDS version of that statement is left active rather than the
QuickBASIC version, so QuickBASIC will highlight that line as an error to remind you. Although
FnFileExist uses VARSEG for the DS value when used with QuickBASIC, FnGetDir uses  -1. Both
methods work, and I used -1 here just to show that in context.

After DOSInt is called to load Temp$ with the current directory name, the Carry Flag is tested to see if
an error occurred. The only error that is possible here is "Invalid drive", in which case FnGetDir$ is
assigned a null value as a flag to indicate that. Otherwise, INSTR is used to locate the CHR$(0) zero
byte that DOS assigned to mark the end of the name.

This error testing can be left out to save code if you prefer. You could also validate the drive using the
FnDriveValid function, either by adding the code within FnGetDir, or separately prior to invoking it. 

Reading Files and Directory Names

One important service that many programs need and which BASIC has never provided is the ability to
read directory names from disk. Any word processor worth its salt will let you view a list of files that
match, say, a *.DOC extension, and then select the one you want to edit.  With the introduction of
BASIC PDS Microsoft added the DIR$ function, which lets you read file names. However, there is no
way to specify file attributes (hidden, read-only, and so forth), and also no way to read directory names.
To add insult to injury, the PDS manuals do not show clearly how to read a list of file names, and store
them into a string array.

The program that follows counts the number of files or directories that match a given specification, and
then dimensions and loads a string array with their names.

DEFINT A-Z
DECLARE SUB LoadNames (FileSpec$, Array$(), Attribute%)

'$INCLUDE: 'REGTYPE.BI'

TYPE DTA                        'used by find first/next
  Reserved  AS STRING * 21      'reserved for use by DOS
  Attribute AS STRING * 1       'the file's attribute
  FileTime  AS STRING * 2       'the file's time
  FileDate  AS STRING * 2       'the file's date
  FileSize  AS LONG             'the file's size
  FileName  AS STRING * 13      'the file's name
END TYPE

DIM SHARED DTAData AS DTA       'shared so LoadNames can
DIM SHARED Registers AS RegType '  access them too
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DEF FnFileCount% (Spec$, Attribute)
  STATIC Count                   'make this private

  Registers.DX = VARPTR(DTAData) 'set new DTA address
  Registers.DS = -1              'the DTA is in DGROUP
  Registers.AX = &H1A00          'specify service 1Ah
  CALL DOSInt(Registers)         'DOS set DTA service

  Count = 0                      'clear the counter
  Spec$ = Spec$ + CHR$(0)        'make an ASCIIZ string
  IF Attribute AND 16 THEN       'find directory names?
    DirFlag = -1                 'yes
  ELSE
    DirFlag = 0                  'no
  END IF

  Registers.DX = SADD(Spec$)     'the file spec address
  Registers.DS = SSEG(Spec$)     'this is for BASIC PDS
 'Registers.DS = -1              'this is for QuickBASIC
  Registers.CX = Attribute       'assign the attribute
  Registers.AX = &H4E00          'find first matching name 
  DO
    CALL DOSInt(Registers)       'see if there's a match
    IF Registers.Flags AND 1 THEN EXIT DO   'no more
    IF DirFlag THEN
      IF ASC(DTAData.Attribute) AND 16 THEN
        IF LEFT$(DTAData.FileName, 1) <> "." THEN
          Count = Count + 1      'increment the counter
        END IF
      END IF
    ELSE
      Count = Count + 1          'they want regular files
    END IF

    Registers.AX = &H4F00        'find next name
  LOOP

  FnFileCount% = Count           'assign the function
END DEF

REDIM Names$(1 TO 1)             'create a dynamic array
Attribute = 19                   'matches directories only Attribute = 39        
'matches all files

INPUT "Enter a file specification: ", Spec$
CALL LoadNames(Spec$, Names$(), Attribute)

FOR X = LEN(Spec$) TO 1 STEP -1  'isolate the drive/path
  Temp = ASC(MID$(Spec$, X, 1))
  IF Temp = 58 OR Temp = 92 THEN '":" or "\"
    Path$ = LEFT$(Spec$, X)      'keep what precedes that
    EXIT FOR                     'and we're all done
  END IF
NEXT

FOR X = 1 TO UBOUND(Names$)      'print the names
  PRINT Path$; Names$(X)
NEXT
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PRINT
PRINT UBOUND(Names$); "matching file(s)"
END

SUB LoadNames (FileSpec$, Array$(), Attribute) STATIC
  Spec$ = FileSpec$ + CHR$(0)     'make an ASCIIZ string
  NumFiles = FnFileCount%(Spec$, Attribute) 'count names
  IF NumFiles = 0 THEN EXIT SUB             'exit if none
  REDIM Array$(1 TO NumFiles)    'dimension the array

  IF Attribute AND 16 THEN       'find directory names?
    DirFlag = -1                 'yes
  ELSE
    DirFlag = 0                  'no
  END IF

  '---- The following code isn't strictly necessary
  '     because we know that FnFileCount already set the
  '     DTA address.
  'Registers.DX = VARPTR(DTAData) 'set new DTA address
  'Registers.DS = -1              'the DTA in DGROUP
 'Registers.AX = &H1A00          'specify service 1Ah
 'CALL DOSInt(Registers)         'DOS set DTA service

  Registers.DX = SADD(Spec$)     'the file spec address
  Registers.DS = SSEG(Spec$)     'this is for BASIC PDS
 'Registers.DS = -1              'this is for QuickBASIC
  Registers.CX = Attribute       'assign the attribute
  Registers.AX = &H4E00          'find first matching name
  Count = 0                      'clear the counter

  DO
    CALL DOSInt(Registers)       'see if there's a match
    IF Registers.Flags AND 1 THEN EXIT DO   'no more
    Valid = 0
    IF DirFlag THEN                         'directories?
      IF ASC(DTAData.Attribute) AND 16 THEN
        IF LEFT$(DTAData.FileName, 1) <> "." THEN
          Valid = -1             'this name is valid
        END IF
      END IF
    ELSE
      Valid = -1                 'they want regular files
    END IF

    IF Valid THEN                'process the file if it
      Count = Count + 1          '  passed all the tests
      Zero = INSTR(DTAData.FileName, CHR$(0))
      Array$(Count) = LEFT$(DTAData.FileName, Zero - 1)
    END IF
    Registers.AX = &H4F00        'find next matching name
  LOOP
END SUB

These  routines  call  upon  the  DOS Find  First  and  Find  Next  services,  which  performs  the  actual
searching and loading of the names. Before the names can be loaded into an array, you need some way
to know how many files there are. Therefore, the FnFileCount function makes repeated calls to DOS to
find another file, until there are no more.
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The general strategy is to request service &H4E to find the first matching file. If a file is found then the
Carry Flag is returned clear; otherwise it is set and the function returns with a count of zero. If a file is
found Registers.AX is assigned a value of &H4F, and this tells DOS to resume searching based on the
same file  specification  as  before.  Where  the  FnFileExist  function  merely  needed to  check for  the
presence of a file using the Find First service, this one continues in a DO loop until no more matching
files are found.

Understand that these DOS services accept either a partial file specification such as "*.BAS" or "D:\
PATHNAME\*.*", or a single file name such as "CONFIG.SYS" or "C:\AUTOEXEC.BAT".

File Attributes

The DOS Find services also accept and require a file attribute indicating the type of files that are being
sought. The method of specifying and isolating files and their attributes is convoluted and confusing to
be sure. Figure 11-2 lists each of the six file attributes, and shows which corresponds to each bit in the
attribute byte.

In most cases, the attribute bits are cumulative. For example, if you specify that you want to locate files
marked as read-only, you will also get files that are not. But if you leave that bit clear, then read-only
files will not be included. The same logic is used for reading directory names. If the directory bit is set
then you will read directories, and also regular files whose directory bit is not set. This requires that
you perform additional qualifications when the file name is read into the DTA. To make matters even
worse, there is an exception to this rule whereby an attribute of zero will still read file names whose
archive bit is set.

Before considering how to qualify the names as they are read, you must first understand what attributes
are and how to specify them to begin with. Every file has an attribute, which is set by DOS to Archive
at the time it is created. The archive bit is used solely to tell if the file has been backed up using the
DOS BACKUP utility. When BACKUP copies the file to a floppy disk, it clears the Archive bit in the
file's directory entry, then if the file is written to again later, DOS sets that bit. This way, BACKUP can
tell  which files need to be backed up, and which ones haven't  changed since the last  backup was
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performed. Most modern commercial  backup utilities also manipulate the archive bit,  for the same
reason that DOS' BACKUP does.

The hidden bit tells the DOS DIR command not to display that file's name. Although it won't display in
a directory listing, a hidden file may be opened, read from, and written to. The system bit is similar in
that  it  also  tells  DIR not  to  display  the  file.  The  IO.SYS and MSDOS.SYS files  that  come with
MS-DOS are hidden system files, so to read their names you must set those bits in the search attribute.
Note that IBM's version of DOS uses the names IBMBIO.COM and IBMDOS.COM respectively for
the same files.

The label bit identifies a file as the disk's volume label, which isn't really a file at all. Every disk is
allowed to have one volume label entry in its root directory, which lets an application identify the disk.
This feature is not particularly important with hard disks, but when floppy-only systems were the norm
this let programs ensure that the correct data diskette was installed in the drive. Even though a volume
label is stored in the disk's directory like a regular file name, no sectors are allocated to it. Note that a
bug in DOS 2.x versions causes a search for a volume label to fail. The only work-around is to use the
more  complex  DOS  1.x  Find  First/Next  services  that  are  still  supported  in  later  versions  for
compatibility with older programs.

Finally,  the  subdirectory  attribute  bit  identifies  a  file  as  a  directory.  From  DOS'  perspective  a
subdirectory is a file, with fixed-length records that hold the names, attributes, and other information
for the files it contains. Notice that the "." and ".." directory entries that appear when you type DIR are
in fact present in that directory. 

Every directory except the root contains these entries, and they also have a directory attribute. The
single dot refers to the current directory, and the double dots to the parent directory one level above. I
mention this because these  dot entries are reported by the Find First and Find Next services, and in
many cases you will want to filter them out.

To specify a file attribute you must determine the correct value, based on the individual bits to be
included in the search. As I stated earlier, setting the attribute to zero includes all normal files, and
exclude any marked as read-only, hidden, system, or subdirectory. Therefore, to include all files but not
subdirectories you will use an attribute value of 39. This value is derived by adding up the bit values
for each desired attribute as shown in Figure 11-3.

When you add all of the values for each bit of interest, the answer is 32 (archive) + 4 (system) + 2
(hidden) + 1 (read-only) = 39. In a similar fashion, you will use 16 to read directory names, but hidden
or read-only directories will not be included unless you also add 2 + 1 = 3, resulting in a final value of
19.

Although you can specify attribute bits in nearly any combination, DOS returns all of the names that
match any of the bits. Therefore, you must further qualify the files by examining the attribute DOS
returns in the DTA TYPE variable. A typical search for directory names will ask to include all three
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attribute bits (directory, hidden, and read-only), but the qualification test merely tests if the directory bit
is set. The following excerpt shows this in context.

Registers.CX = 19
CALL DOSInt(Registers)
IF ASC(DTAData.Attribute) AND 16 THEN  'it is a directory 

Even  if  the  directory  was  in  fact  hidden  or  read-only,  the  test  for  the  directory  bit  will  succeed
regardless of any other bits that may be set. Unfortunately, the reverse is not true. If the directory is not
hidden  or  read-only,  then  testing  for  those  bits  will  fail.  Both  the  FnFileCount  function  and  the
LoadNames subprogram include an explicit test for directory searches, and contain additional logic to
check for this case.

You could also add similar logic to the FnFileExist function, or create a separate version perhaps called
FnDirExist that adds a test for the directory bit and also filters out the "dot" entries.

REDIM Preserve

One glaring shortcoming you have probably already noticed is the enormous amount of code that is
duplicated in both the FnFileCount and LoadNames routines. In fact,  the two are almost identical,
except that LoadNames also assigns elements in the array. Worse, having to count all of the names
before they can be read greatly increases the amount of time needed to process a directory when there
are many files. Until you know how many files are present, there's no way to known how large to
dimension the string array.

One solution is to create an array with, say, 500 elements, and hope that the actual number of files does
not exceed that. But if there are only a few files this wastes a lot of memory, and when there are more
than  500,  then  you're  still  out  of  luck.  In  fact,  this  is  one  of  the  few features  that  C  offers  but
QuickBASIC does not. C programs can allocate memory that will be treated as an array, and then
repeatedly request more memory for that same array as it is needed.

Fortunately, BASIC PDS version 7.1 includes the PRESERVE option to the REDIM statement. This
allows you to increase or decrease the size of an array, but without destroying its current contents.
Thus, REDIM PRESERVE is ideal for applications like this that require an array's size to be altered.
The next, much shorter program uses REDIM PRESERVE to advantage, and avoids the extra step that
counts how many files match the search specification. Of course, this program requires BASIC PDS.

DEFINT A-Z
DECLARE SUB LoadNames (FileSpec$, Array$(), Attribute%)
'$INCLUDE: 'REGTYPE.BI'

TYPE DTA                        'used by find first/next
  Reserved  AS STRING * 21      'reserved for use by DOS
  Attribute AS STRING * 1       'the file's attribute
  FileTime  AS STRING * 2       'the file's time
  FileDate  AS STRING * 2       'the file's date
  FileSize  AS LONG             'the file's size
  FileName  AS STRING * 13      'the file's name
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END TYPE

DIM SHARED DTAData AS DTA       'shared so LoadNames can
DIM SHARED Registers AS RegType '  access them too

REDIM Names$(1 TO 1)             'create a dynamic array
Attribute = 19                   'matches directories only Attribute = 39        
'matches all files
Spec$ = "*.*"                    'so does this
CALL LoadNames(Spec$, Names$(), Attribute)

IF Names$(1) = "" THEN           'check for no files
  PRINT "No matching files"
ELSE
  FOR X = 1 TO UBOUND(Names$)    'print the names
    PRINT Path$; Names$(X)
  NEXT
END IF
END

SUB LoadNames (FileSpec$, Array$(), Attribute) STATIC
  Spec$ = FileSpec$ + CHR$(0)    'make an ASCIIZ string
  Count = 0                      'clear the counter

  Registers.DX = VARPTR(DTAData) 'set new DTA address
  Registers.DS = -1              'the DTA is in DGROUP
  Registers.AX = &H1A00          'specify service 1Ah
  CALL DOSInt(Registers)         'DOS set DTA service

  IF Attribute AND 16 THEN       'find directory names?
    DirFlag = -1                 'yes
  ELSE
    DirFlag = 0                  'no
  END IF

  Registers.DX = SADD(Spec$)     'the file spec address
  Registers.DS = SSEG(Spec$)     'this is for BASIC PDS
  Registers.CX = Attribute       'assign the attribute
  Registers.AX = &H4E00          'find first matching name 
  DO
    CALL DOSInt(Registers)       'see if there's a match
    IF Registers.Flags AND 1 THEN EXIT DO   'no more

    Valid = 0                    'invalid until qualified
    IF DirFlag THEN              'find directories?
      IF ASC(DTAData.Attribute) AND 16 THEN 'yes, is it?
        IF LEFT$(DTAData.FileName, 1) <> "." THEN
          Valid = -1             'this name is valid
        END IF
      END IF
    ELSE
      Valid = -1                 'they want regular files
    END IF

    IF Valid THEN                'process the file if it
      Count = Count + 1          '  passed all the tests
      REDIM PRESERVE Array$(1 TO Count)  'expand the array
      Zero = INSTR(DTAData.FileName, CHR$(0)) 'find zero
      Array$(Count) = LEFT$(DTAData.FileName, Zero - 1)
    END IF
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    Registers.AX = &H4F00        'find next matching name
  LOOP
END SUB

Managing Files

Chapter 6 explained in great detail how files are opened, closed, read, and written using BASIC. I
mentioned there that BASIC imposes a number of arbitrary limitations on what you can and cannot do
with files. Indeed, DOS allows almost any action except writing to a file that has been opened for input.
As you can imagine, CALL Interrupt—or in this case the DOSInt replacement routine—can be used to
circumvent BASIC and access your files directly.

Although BASIC expects you to state how the file will be accessed with the various OPEN options, to
DOS all files are considered as being opened for binary access. There is no equivalent DOS service for
BASIC's INPUT # or PRINT # commands. Therefore, it is up to you to write subroutines that look for a
terminating carriage return and optional line feed when reading sequential text. Likewise, it is up to you
to manually append a carriage return and line feed to the end of each line of text written to disk.

Frankly,  sequential  file access is often best left  to BASIC, since a lot of time-consuming tests  are
needed when reading sequential data. You could, however, use the BufIn function shown in Chapter 6,
or similar logic of your own devising. There are many types of file access that can be performed using
direct DOS calls, and I will show those that are the most useful and appropriate here.

The program that will follow shortly is a combination demonstration, and suite of twelve subprograms
and functions that perform most of the services necessary for manipulating files.  Subprograms are
provided  to  replace  BASIC's  OPEN,  CLOSE,  GET,  and  PUT statements,  as  well  as  LOCK  and
UNLOCK, SEEK, and KILL.

There are also replacement functions for LOC and LOF, as well as two additional subprograms that
have no BASIC equivalent.  All  of  the routines  use the DOSInt  interface routine,  and avoid using
BASIC's file  handling statements.  The demonstration is  comprised of a  series  of code blocks  that
exercise each routine showing how it is used. Comments at the start of each block explain what is being
demonstrated.

One reason to go behind BASIC's back this way is to avoid its many restrictions. For example, BASIC
will not let you read from a file that has been opened for output, even though DOS considers this to be
perfectly legal. Another is to avoid the need for ON ERROR. As you learned in Chapter 3, ON ERROR
can make a program run more slowly, and also increase its size. By going directly to DOS you can
avoid the burden of ON ERROR, which is otherwise needed to prevent your program from terminating
if an error occurs. These replacement routines avoid errors such as those caused by attempting to open
a file that does not exist, or trying to lock a network file that has already been locked by someone else.
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As with some of the other programs in this book that combine a demonstration and subroutines, you
should make a copy of the file, and then delete all of the code in the main portion of the program. The
only lines that must not be deleted are the DEFINT, DECLARE, and INCLUDE statements, and also
the two DIM SHARED statements. Then, you can load the resultant module into the BASIC editor
along with your own main application.

'DOS.BAS, demonstrates the direct DOS access routines

DEFINT A-Z
DECLARE FUNCTION DOSError% ()
DECLARE FUNCTION ErrMessage$ (ErrNumber)
DECLARE FUNCTION LocFile& (Handle)
DECLARE FUNCTION LofFile& (Handle)
DECLARE FUNCTION PeekWord% (BYVAL Segment, BYVAL Address)

DECLARE SUB ClipFile (Handle, NewLength&)
DECLARE SUB CloseFile (Handle)
DECLARE SUB FlushFile (Handle)
DECLARE SUB KillFile (FileName$)
DECLARE SUB LockFile (Handle, Location&, NumBytes&, Action) 
DECLARE SUB OpenFile (FileName$, OpenMethod, Handle)
DECLARE SUB ReadFile (Handle, Segment, Address, NumBytes)
DECLARE SUB SeekFile (Handle, Location&, SeekMethod)
DECLARE SUB WriteFile (Handle, Segment, Address, NumBytes) 

'$INCLUDE: 'REGTYPE.BI'

DIM SHARED Registers AS RegType 'so all can access it
DIM SHARED ErrCode              'ditto for the ErrCode
CRLF$ = CHR$(13) + CHR$(10)     'define this once now

COLOR 15, 1                     'this makes the DOS
CLS                             'messages high-intensity
COLOR 7, 1

'---- Open the test file we will use.
FileName$ = "C:\MYFILE.DAT"     'specify the file name
OpenMethod = 2                  'read/write non-shared
CALL OpenFile(FileName$, OpenMethod, Handle)
GOSUB HandleErr
PRINT FileName$; " successfully opened, handle:"; Handle

'---- Write a test message string to the file.
Msg$ = "This is a test message." + CRLF$
Segment = SSEG(Msg$)            'use this with BASIC PDS
'Segment = VARSEG(Msg$)         'use this with QuickBASIC
Address = SADD(Msg$)
NumBytes = LEN(Msg$)
CALL WriteFile(Handle, Segment, Address, NumBytes)
GOSUB HandleErr
PRINT "The test message was successfully written."

'---- Show how to write a numeric value.
IntData = 1234
Segment = VARSEG(IntData)
Address = VARPTR(IntData)
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NumBytes = 2
CALL WriteFile(Handle, Segment, Address, NumBytes)
GOSUB HandleErr
PRINT "The integer variable was successfully written."

'---- See how large the file is now.
Length& = LofFile&(Handle)
GOSUB HandleErr
PRINT "The file is now"; Length&; "bytes long."

'---- Seek back to the beginning of the file.
Location& = 1                   'specify file offset 1
SeekMethod = 0                  'relative to beginning
CALL SeekFile(Handle, Location&, SeekMethod)
GOSUB HandleErr
PRINT "We successfully seeked back to the beginning."

'---- Ensure that the Seek worked by seeing where we are.
CurSeek& = LocFile&(Handle)
GOSUB HandleErr
PRINT "The DOS file pointer is now at location"; CurSeek&

'---- Read the test message back in again.
Buffer$ = SPACE$(23)            'the length of Msg$
Segment = SSEG(Buffer$)         'use this with BASIC PDS
'Segment = VARSEG(Buffer$)      'use this with QuickBASIC
Address = SADD(Buffer$)
NumBytes = LEN(Buffer$)
CALL ReadFile(Handle, Segment, Address, NumBytes)
GOSUB HandleErr
PRINT "Here is the test message: "; Buffer$

'---- Skip over the CRLF by reading it as an integer.
Address = VARPTR(Temp)          'read the CRLF into Temp
Segment = VARSEG(Temp)
NumBytes = 2
CALL ReadFile(Handle, Segment, Address, NumBytes)
GOSUB HandleErr

'---- Read the integer written earlier, also into Temp.
Address = VARPTR(Temp)
Segment = VARSEG(Temp)
NumBytes = 2
CALL ReadFile(Handle, Segment, Address, NumBytes)
GOSUB HandleErr
PRINT "The integer value just read is:"; Temp

'---- Append a new string at the end of the file.
Msg$ = "This is appended to the end of the file." + CRLF$
Segment = SSEG(Msg$)            'use this with BASIC PDS
'Segment = VARSEG(Msg$)         'use this with QuickBASIC
Address = SADD(Msg$)
NumBytes = LEN(Msg$)
CALL WriteFile(Handle, Segment, Address, NumBytes)
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GOSUB HandleErr
PRINT "The appended message has been written, ";
PRINT "but it's still in the DOS file buffer."

'---- Flush the file's DOS buffer to disk.
CALL FlushFile(Handle)
GOSUB HandleErr
PRINT "Now the buffer has been flushed to disk.  ";
PRINT "Here's the file contents:"
SHELL "TYPE " + FileName$

'---- Display the current length of the file again.
PRINT "Before calling ClipFile the file is now";
Length& = LofFile&(Handle)
GOSUB HandleErr
PRINT Length&; "bytes long."

'---- Clip the file to be 2 bytes shorter.
NewLength& = LofFile&(Handle) - 2
CALL ClipFile(Handle, NewLength&)
PRINT "The file has been clipped successfully.  ";

'---- Prove that the clipping worked successfully.
Length& = LofFile&(Handle)
GOSUB HandleErr
PRINT "It is now"; Length&; "bytes long."

'---- Close the file.
CALL CloseFile(Handle)
GOSUB HandleErr
PRINT "The file was successfully closed."

'---- Open the file again, this time for shared access.
OpenMethod = 66                 'full sharing, read/write
CALL OpenFile(FileName$, OpenMethod, Handle)
GOSUB HandleErr
PRINT FileName$; " successfully opened in shared mode";
PRINT ", handle:"; Handle

'---- Lock bytes 50 through 59.
Start& = 50
Length& = 10
Action = 0                      'specify locking
CALL LockFile(Handle, Start&, Length&, Action)
GOSUB HandleErr
PRINT "File bytes 50 through 59 are successfully locked."

'---- Prove that it is locked by asking DOS to copy it.
PRINT "DOS (another process) fails to access the file:"
SHELL "COPY " + FileName$ + " NUL"

'---- Unlock the same range of bytes (mandatory).
Start& = 50
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Length& = 10
Action = 1                      'specify unlocking
CALL LockFile(Handle, Start&, Length&, Action)
GOSUB HandleErr
PRINT "File bytes 50 through 59 successfully unlocked."

'---- Prove the unlocking worked by having DOS copy it.
PRINT "Once unlocked DOS can access the file:";
SHELL "COPY " + FileName$ + " NUL"

CloseIt:
'---- Close the file
CALL CloseFile(Handle)
GOSUB HandleErr
PRINT "The file was successfully closed, ";

'---- Kill the file to be polite
CALL KillFile(FileName$)
GOSUB HandleErr
PRINT "and then successfully deleted."

END

'=======================================
'  Error handler
'=======================================
HandleErr:

TempErr = DOSError%             'call DOSError% just once
IF TempErr = 0 THEN RETURN      'return if no errors
PRINT ErrMessage$(TempErr)      'else print the message
IF TempErr = 1 THEN             'we failed trying to lock
  COLOR 7 + 16
  PRINT "SHARE must be installed to continue."
  COLOR 7
  RETURN CloseIt
ELSE                            'otherwise end
  END
END IF

SUB ClipFile (Handle, Length&) STATIC
  '-- Use SeekFile to seek there, and then call WriteFile
  '   specifying zero bytes to truncate it at that point.
  '   Length& + 1 is needed because we need to seek just
  '   PAST the point where the file is to be truncated.
  CALL SeekFile(Handle, Length& + 1, Zero)
  IF ErrCode THEN EXIT SUB    'exit if an error occurred
  CALL WriteFile(Handle, Dummy, Dummy, Zero)
END SUB

SUB CloseFile (Handle) STATIC
  ErrCode = 0                   'assume no errors
  Registers.AX = &H3E00         'close file service
  Registers.BX = Handle         'using this handle
  CALL DOSInt(Registers)
  IF Registers.Flags AND 1 THEN ErrCode = Registers.AX
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END SUB

FUNCTION DOSError%
  DOSError% = ErrCode           'simply return the error
END FUNCTION

FUNCTION ErrMessage$ (ErrNumber) STATIC
  SELECT CASE ErrNumber
    CASE 2
      ErrMessage$ = "File not found"
    CASE 3
      ErrMessage$ = "Path not found"
    CASE 4
      ErrMessage$ = "Too many files"
    CASE 5
      ErrMessage$ = "Access denied"
    CASE 6
      ErrMessage$ = "Invalid handle"
    CASE 61
      ErrMessage$ = "Disk full"
    CASE ELSE
      ErrMessage$ = "Undefined error: " + STR$(ErrNumber)
  END SELECT
END FUNCTION

SUB FlushFile (Handle) STATIC
  ErrCode = 0                   'assume no errors
  Registers.AX = &H4500         'create duplicate handle
  Registers.BX = Handle         'based on this handle

  CALL DOSInt(Registers)
  IF Registers.Flags AND 1 THEN 'an error, assign it
    ErrCode = Registers.AX
  ELSE                          'no error, so closing the
    TempHandle = Registers.AX   'dupe flushes the data
    CALL CloseFile(TempHandle)
  END IF
END SUB

SUB KillFile (FileName$) STATIC
  ErrCode = 0                      'assume no errors
  LocalName$ = FileName$ + CHR$(0) 'make an ASCIIZ string

  Registers.AX = &H4100            'delete file service
  Registers.DX = SADD(LocalName$)  'using this handle
  Registers.DS = SSEG(LocalName$)  'use this with PDS
 'Registers.DS = -1                'use this with QB

  CALL DOSInt(Registers)
  IF Registers.Flags AND 1 THEN ErrCode = Registers.AX
END SUB

FUNCTION LocFile& (Handle) STATIC
  ErrCode = 0               'assume no errors
  Registers.AX = &H4201     'seek to where we are now
  Registers.BX = Handle     'using this handle
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  Registers.CX = 0          'move zero bytes from here
  Registers.DX = 0

  CALL DOSInt(Registers)
  IF Registers.Flags AND 1 THEN    'an error occurred
    ErrCode = Registers.AX
  ELSE                             'adjust to one-based
    LocFile& = (Registers.AX + (65536 * Registers.DX)) + 1
  END IF
END FUNCTION

SUB LockFile (Handle, Location&, NumBytes&, Action) STATIC
  ErrCode = 0                     'assume no errors
  LocalLoc& = Location& - 1       'adjust to zero-based

  Registers.AX = Action + (256 * &H5C)  'lock/unlock
  Registers.BX = Handle
  Registers.CX = PeekWord%(VARSEG(LocalLoc&), VARPTR(LocalLoc&) + 2)      
Registers.DX = PeekWord%(VARSEG(LocalLoc&), VARPTR(LocalLoc&))
  Registers.SI = PeekWord%(VARSEG(NumBytes&), VARPTR(NumBytes&) + 2)      
Registers.DI = PeekWord%(VARSEG(NumBytes&), VARPTR(NumBytes&)) 
  CALL DOSInt(Registers)
  IF Registers.Flags AND 1 THEN ErrCode = Registers.AX
END SUB

FUNCTION LofFile& (Handle)
  '---- first get and save the current file location
  CurLoc& = LocFile&(Handle) 'LocFile also clears ErrCode
  IF ErrCode THEN EXIT FUNCTION

  Registers.AX = &H4202      'seek to the end of the file
  Registers.BX = Handle      'using this handle
  Registers.CX = 0           'move zero bytes from there
  Registers.DX = 0

  CALL DOSInt(Registers)
  IF Registers.Flags AND 1 THEN  'an error occurred
    ErrCode = Registers.AX
    EXIT FUNCTION
  ELSE                           'assign where we are
    LofFile& = Registers.AX + (65536 * Registers.DX)
  END IF

  Registers.AX = &H4200     'seek to where we were before
  Registers.BX = Handle     'using this handle
  Registers.CX = PeekWord%(VARSEG(CurLoc&), VARPTR(CurLoc&) + 2)
  Registers.DX = PeekWord%(VARSEG(CurLoc&), VARPTR(CurLoc&)) 
  CALL DOSInt(Registers)
  IF Registers.Flags AND 1 THEN ErrCode = Registers.AX
END FUNCTION

SUB OpenFile (FileName$, Method, Handle) STATIC
  ErrCode = 0                          'assume no errors
  Registers.AX = Method + (256 * &H3D) 'open file service
  LocalName$ = FileName$ + CHR$(0)     'make an ASCIIZ string

  DO
    Registers.DX = SADD(LocalName$) 'point to the name
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    Registers.DS = SSEG(LocalName$) 'use this with PDS
   'Registers.DS = -1               'use this w/QuickBASIC 
    CALL DOSInt(Registers)              'call DOS
    IF (Registers.Flags AND 1) = 0 THEN 'no errors
      Handle = Registers.AX         'assign the handle
      EXIT SUB                      'and we're all done
    END IF

    IF Registers.AX = 2 THEN        'File not found error
      Registers.AX = &H3C00         'so create it!
    ELSE
      ErrCode = Registers.AX        'read the code from AX
      EXIT SUB
    END IF
  LOOP
END SUB

SUB ReadFile (Handle, Segment, Address, NumBytes) STATIC
  ErrCode = 0                   'assume no errors

  Registers.AX = &H3F00         'read from file service
  Registers.BX = Handle         'using this handle
  Registers.CX = NumBytes       'and this many bytes
  Registers.DX = Address        'read to this address
  Registers.DS = Segment        'and this segment

  CALL DOSInt(Registers)
  IF Registers.Flags AND 1 THEN ErrCode = Registers.AX
END SUB

SUB SeekFile (Handle, Location&, Method) STATIC
  ErrCode = 0                      'assume no errors
  LocalLoc& = Location& - 1        'adjust to zero-based

  Registers.AX = Method + (256 * &H42)
  Registers.BX = Handle
  Registers.CX = PeekWord%(VARSEG(LocalLoc&), VARPTR(LocalLoc&) + 2)
  Registers.DX = PeekWord%(VARSEG(LocalLoc&), VARPTR(LocalLoc&)) 
  CALL DOSInt(Registers)
  IF Registers.Flags AND 1 THEN ErrCode = Registers.AX
END SUB

SUB WriteFile (Handle, Segment, Address, NumBytes) STATIC
  ErrCode = 0                      'assume no errors

  Registers.AX = &H4000
  Registers.BX = Handle
  Registers.CX = NumBytes
  Registers.DX = Address
  Registers.DS = Segment

  CALL DOSInt(Registers)
  IF Registers.Flags AND 1 THEN
    ErrCode = Registers.AX
  ELSEIF Registers.AX <> Registers.CX THEN
    ErrCode = 61
  END IF
END SUB
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This program begins by dimensioning two variables as SHARED throughout the entire module. By
establishing the Registers TYPE variable as SHARED, all of the routines can use the same portion of
DGROUP memory. If a separate DIM statement were used within each procedure, that many copies of
this 20-byte variable would reside in memory at once. The CRLF$ variable does not need to be shared,
because it is used only by the demonstration portion of the program.

Before I describe each of these routines and how they are used, it is important to explain how DOS uses
file handles. BASIC is  unique among languages in that it  allows you to make up an arbitrary file
number that is used to access the files. With most languages and operating systems—and DOS is no
exception—it  is  the  operating  system that  assigns  a  number  which your  program must  remember.
Therefore, when you call the OpenFile routine to open a file, the Handle parameter is returned to you
and you will use that number for subsequent file operations.

Another important point is how errors are handled by these routines. Since you do not use ON ERROR
to  trap  those  situations  another  method  is  needed.  Each  routine  clears  or  sets  a  global  SHARED
variable named ErrCode, which indicates its success or failure. After each call to one of these routines
you will then check this variable, to see if it  was successful. For the most efficiency, this program
invokes a central error checking GOSUB routine that performs the actual testing. If an error occurs this
routine prints an appropriate message using the ErrMessage$ function, and then ends. The DOSError
function is provided to allow access to ErrCode from other modules.

In practice, it is not strictly necessary to add an explicit test after each subroutine call. For example, if
you know the file has been opened successfully and you are sure the disk drive has sufficient space,
then it is probably safe to assume that subsequent file writes will be okay. However, if you do call a
routine that causes an error and don't check for that error, the next successful call to another routine will
clear ErrCode and you will have no way to know about the earlier error. 

Opening a File

The demonstration begins by first assigning a file name and open method, and then calling OpenFile to
open the file. The open method lets you indicate the file access mode (reading, writing, or both), and
also if the file will be accessed on a network. This parameter is bit-coded, and each bit has a parallel
equivalent  in  BASIC's  ACCESS  READ,  WRITE,  SHARED,  LOCK  READ,  and  LOCK  WRITE
options. Figure 11-3 shows how these bits are organized.
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Figure  11-3:  The  organization  of  the  bits  that  establish  how a  file  is  to  be
opened.



As with the file attribute bits shown earlier in Figure 11-2, you also need to set bits individually here to
fully control the various file permission privileges. The access mode bits are valid with DOS versions
2.0 or later, and are equivalent to BASIC's ACCESS arguments. The sharing mode bits require DOS 3.0
or  later,  and also require  SHARE.EXE to be installed.  Note that  some network software does not
explicitly require SHARE, and provides the same functionality as part of its normal operation.

The three lower bits control the file access, using the following binary code: 000 establishes read-only
access, 001 allows writing only, and 010 allows both reading and writing. The term access as used here
means what actions your program can perform, and has nothing to do with network or file sharing
privileges.

File  sharing  privileges  are  controlled  by  the  three  bits  in  the  upper  nybble  (half-byte),  and  these
determine what actions may be performed by other programs while your file is open. Regardless of
what sharing (or locking) options you choose, your program always has full permission to access the
file. The share bits are organized as follows: 000 means sharing is disabled, and this is what you must
specify if you are not running on a network or when DOS 2.x is installed. A code of 001 denies other
programs access to either read from or write to the file, 010 allows other programs to read but not
write, and 011 allows writing but not reading. A code of 100 indicates full sharing, which lets other
programs read and write, as long as that part of the file is not locked explicitly.

Again, these codes are presented as binary values, and it is up to you to determine the correct value
based on the settings of the individual bits. This is not as hard as it may sound at first, because you
simply add up the bit values shown in the table. For example, to open a file for non-network read/write
access under any version of DOS you use 000 + 010 = 2, which is the value used in the first OPEN
example. To open a file for reading and writing and also allow other applications to access it fully you
instead use 100 + 010 = 64 + 2 = 66. This is shown in the second OPEN statement. Table 11-2 lists a
few of the possible bit combinations, with the equivalent BASIC OPEN options.

BASIC OPEN Statement Bits Value 
OPEN FOR BINARY 00000010 2
OPEN FOR BINARY ACCESS READ 00000000 0
OPEN FOR BINARY ACCESS WRITE 00000001 1
OPEN FOR BINARY ACCESS READ WRITE 00000010 2
OPEN FOR BINARY ACCESS READ SHARED 01000000 64
OPEN FOR BINARY LOCK READ 00110010 50
OPEN FOR BINARY LOCK WRITE 00100010 34

Table 11-2: Bit equivalents for some of BASIC's OPEN options. 

Reading and Writing

Once the file has been opened successfully, the next step is to show how to write a string variable in the
same way BASIC does when you use PRINT #. The WriteFile and ReadFile routines each expect four
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arguments: the DOS file handle, the segment and address to save from or read into, and the number of
bytes.  These  are  the  same  parameters  that  DOS  expects,  and  you  can  see  by  examining  the
subprograms that they merely pass this information on to DOS.

Just before the first call to WriteFile, Msg$ is assigned a short test string, and a carriage return and line
feed are appended to it manually. Remember, when you use BASIC's PRINT # command it is BASIC
that  adds  these  bytes  for  you.  When  dealing  with  DOS directly  it  is  up  to  you  to  append  these
characters. Of course, you would omit these to mimic appending a semicolon at the end of a BASIC
print line:

PRINT #1, Msg$;

SSEG then determines where the string data segment is, and SADD reports its address within that
segment. The QuickBASIC version is shown as a comment, and it uses VARSEG instead. The number
of bytes is obtained using LEN, and DOS accepts any value up to 65535. It is imperative that you never
pass a value of zero for the number of bytes, or DOS will truncate the file at the current seek location.

The next example that writes an integer variable to the file is similar, except it uses a fixed length of 2.
BASIC will not let you pass different types of data to one subprogram or function, which is why these
read and write routines are designed to accept a segment and address.

ReadFile is  not called until  later in the demonstration; however,  it  is  nearly identical to WriteFile.
Because you must tell ReadFile how many bytes are to be read, you should establish some type of
system. One good one is the method used by Lotus and described in Chapter 6. For programs that do
not need such a heavy-handed approach or that write only strings, you could use a simpler technique.
For example, each string could be preceded by an integer length word, and that word would be read
prior to reading each string. The short code fragment that follows shows how this might work.

Segment = VARSEG(Length)      'Length is what gets read first      
Address = VARPTR(Length)
CALL ReadFile(Handle, Segment, Address, 2)

Work$ = SPACE$(Length)        'make a string that long      
Segment = SSEG(Work$)         'then read Length bytes into the string
Address = SADD(Work$)
CALL ReadFile(Handle, Segment, Address, Length)

Setting and Reading the DOS Seek Location

The LocFile and LofFile functions are similar to their BASIC LOC and LOF counterparts, except that
LocFile is really equivalent to the SEEK function. Chapter 6 described the difference between the LOC
and SEEK functions, and came to the inescapable conclusion that LOC is not nearly as useful as SEEK
in most situations.

The SeekFile subprogram on the other hand is equivalent to the statement form of BASIC's SEEK, and
offers an interesting twist as an enhancement. Where BASIC's SEEK statement expects an offset from
the beginning of the file, DOS provides additional seek methods. One lets you seek relative to where
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you are now in the file, and the other is relative to the end of the file. Therefore, I have included a
SeekMethod parameter with my version of SeekFile, letting you enjoy the same flexibility.

If SeekMethod is set to zero, DOS behaves the same as BASIC does and bases the new seek location
from the beginning of the file. If SeekMethod is instead assigned to 1, the new offset into the file will
be based on the current location. Note that you may use both positive and negative seek values, to
move  forward  and  backwards  respectively.  Finally,  using  a  SeekMethod  value  of  2  tells  DOS to
consider the new location as being relative to the end of the file.

For this method you may also use either a positive or negative value, to go beyond the end of the file or
some offset before the end. While there is nothing inherently wrong with seeking past the end of a file,
if any data is written at that point DOS will make that the new file length. And as explained in Chapter
6, the portion of the file that lies between the previous end of the file and the current end will hold
whatever junk happened to be in the sectors that were just assigned to extend the length.

One slight complication arises if you are dealing with fixed-length record data: you must calculate the
appropriate file offset manually. The short one-line DEF FN function below shows how to do this. 

DEF FNSeekLoc&(RecNumber, RecLen) = ((RecNumber - 1) * CLNG(RecLen)) + 1 

Locking a File

The LockFile  subprogram serves  the  same purpose  as  BASIC's  LOCK and UNLOCK statements.
Because the code to lock and unlock a file are identical except for a single instruction,  it  seemed
reasonable to combine the two services into one routine. LockFile expects four arguments: a handle, a
starting offset, the number of bytes, and an action code. The starting offset and number of bytes use
long integer values, to accommodate large files.
Because DOS's Lock and Unlock services require  you to specify the range of bytes to be locked,
additional  effort  may  be  needed  on  your  part.  For  example,  if  you  are  manipulating  fixed-length
records it is up to you to translate record numbers and record ranges to an equivalent binary offset and
number of bytes. Fortunately, these values are very easy to determine using the following formulas:

Location& = (RecNumber - 1) * CLNG(RecLength)
NumBytes& = RecLength * CLNG(NumRecords)

Note how CLNG is necessary to prevent BASIC from creating an overflow error if the result of the
multiplications exceeds 32767.

LockFile can also be used with normal BASIC file handling statements, if you merely want to avoid an
error from attempting to lock a file that is already locked by another process. This requires you to use
BASIC's FILEATTR function to obtain the equivalent DOS handle, thus: 

Handle = FILEATTR(FileNumber, 2)
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Here, FileNumber is the BASIC file number that was specified when the file was first opened. For
example, if you used this:

OPEN FileName$ FOR RANDOM SHARED AS #4 LEN = RecLength 

then the correct value for FileNumber will be 4.

Beyond BASIC's File Handling

Aside from SeekFile's ability to use the end of a file or the current seek location as a base point, the
routines presented so far merely mimic the same capabilities BASIC already provides. Two notable
exceptions, however, are ClipFile and FlushFile.

The ClipFile subprogram lets you set a new length for a file, and that length may be either longer or
shorter than the current length. ClipFile takes advantage of a little-known DOS feature that sets a new
length for a file when you tell it to write zero bytes. This technique was used in the DBPACK.BAS
program from Chapter 7, and it let that program remove deleted records from the end of a dBASE file.

ClipFile begins by calling SeekFile to move the DOS file pointer just past the new length specified. If
no error occurred it then calls WriteFile to write zero bytes at that point, thus establishing the new
length. Notice the way the undefined variable Zero is used rather than a literal constant 0. As you
already learned in Chapter 2, when a constant is passed to a subprogram or function, BASIC creates
code to store a copy of the constant in DGROUP, and then passes the address of that copy. Although the
variable Zero also requires two bytes of DGROUP memory for storage, the code to explicitly place the
value there is avoided. Since an unassigned variable is  always zero this method can be used with
confidence.

FlushFile also provides an important service that BASIC does not. When data is written to disk using
either BASIC or DOS via direct interrupt calls, the last portion that was written is not necessarily on
the physical disk. DOS buffers all file writes to minimize the number of disk accesses needed, thereby
improving the  speed of  those  writes.  BASIC performs additional  buffering  as  well,  which  further
improves your program's performance.  However,  this  creates a potential  problem because a power
outage or other disaster will cause any data in the file buffer to be lost.

FlushFile calls upon another little-known DOS service called Duplicate Handle. When this service is
called with the handle of a file that is already open, DOS creates a duplicate handle for the same file.
This service is not that useful in and of itself, except for one important exception:  When the duplicate
handle is  subsequently closed,  DOS also writes the original file's contents to disk and updates the
directory entry to reflect the current length. This is exactly what FlushFile does to flush the file buffer
to disk.

Error Messages

The ErrMessage$ function is designed to display an appropriate message if an error occurs while using
these  routines.  DOS  has  fewer  error  codes  than  BASIC,  and  it  also  uses  a  completely  different
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numbering system. The ErrMessage$ function returns an error message that is equivalent to BASIC's
where possible, but based on the DOS error return codes.

Potential Problems

Although this collection of file handling routines offers many improvements over using equivalent
BASIC statements, there is one important issue I have not addressed here: handling critical errors. A
critical error is caused by attempting to access a floppy disk drive with the drive door open, or no disk
in place. At the DOS command line critical errors result in the infamous "Abort, Retry, Fail" message.

Handling  critical  errors  requires  pure  assembly  language  and  is  a  fairly  complex  undertaking.
Therefore, I have purposely omitted that functionality from these routines. However, add-on library
products such as QuickPak Professional and P.D.Q. from Crescent Software are written in assembly
language, and include critical error handling.

There is another potential problem you must be aware of when using these routines. When you open a
file using BASIC's OPEN statement,  and then restart  the program before the file has been closed,
BASIC closes the file before running your program again. This is done automatically and without your
knowing about it.

If you call OpenFile to open a file and then restart the program, the original file remains open. This
causes no harm by itself.  Your program will simply receive the next available handle when it calls
OpenFile. But at some point you will surely exhaust the available handles. The problem is that you will
not be able to save your program, because the BASIC editor needs a handle when writing your source
code to disk.

The solution is to press F6 to go to the Immediate window, and then type the following line:

FOR X% = 5 TO 20: CALL CloseFile(X%): NEXT

This closes all of the files your program opened, thus freeing them for use by the BASIC editor. It is
essential that you never close DOS handles zero through four, because they are in use by the PC. Since
DOS uses these handles itself to print to the screen and read keyboard input, closing those handles will
effectively lock up your PC. 

It is okay to close handles 5 through 20, even if your
program hasn't opened that many. That is, asking DOS to
close a file handle that was never opened does no harm.

Accessing The Mouse

All of the DOS and BIOS system services we have looked at so far rely on either the Interrupt routine
that comes with BASIC, or the simplified DOSInt replacement. In a similar fashion, accessing the
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mouse driver also requires you to call interrupts. All of the mouse services are invoked using Interrupt
&H33,  and  like  DOS  and  the  BIOS  they  require  you  to  load  the  processor's  registers  to  pass
information, and then read them again afterward to obtain the results.

In this section I will present several useful subroutines that show how to access the mouse interrupt.
The first portion discusses the various utility routines, and shows how they are used. Following that, I
will explain how the routines actually work and interface with the mouse driver. 

Mouse Services

The important mouse services provided here are those that turn the mouse cursor on and off, position it
on the screen and control its color, and let you determine which buttons are being pressed and where
the cursor is presently located. Other routines show how to restrict the range of the mouse cursor's
travel, and show how to define new, custom cursor shapes.

To  reduce  the  size  of  your  programs  I  have  written  a  short  assembly  language  subroutine  called
MouseInt. This is similar to the DOSInt routine introduced in Chapter 6, except it is intended for use
with the mouse interrupt &H33.

;MOUSEINT.ASM

.Model Medium, Basic

MouseRegs Struc
  RegAX  DW ?
  RegBX  DW ?
  RegCX  DW ?
  RegDX  DW ?
  Segmnt DW ?
MouseRegs Ends

.Code

MouseInt Proc Uses SI DS ES, MRegs:Word
  Mov  SI,MRegs          ;get the address of MouseRegs
  Mov  AX,[SI+RegAX]     ;load each register in turn
  Mov  BX,[SI+RegBX]
  Mov  CX,[SI+RegCX]
  Mov  DX,[SI+RegDX]

  Mov  SI,[SI+Segmnt]    ;see what the segment is
  Or   SI,SI             ;is it zero?
  Jz   @F                ;yes, skip ahead and use default

  Cmp  SI,-1             ;is it -1?
  Je   @F                ;yes, skip ahead
  Mov  DS,SI             ;no, use the segment specified

@@:
  Push DS                ;either way, assign ES=DS
  Pop  ES
  Int  33h               ;call the mouse driver
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  Push SS                ;regain access to MouseRegs
  Pop  DS

  Mov  SI,MRegs          ;access MouseRegs again
  Mov  [SI+RegAX],AX     ;save each register in turn
  Mov  [SI+RegBX],BX
  Mov  [SI+RegCX],CX
  Mov  [SI+RegDX],DX

  Ret                    ;return to BASIC
MouseInt Endp
End

Like DOSInt, this routine also uses a TYPE variable to define the various CPU registers that are needed
by the mouse driver. However, fewer registers are needed simplifying the TYPE structure. You should
define this TYPE variable as follows:

TYPE MouseType
  AX      AS INTEGER
  BX      AS INTEGER
  CX      AS INTEGER
  DX      AS INTEGER
  Segment AS INTEGER
END TYPE
DIM MouseRegs AS MouseTYPE

Since the mouse driver uses only these few registers, you can save a few bytes of DGROUP memory
by using this subset TYPE instead of the full Registers TYPE that DOSInt requires. Notice the last
component  called  Segment.  Unlike  the  Mouse  routine  that  Microsoft  sells  as  an  add-on  library,
MouseInt lets you specify a segment for passing far data to the mouse interrupt handler. For most
mouse services you can leave the segment set to zero or -1. Either value tells MouseInt to use BASIC's
default data segment. But some services that accept the address of incoming data also need to know the
data's segment.

In the Microsoft version you have no choice but to use static data and near memory arrays. Obviously,
this precludes being able to use BASIC PDS far strings with that interface routine. You would instead
have to create a single fixed-length string or TYPE variable, just to force the data to reside in near
memory. When calling MouseInt with a value other than zero or  -1 for the segment, MouseInt loads
both DS and ES with that value. 

As with the collection of DOS file access routines, the following subprograms and functions can be
added as a module to your program. Again, you should first make a copy of the source file that is
included on the accompanying floppy disk, and then delete the demonstration portion of the program.
This way, you can also run the original demonstration, and trace through it to test each of the mouse
services. Of course, be sure to leave the commands that dimension the MouseRegs and MousePresent
variables as being shared, and also the relevant DECLARE and DEFINT statements.

'MOUSE.BAS, demonstrates the various mouse services

DEFINT A-Z
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'---- assembly language functions and subroutines
DECLARE FUNCTION PeekWord% (BYVAL Segment, BYVAL Address)
DECLARE SUB MouseInt (MouseRegs AS ANY)

'---- BASIC functions and subprograms
DECLARE FUNCTION Bin2Hex% (Binary$)
DECLARE FUNCTION MouseThere% ()
DECLARE FUNCTION WaitButton% ()
DECLARE SUB CursorShape (HotX, HotY, Shape())
DECLARE SUB HideCursor ()
DECLARE SUB MouseTrap (ULRow, ULCol, LRRow, LRCol)
DECLARE SUB MoveCursor (X, Y)
DECLARE SUB ReadCursor (X, Y, Buttons)
DECLARE SUB ShowCursor ()
DECLARE SUB TextCursor (FG, BG)

DECLARE SUB Prompt (Message$)   'used for this demo only

TYPE MouseType                  'similar to DOS RegType
  AX      AS INTEGER
  BX      AS INTEGER
  CX      AS INTEGER
  DX      AS INTEGER
  Segment AS INTEGER
END TYPE

DIM SHARED MouseRegs AS MouseType
DIM SHARED MousePresent
REDIM Cursor(1 TO 32)

IF NOT MouseThere% THEN         'ensure a mouse is present   
 PRINT "No mouse is installed"  '  and initialize it if so
 END
END IF
CLS

DEF SEG = 0                     'see what type of monitor
IF PEEK(&H463) <> &HB4 THEN     'if it's color
  ColorMon = -1                 'remember that for later
  SCREEN 12                     'this requires a VGA
  LINE (0, 0)-(639, 460), 1, BF 'paint a blue background
END IF

DIM Choice$(1 TO 5)             'display some choices
LOCATE 1, 1                     'for something to point at FOR X = 1 TO 5
  READ Choice$(X)
  PRINT Choice$(X);
  LOCATE , X * 12
NEXT
DATA "Choice 1", "Choice 2", "Choice 3"
DATA "Choice 4", "Choice 5"

IF NOT ColorMon THEN            'if it's not color
  CALL TextCursor(-2, -2)       'select a text cursor
END IF
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CALL ShowCursor
CALL Prompt("Point the cursor at a choice, and press _
  a button.")

DO                              'wait for a button press
  CALL ReadCursor(X, Y, Button)
LOOP UNTIL Button
IF Button AND 4 THEN Button = 3 'for three-button mice

CALL Prompt("You pressed button" + STR$(Button) + _
  " and the cursor was at location" + STR$(X) + "," + _
  STR$(Y) + " - press a button.")

IF ColorMon THEN                'if it is a color monitor
  RESTORE Arrow                 '  load a custom arrow
  GOSUB DefineCursor
END IF
Dummy = WaitButton%

IF ColorMon THEN                'the hardware can do it
  RESTORE CrossHairs            'set a cross-hairs cursor
  GOSUB DefineCursor
  CALL Prompt("Now the cursor is a cross-hairs, press _
    a button.")
  Dummy% = WaitButton%
END IF

IF ColorMon THEN                'now set an hour glass
  RESTORE HourGlass
  GOSUB DefineCursor
END IF

CALL Prompt("Now notice how the cursor range is _
  restricted. Press a button to end.")
CALL MouseTrap(50, 50, 100, 100)
Dummy = WaitButton%

IF ColorMon THEN                'restore to 640 x 350
  CALL MouseTrap(0, 0, 349, 639)
ELSE                            'use CGA bounds for mono!
  CALL MouseTrap(0, 0, 199, 639)
END IF

Dummy = MouseThere%             'reset the mouse driver
CALL HideCursor                 'and turn off the cursor
SCREEN 0                        'revert to text mode
END

DefineCursor:

FOR X = 1 TO 32                 'read 32 words of data
  READ Dat$                     'read the data
  Cursor(X) = Bin2Hex%(Dat$)    'convert to integer
NEXT
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CALL CursorShape(Zero, Zero, Cursor())
RETURN

Arrow:

NOTES:
'The first group of binary data is the screen mask.
'The second group of binary data is the cursor mask.
'The cursor color is black where both masks are 0.
'The cursor color is XORed where both masks are 1.
'The color is clear where the screen mask is 1 and the
'  cursor mask is 0.
'The color is white where the screen mask is 0 and the
'  cursor mask is 1.
'
'Mouse cursor designs by Phil Cramer.

'--- this is the screen mask
DATA "1110011111111111"
DATA "1110001111111111"
DATA "1110000111111111"
DATA "1110000011111111"
DATA "1110000001111111"
DATA "1110000000111111"
DATA "1110000000011111"
DATA "1110000000001111"
DATA "1110000000000111"
DATA "1110000000000011"
DATA "1110000000000001"
DATA "1110000000011111"
DATA "1110001000011111"
DATA "1111111100001111"
DATA "1111111100001111"
DATA "1111111110001111"

'---- this is the cursor mask
DATA "0001100000000000"
DATA "0001010000000000"
DATA "0001001000000000"
DATA "0001000100000000"
DATA "0001000010000000"
DATA "0001000001000000"
DATA "0001000000100000"
DATA "0001000000010000"
DATA "0001000000001000"
DATA "0001000000000100"
DATA "0001000000111110"
DATA "0001001100100000"
DATA "0001110100100000"
DATA "0000000010010000"
DATA "0000000010010000"
DATA "0000000001110000"

CrossHairs:

DATA "1111111101111111"
DATA "1111111101111111"
DATA "1111111101111111"
DATA "1111000000000111"
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DATA "1111011101110111"
DATA "1111011101110111"
DATA "1111011111110111"
DATA "1000000111000000"
DATA "1111011111110111"
DATA "1111011101110111"
DATA "1111011101110111"
DATA "1111000000000111"
DATA "1111111101111111"
DATA "1111111101111111"
DATA "1111111101111111"
DATA "1111111111111111"

DATA "0000000010000000"
DATA "0000000010000000"
DATA "0000000010000000"
DATA "0000111111111000"
DATA "0000100010001000"
DATA "0000100010001000"
DATA "0000100000001000"
DATA "0111111000111111"
DATA "0000100000001000"
DATA "0000100010001000"
DATA "0000100010001000"
DATA "0000111111111000"
DATA "0000000010000000"
DATA "0000000010000000"
DATA "0000000010000000"
DATA "0000000000000000"

HourGlass:

DATA "1100000000000111"
DATA "1100000000000111"
DATA "1100000000000111"
DATA "1110000000001111"
DATA "1110000000001111"
DATA "1111000000011111"
DATA "1111100000111111"
DATA "1111110001111111"
DATA "1111110001111111"
DATA "1111100000111111"
DATA "1111000000011111"
DATA "1110000000001111"
DATA "1110000000001111"
DATA "1100000000000111"
DATA "1100000000000111"
DATA "1100000000000111"

DATA "0000000000000000"
DATA "0001111111110000"
DATA "0000000000000000"
DATA "0000111111100000"
DATA "0000100110100000"
DATA "0000010001000000"
DATA "0000001010000000"
DATA "0000000100000000"
DATA "0000000100000000"
DATA "0000001010000000"
DATA "0000011111000000"
DATA "0000110001100000"
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DATA "0000100000100000"
DATA "0000000000000000"
DATA "0001111111110000"
DATA "0000000000000000"

FUNCTION Bin2Hex% (Binary$) STATIC  'binary to integer
  Temp& = 0
  Count = 0

  FOR X = LEN(Binary$) TO 1 STEP -1
    IF MID$(Binary$, X, 1) = "1" THEN
      Temp& = Temp& + 2 ^ Count
    END IF
    Count = Count + 1
  NEXT

  IF Temp& > 32767 THEN Temp& = Temp& - 65536
  Bin2Hex% = Temp&
END FUNCTION

SUB CursorShape (HotX, HotY, Shape()) STATIC
  IF NOT MousePresent THEN EXIT SUB

  MouseRegs.AX = 9
  MouseRegs.BX = HotX
  MouseRegs.CX = HotY
  MouseRegs.DX = VARPTR(Shape(1))
  MouseRegs.Segment = VARSEG(Shape(1))

  CALL MouseInt(MouseRegs)
END SUB

SUB HideCursor STATIC       'turns off the mouse cursor
  IF NOT MousePresent THEN EXIT SUB

  MouseRegs.AX = 2
  CALL MouseInt(MouseRegs)
END SUB

FUNCTION MouseThere% STATIC 'reports if a mouse is present
  MouseThere% = 0           'assume there is no mouse
  IF PeekWord%(Zero, (4 * &H33) + 2) = 0 THEN 'segment = 0
    EXIT FUNCTION           '  means there's no mouse
  END IF

  MouseRegs.AX = 0
  CALL MouseInt(MouseRegs)
  MouseThere% = MouseRegs.AX
  IF MouseRegs.AX THEN MousePresent = -1
END FUNCTION

SUB MouseTrap (ULRow, ULColumn, LRRow, LRColumn) STATIC
  IF NOT MousePresent THEN EXIT SUB

  MouseRegs.AX = 7           'restrict horizontal movement
  MouseRegs.CX = ULColumn

398



  MouseRegs.DX = LRColumn
  CALL MouseInt(MouseRegs)

  MouseRegs.AX = 8           'restrict vertical movement
  MouseRegs.CX = ULRow
  MouseRegs.DX = LRRow
  CALL MouseInt(MouseRegs)
END SUB

SUB MoveCursor (X, Y) STATIC 'positions the mouse cursor
  IF NOT MousePresent THEN EXIT SUB

  MouseRegs.AX = 4
  MouseRegs.CX = X
  MouseRegs.DX = Y
  CALL MouseInt(MouseRegs)
END SUB

SUB Prompt (Message$) STATIC 'prints prompt message
    V = CSRLIN               'save current cursor position
    H = POS(0)
    LOCATE 30, 1             'use 25 for EGA SCREEN 9
    CALL HideCursor          'this is very important!
    PRINT LEFT$(Message$, 79); TAB(80);
    CALL ShowCursor          'and so is this
    LOCATE V, H              'restore the cursor
END SUB

SUB ReadCursor (X, Y, Buttons)  'returns cursor and button                       
'  information
  IF NOT MousePresent THEN EXIT SUB

  MouseRegs.AX = 3
  CALL MouseInt(MouseRegs)

  Buttons = MouseRegs.BX AND 7
  X = MouseRegs.CX
  Y = MouseRegs.DX
END SUB

SUB ShowCursor STATIC        'turns on the mouse cursor
  IF NOT MousePresent THEN EXIT SUB

  MouseRegs.AX = 1
  CALL MouseInt(MouseRegs)
END SUB

SUB TextCursor (FG, BG) STATIC
  IF NOT MousePresent THEN EXIT SUB

  MouseRegs.AX = 10
  MouseRegs.BX = 0
  MouseRegs.CX = &HFF
  MouseRegs.DX = 0

  IF FG = -1 THEN        'maintain FG as the cursor moves?
    MouseRegs.CX = MouseRegs.CX OR &HF00

399



  ELSEIF FG = -2 THEN    'invert FG as the cursor moves?
    MouseRegs.CX = MouseRegs.CX OR &H700
    MouseRegs.DX = &H700
  ELSE                   'use the specified color
    MouseRegs.DX = 256 * (FG AND &HFF)
  END IF

  IF BG = -1 THEN        'maintain BG as the cursor moves?
    MouseRegs.CX = MouseRegs.CX OR &HF000
  ELSEIF BG = -2 THEN    'invert BG as the cursor moves?
    MouseRegs.CX = MouseRegs.CX OR &H7000
    MouseRegs.DX = MouseRegs.DX OR &H7000
  ELSE                   'use the specified color
    Temp = (BG AND 7) * 16 * 256
    MouseRegs.DX = MouseRegs.DX OR Temp
  END IF

  CALL MouseInt(MouseRegs)
END SUB

FUNCTION WaitButton% STATIC     'waits for a button press
  IF NOT MousePresent THEN EXIT FUNCTION

  X! = TIMER                    'pause to allow releasing
  WHILE X! + .2 > TIMER         '  the button
  WEND

  DO                            'wait for a button press
    CALL ReadCursor(X, Y, Button)
  LOOP UNTIL Button

  IF Button AND 4 THEN Button = 3 'for three-button mice
  WaitButton% = Button            'assign the function
END FUNCTION

This program begins by declaring all of the support functions, and then defines and dimensions the
MouseRegs  TYPE  variable.  The  integer  array  is  used  to  hold  the  custom  graphics  cursor  shape
information, which the CursorShape routine requires. The remainder of the program illustrates how to
use the various mouse routines in your own programs.

Determining if a Mouse is Present

The first function is MouseThere, which serves two important purposes:  The first is to determine if a
mouse is present. The second purpose of MouseThere is to initialize the mouse driver to its default
parameters. This lets you be sure that the mouse color, shape, and other parameters are in a known
state. Resetting the mouse is strongly recommended because some programs do not bother to reset the
mouse when they are finished. 

Although there is a mouse service to determine if the driver is installed, you must also perform an
additional test to prevent problems with early computers running DOS version 2. The problem arises
because these computers leave the mouse interrupt (&H33) undefined if  no mouse is  present,  and
calling this interrupt is likely to make the PC crash.
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As you already know, the interrupt vector table in low memory holds the segment and address for every
interrupt service routine that is present in the PC. But who puts those addresses into the interrupt vector
table?  All of the BIOS interrupt addresses are assigned by the BIOS as part of the power-up code in
your PC's ROM. Likewise, DOS installs the addresses it needs while it is being loaded from disk.

The BIOS in modern computers assigns every interrupt vector to a valid address, even those that it (the
BIOS)  does  not  use.  The  code  pointed  to  by  the  unused  interrupts  is  an  assembly  language  Iret
(Interrupt Return) instruction. So if no other routine is servicing that interrupt, calling it merely returns
with  no  change to  the  register  contents.  But  early  computers  and early  versions  of  DOS ignored
Interrupt &H33, and left the values in that vector address set to zero. Calling the code at address zero is
guaranteed to fail,  since address zero holds other addresses and not executable code. Therefore, to
safely detect the presence of a mouse requires first looking in low memory, to ensure that the interrupt
address there is valid.

It is important to understand that you must use MouseThere once at the start of your program, before
any  of  the  other  mouse  routines  will  work.  All  of  the  mouse  routines  check  the  global  variable
MousePresent before calling MouseInt, and do nothing if it is zero. This safety mechanism lets you
freely call the various mouse services without regard to whether or not a mouse is installed, to avoid
the DOS 2 problem described earlier. Thus, the same program statements can accommodate a mouse if
one is present or not, without requiring many separate IF tests.

For example, you will probably want to write programs that use a mouse if one is present, but don't
require it. If you had to have a separate block of code for each case, your program would be much
larger and slower than necessary. Therefore, you can simply call these mouse routines whether or not a
mouse is present. The code fragment that follows shows a simple example of this in context.

PRINT "Press a key or mouse button to continue: ";
DO
  Temp$ = INKEY$
  CALL ReadCursor(X, Y, Buttons)
LOOP UNTIL LEN(INKEY$) OR Buttons
PRINT "Thank you."

If MouseThere determined that no mouse was present when it was called earlier, then ReadCursor will
do nothing and return no values. Of course, you will have to check for mouse events and act on them,
but these can be handled within the same blocks of code that also handle keyboard input.

Once the program knows that a mouse is in fact present, it checks to see if the display adapter is color
or monochrome. A color monitor supports more mouse options such as changing the shape of the
mouse cursor. In this case the program assumes that you have a VGA adapter. If you have only an
EGA, simply change the SCREEN 12 statement  to SCREEN 9. You will  also have to change the
LOCATE command in the Prompt subprogram to use line 25 instead of line 30. Although the cursor
shape can be altered with CGA and Hercules adapters, those are not accommodate here.
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Once the screen display mode is set, a filled box is drawn covering the entire screen, to create an
attractive blue background.  You should be aware that  the drivers  included come with many older,
inexpensive clone mouse devices  do not  support  the EGA and VGA display modes.  This  is  not a
limitation with the mouse hardware; rather, the problem lies in the driver software. Fortunately, the
MOUSE.COM and MOUSE.SYS drivers that Microsoft includes with BASIC work with most brands
of mouse. Furthermore, you are allowed to distribute those drivers with your own programs, as long as
you include an appropriate copyright notice. See the license agreement that came with your version of
BASIC for more information on displaying the Microsoft copyright.

Controlling the Text Cursor

After reading and displaying a list of sample choices that serve as a menu, the program again checks to
see which type of adapter is present. If it is monochrome, then a custom text cursor is defined using the
TextCursor routine. This routine is appropriate for both monochrome and color adapters, and offers
several useful options that let you control fully how the foreground and background colors will appear.
Also, an initial call to TextCursor is needed with some non-Microsoft mouse drivers to ensure that the
cursor is displayed after calling ShowCursor.

TextCursor  expects  two parameters  to  control  the cursor's  foreground and background colors.  If  a
positive value is given for either parameter, then that is the color the mouse cursor assumes as it travels
around the screen. For example, if you use a color combination of 0, 4 the character under the mouse
cursor will be shown in black on a red background. It is important to understand that the normal mouse
cursor color is actually the character's background color. The foreground indicates what color the text is
to become as the cursor passes over it.

Using a value of -1 for either parameter tells the mouse driver to leave that portion of the color alone
when the cursor is positioned over a character. If you use a color combination of 7, -1 the text under the
mouse cursor will be shown in white and the background will be unchanged. Of course, if both the
foreground and background are set to -1, the cursor will never be visible.

A value of -2 causes that color portion to be inverted using an XOR process as the cursor moves around
the screen. That is,  white becomes black, green turns to magenta, and blue is translated to brown.
Although a value of -2 for the background guarantees that the cursor is always visible, it can also be
distracting to see the mouse cursor color change constantly when the screen itself uses many colors. If
you want to experiment with the various TextColor options, add remarking apostrophes to deactivate
the three statements after the line  IF PEEK(&H463) <> &HB4 THEN near the beginning of the
program.

The ShowCursor subprogram simply tells the mouse drive to make the mouse cursor visible, in much
the same way  LOCATE , , 1 option does with the normal screen cursor. The companion routine
HideCursor turns the mouse cursor off again. These are very simple routines that do not require much
explanation; however, please understand that until you turn the cursor on explicitly it remains hidden.
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As a rule, you also want to ensure that the cursor is turned off before you end your program and return
to DOS. 

There is one irritating quirk about how the mouse driver keeps track of whether the mouse cursor is
currently visible or not. When you use the statement  LOCATE , , 0 to turn off the regular text
cursor, the BIOS remembers that it is off. And if you subsequently use the same statement again the
request  is  ignored.  The  mouse  driver,  on  the  other  hand,  remembers  how many  times  you called
HideCursor and requires a corresponding number of calls to ShowCursor before it becomes visible.
However, the reverse is not true. If you turn on the cursor, say, five times in a row, only one call to
HideCursor is needed to turn it off.

Reading the Mouse Buttons and Cursor Position

The next mouse routine is called ReadCursor,  and it  calls  the service that returns both the current
mouse cursor position and also which buttons are currently pressed. Notice that the X and Y values
returned assume graphics pixel coordinates even when the display screen is in text mode. Therefore,
when  a  monochrome  display  adapter  is  being  used,  the  values  returned  range  from  0  to  639
horizontally (X), and 0 through 199 vertically (Y). These are the same values you would receive when
in CGA black and white screen mode 2. When in graphics mode, the X and Y values are based on the
current SCREEN setting. For example, in EGA screen mode 9, the returned value for X ranges from 0
through 639, and Y is between 0 and 349.

When your program is in text mode (SCREEN 0), the current X and Y cursor location is based on the
upper-left corner of the mouse cursor box. Therefore, the actual horizontal range (X) is usually returned
between 0 and 632 to account for a box width of 8 pixels. The vertical location (Y) ranges from 0 to
192 for the same reason: If the bottom of the cursor is at the bottom of the screen, then the top is eight
pixels higher. In graphics mode you are allowed to establish any portion of the mouse cursor as being
the hot spot, and this is discussed below in the section Changing the Mouse Cursor Shape.

The buttons are returned bit coded—the lowest bit is set if button 1 is pressed, and the next bit is set
when the second button is pressed. If a mouse has three buttons, the third bit may also be set to indicate
that. Isolating which bit or combination of bits is set is done using the AND logic operator. If Button
AND 1 is non-zero then the first button is pressed. Similarly,  Button AND 2 means the second
button is being pressed. However, testing for button 3 requires a value of 4, since that is the value of the
third bit. The program fragment that follows shows this in context, and you can press one or more
buttons at a time.

DO 
  PRINT "Press Ctrl-Break to end."
  CALL ReadCursor(X, Y, Button) 

  LOCATE 10, 1 
  IF Button AND 1 THEN 
    PRINT "BUTTON 1" 
  ELSE 
    PRINT "        " 
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  END IF 

  LOCATE 10, 11 
  IF Button AND 2 THEN 
    PRINT "BUTTON 2" 
  ELSE 
    PRINT "        " 
  END IF 

  LOCATE 10, 21 
  IF Button AND 4 THEN 
    PRINT "BUTTON 3" 
  ELSE 
    PRINT "        " 
  END IF 
LOOP 

Besides  the  ReadCursor  routine  which  returns  the  cursor  position  and  button  status,  I  have  also
included a related function called WaitButton. If your program will be waiting for a button and needs to
know which button was pressed, WaitButton does this using fewer bytes of compiler-generated code.
Since there are no passed parameters only five bytes are needed to call WaitButton, compared to 17
needed to call ReadCursor. WaitButton simply waits in an empty loop until a button is pressed, and
then reports which button it was.

Changing the Mouse Cursor Shape

The CursorShape routine lets you change the size and shape of the mouse cursor when the display is in
graphics mode. The mouse driver routine that is called requires the address of a block of memory 32
words long that holds the new shape and color information. The data in this memory block is organized
into two sections. The first 16 words hold what is called the screen mask, and the second 16 words hold
the cursor mask. 

The bits in these masks interact to change the way the foreground and background colors on the screen
change as the cursor passes over them. The method used by the mouse driver to control the cursor
shape and colors is very complex, and the examples and discussions in Microsoft's documentation do
little to assist the programmer. Therefore, I have provided a simple mechanism that lets you draw the
cursor shape using a series of BASIC DATA statements.

Using this method it is easy to control each individual pixel in the mouse cursor, and determine if it is
white, black, or transparent. When the bits in both the screen and cursor masks are both zero, the cursor
will be black. And when the bits in both masks are set to 1, the color is XORed (reversed) at that pixel
position.  If a screen mask bit  is 1 and its  corresponding bit  in the cursor mask is  0,  the cursor is
transparent. Reversing this to make the screen mask 0 and the cursor mask 1 makes the cursor white at
that  position.  Thus,  you can create  nearly any shape  for  the mouse  cursor,  and a  wide variety  of
interesting color effects.
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If your needs are modest or to minimize the number of DATA statements, you can define only the
cursor mask and use -1 for the first 16 elements in the array by changing that portion of the program
like this: 

DefineCursor:
FOR X = 1 TO 32                'read 32 words of data
  IF X < 17 THEN               'set first 16 elements = -1
    Cursor(X) = -1
  ELSE                         'and for the second 16
    READ Dat$                  '  read the data and then
    Cursor(X) = Bin2Hex%(Dat$) '  convert to an integer
  END IF
NEXT

DATA "1100000000000000"        'use only 16 DATA items
DATA "1110000000000000"        '  in this section
 .
 .

The other two parameters required by CursorShape are the X and Y cursor hot spots. When you call
ReadCursor to return the current mouse cursor location and button information, the X and Y position
returned identifies a single pixel on the screen. Which pixel within the mouse cursor that is reported is
the cursor hot spot. When you use an arrow cursor shape, the hot spot is typically the tip of the arrow.
This is located in the upper left corner of the cursor box and is identified as location 0, 0. However, you
can also make any other portion of the cursor the hot spot. For simplicity, the GOSUB routine at the
DefineCursor label always uses 0, 0. However, the cross hairs cursor really should use the values 8, 8
to set the hot spot at the center of the block.

Controlling the Mouse Cursor Position and Range

The MoveCursor routine lets you set a new position for the mouse cursor, and it too expects pixel
values  even  when  the  screen  is  in  text  mode.  Although  MoveCursor  is  not  demonstrated  in  this
program, it is included in the interest of completeness.

The final mouse subprogram included lets you restrict the range of mouse cursor travel, and it is called
—appropriately  enough—MouseTrap.  You  pass  the  upper-left  and  lower-right  boundaries  to
MouseTrap, and it in turns passes those values on to the mouse driver. Internally, the mouse driver lets
you restrict the range for horizontal and vertical motion independently. But for simplicity this routines
requires both sets of values at one time.

Like the services that ReadCursor and MoveCursor call, these services also expect the cursor bounds to
be given as pixels even when in text mode. Also, notice that the mouse driver always forces the cursor
into  the  restricted  region  for  you.  That  is,  if  the  cursor  is  in  the  upper-left  corner  and  you  call
MouseTrap forcing it to stay inside the bottom half of the screen, it will be moved to the top of that
region.
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Be aware that MouseTrap is also required if you plan to use the 43 or 50-line EGA and VGA text
modes. By default, the mouse driver assumes that a text screen has only 25 lines, and will not normally
let the mouse cursor be placed below that line. If you have used WIDTH , 50 to put the screen into
the  50-line  mode,  the  mouse  cursor  will  not  be  allowed  below line  25.  Therefore,  you  must  use
MouseTrap to increase the allowable cursor region beyond the default range. Also be aware that using
values larger than the current screen dimensions let the mouse disappear off the bottom of the screen,
or wrap around past the right edge and reappear on the left side. 

Accessing the Mouse Driver

All of the mouse routines considered so far are comprised of a simplified interface to the mouse driver
through the MouseInt routine. MouseInt lets you access any service supported by the mouse driver,
including those that I have not described here. Similar to the various DOS and BIOS services, the
mouse driver expects a service number in  the AX register.  The other registers contain the various
expected parameters and returned information, and they vary from service to service.

There are no errors returned by the mouse driver, so no mechanism is needed to handle errors. For
example, if you tell the mouse driver to position the cursor off the top edge of the screen, it simply
ignores you.

Unfortunately, discussing every possible mouse service goes beyond what I could ever hope to include
in a book about BASIC. If you want to learn more about the services that are available to you, I
recommend  purchasing  a  good  technical  reference  such  as  the  Microsoft  Mouse  Programmer's
Reference.  Other  mouse  manufacturers  also  publish  their  own technical  manuals,  and  make  them
available to the public for a small charge. Thankfully, all of the mouse services are consistent across
brands,  although some brands  include  more  features  than  defined by Microsoft.  Unless  you write
programs only for your own use, you should avoid relying on services that are specific to a single
manufacturer. 

Accessing Expanded Memory

The last set of routines I will present show how you can use interrupts to access an expanded memory
(EMS) driver. Expanded memory has been available for many years, and it provides a way to exceed
the normal 640K RAM barrier imposed by the 8088 microprocessors. Newer computers that use an
80286 or later processors can use what is called Extended Memory (XMS), and this type of memory
will eventually become the standard way for all computers in the future to access more than 1MB of
memory.  Unfortunately,  accessing  the  extended  memory  beyond  1MB  on  an  80286-based  PC  is
complicated by a design deficiency in that CPU chip. Many people are confused about the difference
between Expanded and Extended memory, so perhaps a brief explanation is in order.

Extended memory is  a single contiguous block that  starts  at  address zero and extends through the
highest address available, based on the amount of memory that is present in a PC. Expanded memory,
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on the other hand, is more complex, and uses a technique called bank switching. With bank switching, a
large amount of memory (up to 16 megabytes) is made available to the CPU in 16K blocks. Each of
these blocks is called a page, and only four of them can be accessed at one time. Thus, the term bank
switching is  appropriate  because  various  banks of  far  memory are  switched in  and out  of  a  near
memory address space.

The EMS standard requires a 64K contiguous area of near memory within the 1MB addressable range
to be reserved for use by the EMS driver as a page frame. On my own PC the 64k address range from
&HE000:0000 through &HE000:FFFF is not used for any other purpose, and is therefore available for
use by an EMS driver. At any given time, the four 16K blocks of memory within this segment can be
connected to memory that lies outside of the 1MB normal address range.

Hardware plug-in EMS boards such as the Intel Above Board contain their expanded memory on the
board itself. EMS emulator software instead converts the Extended memory on computers so equipped
to  be  accessible  through the  64K segment  within  the  EMS page frame.  This  is  achieved through
hardware switches that allow any area of memory to be remapped to any other range of addresses. In
either case, however, Expanded memory is made available to an application one page at a time as near
memory.

Each of the four 16K near memory pages in the EMS page frame are called physical pages, because
they reside in physical memory that can be accessed directly by the CPU. However, many pages of far
EMS memory are available—up to four at a time—and these are called logical pages. This is shown
graphically in Figure 11-4.

Here, physical page 0 is connected to logical page 38 in expanded memory, physical page 1 to logical
page 45, and so forth.  Whenever a program wants to access a particular logical page in expanded
memory, it calls the EMS driver telling it to map that page to one of the four physical pages in the page
frame segment. Then, the EMS logical page can be accessed at the near memory address within the
page frame.
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For simplicity, all of the routines provided here to handle Expanded memory use physical page 0 only.
Since  these  routines  merely  copy  array  data  back  and  forth  between  conventional  and  Expanded
memory, the data can be copied in blocks of 16K and there is no need to have to map multiple pages
simultaneously. Therefore, these routines always map physical page 0 to whichever logical page needs
to be accessed, and then copy the data in that page only.

EMS Services

As with the DOS services accessed through Interrupt  &H21, the EMS driver  also uses handles to
identify which data you are working with. When memory is allocated using EMS Interrupt &H67, you
tell the driver how many 16K pages you are requesting, and if there is sufficient memory available it
returns a handle. It should come as no surprise to learn that these parameters are passed using the CPU
registers. Also like DOS and the BIOS, the EMS driver expects a service number in the AH Register.
For example, the service that requests memory is specified with AH set to &H43.

To minimize the amount of code that is added to your programs, I  have created a short  assembly
language subroutine called EMSInt that replaces the Interrupt routine included with BASIC. As with
DOSInt and MouseInt, this routine lets you pass only the parameters that are actually needed, to reduce
the  amount  of  compiler-generated  code.  EMSInt  needs  access  only  to  the  AX,  BX,  CX,  and DX
registers, so these are the only components in the EMSType TYPE structure shown below.
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TYPE EMSType
 AX AS INTEGER
 BX AS INTEGER
 CX AS INTEGER
 DX AS INTEGER
END TYPE

Unlike BASIC's Interrupt routine that has to  deal  with three parameters and code to generate any
interrupt number, EMSInt itself is relatively simple: 

;EMSINT.ASM

.Model Medium, Basic

EMSRegs Struc
 RegAX DW ?
 RegBX DW ?
 RegCX DW ?
 RegDX DW ?
EMSRegs Ends

.Code

EMSInt Proc Uses SI, ERegs:Word
 Mov  SI,ERegs          ;get the address of EMSRegs
 Mov  AX,[SI+RegAX]     ;load each register in turn
 Mov  BX,[SI+RegBX]
 Mov  CX,[SI+RegCX]
 Mov  DX,[SI+RegDX]

 Int  67h               ;call the EMS driver

 Mov  SI,ERegs          ;access EMSRegs again
 Mov  [SI+RegAX],AX     ;save each register in turn
 Mov  [SI+RegBX],BX
 Mov  [SI+RegCX],CX
 Mov  [SI+RegDX],DX

 Ret                    ;return to BASIC
EMSInt Endp
End

If you plan to use the mouse and EMS routines in the same program, you could use the MouseRegs
variable for both and ignore the Segment portion when call EMSInt.

The program that  follows combines  a  demonstration  portion and a  collection of  subprograms and
functions. Notice that like the various mouse services, you must query EMSThere to ensure that an
EMS driver is loaded before any of the other routines can be used.

'EMS.BAS, demonstrates the EMS memory services

DEFINT A-Z

DECLARE FUNCTION Compare% (BYVAL Seg1, BYVAL Adr1, BYVAL Seg2, _
 BYVAL Adr2, NumBytes)
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DECLARE FUNCTION EMSErrMessage$ (ErrNumber)
DECLARE FUNCTION EMSError% ()
DECLARE FUNCTION EMSFree& ()
DECLARE FUNCTION EMSThere% ()
DECLARE FUNCTION PeekWord% (BYVAL Segment, BYVAL Address)

DECLARE SUB EMSInt (EMSRegs AS ANY)
DECLARE SUB EMSStore (Segment, Address, ElSize, NumEls, Handle) 
DECLARE SUB EMSRetrieve (Segment, Address, ElSize, NumEls, Handle) 
DECLARE SUB MemCopy (BYVAL FromSeg, BYVAL FromAdr, BYVAL ToSeg, _
 BYVAL ToAdr, NumBytes)

TYPE EMSType                    'similar to DOS Registers
 AX    AS INTEGER
 BX    AS INTEGER
 CX    AS INTEGER
 DX    AS INTEGER
END TYPE

DIM SHARED EMSRegs AS EMSType
DIM SHARED ErrCode
DIM SHARED PageFrame

CLS
IF NOT EMSThere% THEN           'ensure EMS is present
 PRINT "No EMS is installed"
 END
END IF

PRINT "This computer has"; EMSFree&;
PRINT "kilobytes of EMS available"

REDIM Array#(1 TO 20000)
FOR X = 1 TO 20000
 Array#(X) = X
NEXT

CALL EMSStore(VARSEG(Array#(1)), VARPTR(Array#(1)), 8, 20000, Handle) 
IF EMSError% THEN
 PRINT EMSErrMessage$(EMSError%)
 END
END IF

REDIM Array#(1 TO 20000)
CALL EMSRetrieve(VARSEG(Array#(1)), VARPTR(Array#(1)), 8, 20000, Handle) 
IF EMSError% THEN
 PRINT EMSErrMessage$(EMSError%)
 END
END IF

FOR X = 1 TO 20000              'prove it worked
 IF Array#(X) <> X THEN PRINT ".";
NEXT
END

FUNCTION EMSErrMessage$ (ErrNumber) STATIC
 SELECT CASE ErrNumber
   CASE 128
     EMSErrMessage$ = "Internal error"
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   CASE 129
     EMSErrMessage$ = "Hardware malfunction"
   CASE 131
     EMSErrMessage$ = "Invalid handle"
   CASE 133
     EMSErrMessage$ = "No handles available"
   CASE 135, 136
     EMSErrMessage$ = "No pages available"
   CASE ELSE
     IF PageFrame THEN
       EMSErrMessage$ = "Undefined error: " + STR$(ErrNumber)
     ELSE
       EMSErrMessage$ = "EMS not loaded"
     END IF
 END SELECT
END FUNCTION

FUNCTION EMSError% STATIC
 Temp& = ErrCode
 IF Temp& < 0 THEN Temp& = Temp& + 65536
 EMSError% = Temp& \ 256
END FUNCTION

FUNCTION EMSFree& STATIC
 EMSFree& = 0              'assume failure
 IF PageFrame = 0 THEN EXIT FUNCTION

 EMSRegs.AX = &H4200
 CALL EMSInt(EMSRegs)
 ErrCode = EMSRegs.AX      'save possible error from AH

 IF ErrCode = 0 THEN EMSFree& = EMSRegs.BX * 16
END FUNCTION

SUB EMSRetrieve (Segment, Address, ElSize, NumEls, Handle) STATIC
 IF PageFrame = 0 THEN EXIT SUB

 LocalSeg& = Segment           'use copies we can change
 LocalAdr& = Address

 BytesNeeded& = NumEls * CLNG(ElSize)
 PagesNeeded = BytesNeeded& \ 16384
 Remainder = BytesNeeded& MOD 16384
 IF Remainder THEN PagesNeeded = PagesNeeded + 1

 NumBytes = 16384              'assume we're copying a 
                               '  complete page
 ThisPage = 0                  'start copying to page 0

 FOR X = 1 TO PagesNeeded      'copy the data
   IF X = PagesNeeded THEN     'watch out for last page
     IF Remainder THEN NumBytes = Remainder
   END IF

   IF LocalAdr& > 32767 THEN   'handle segment boundaries
     LocalAdr& = LocalAdr& - &H8000&
     LocalSeg& = LocalSeg& + &H800
     IF LocalSeg& > 32767 THEN 
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       LocalSeg& = LocalSeg& - 65536
     END IF
   END IF

   EMSRegs.AX = &H4400       'map physical page 0 to the
   EMSRegs.BX = ThisPage     '  current logical page
   EMSRegs.DX = Handle       '  for the given handle
   CALL EMSInt(EMSRegs)      'then copy the data there
   ErrCode = EMSRegs.AX      'save possible error from AH
   IF ErrCode THEN EXIT SUB
   CALL MemCopy(PageFrame, Zero, CINT(LocalSeg&), CINT(LocalAdr&), _             
NumBytes)

   ThisPage = ThisPage + 1
   LocalAdr& = LocalAdr& + NumBytes
 NEXT

 EMSRegs.AX = &H4500           'release memory service
 EMSRegs.DX = Handle
 CALL EMSInt(EMSRegs)
 ErrCode = EMSRegs.AX          'save possible error
END SUB

SUB EMSStore (Segment, Address, ElSize, NumEls, Handle) STATIC 
 IF PageFrame = 0 THEN EXIT SUB

 LocalSeg& = Segment           'use copies we can change
 LocalAdr& = Address

 BytesNeeded& = NumEls * CLNG(ElSize)
 PagesNeeded = BytesNeeded& \ 16384
 Remainder = BytesNeeded& MOD 16384
 IF Remainder THEN PagesNeeded = PagesNeeded + 1

 EMSRegs.AX = &H4300       'allocate memory service
 EMSRegs.BX = PagesNeeded
 CALL EMSInt(EMSRegs)

 ErrCode = EMSRegs.AX      'save possible error from AH
 IF ErrCode THEN EXIT SUB
 Handle = EMSRegs.DX       'save the handle returned

 NumBytes = 16384          'assume we're copying a 
                           '  complete page
 ThisPage = 0              'start copying to page 0

 FOR X = 1 TO PagesNeeded      'copy the data
   IF X = PagesNeeded THEN     'watch out for last page
     IF Remainder THEN NumBytes = Remainder
   END IF

   IF LocalAdr& > 32767 THEN   'handle segment boundaries
     LocalAdr& = LocalAdr& - &H8000&
     LocalSeg& = LocalSeg& + &H800
     IF LocalSeg& > 32767 THEN 
       LocalSeg& = LocalSeg& - 65536
     END IF
   END IF

   EMSRegs.AX = &H4400       'map physical page 0 to the
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   EMSRegs.BX = ThisPage     '  current logical page
   EMSRegs.DX = Handle       '  for the given handle
   CALL EMSInt(EMSRegs)      'then copy the data there
   ErrCode = EMSRegs.AX      'save possible error from AH
   IF ErrCode THEN EXIT SUB
   CALL MemCopy(CINT(LocalSeg&), CINT(LocalAdr&), PageFrame, Zero, NumBytes)

   ThisPage = ThisPage + 1
   LocalAdr& = LocalAdr& + NumBytes
 NEXT
END SUB

FUNCTION EMSThere% STATIC
 EMSThere% = 0                 'assume the worst
 DIM DevName AS STRING * 8
 DevName = "EMMXXXX0"          'search for this below

 '---- Try to find the string "EMMXXXX0" at offset 10 in the EMS handler.
 '     If it's not there then EMS cannot possibly be installed.  
 Int67Seg = PeekWord%(0, (&H67 * 4) + 2)
 IF NOT Compare%(Int67Seg, 10, VARSEG(DevName$), VARPTR(DevName$), 8) THEN       
EXIT FUNCTION
 END IF

 EMSRegs.AX = &H4100     'get Page Frame Segment service
 CALL EMSInt(EMSRegs)
 ErrCode = EMSRegs.AX    'save possible error from AH

 IF ErrCode = 0 THEN
   EMSThere% = -1
   PageFrame = EMSRegs.BX
 END IF
END FUNCTION

EMS.BAS  begins  by  declaring  all  of  the  subprograms  and  functions  that  it  uses,  as  well  as  the
EMSType structure. The three shared variables are used by the various procedures, and should not be
removed when you delete the demo portion to create a reusable module.

Determining if EMS is Present

The  first  function  used  is  EMSThere,  which  reports  if  an  EMS  driver  is  loaded  and  operative.
EMSThere begins by assuming that an EMS driver is not loaded, and assigns a function output value of
0. Then it attempts to find the device name "EMMXXXX0" in the header portion of the EMS device
driver. Like the MouseThere function that checked the interrupt vector table for a non-zero segment
value, this preliminary check is also needed to prevent a system lockup on older computers running
DOS version 2.

To search for this string EMSThere uses PeekWord to retrieve the segment for Interrupt &H67, and
then looks at the eight bytes at offset 10 within that segment. If the Compare function finds the unique
identifying string, it knows that the driver is loaded and it is safe to invoke Interrupt &H67. Service
&H41 returns either -1 in AX if the driver is active, or 0 if it is not. This service also returns the page
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frame segment  the  driver  is  using in  near  memory,  and EMSThere  saves  this  value  in  the  shared
variable PageFrame for access by the other routines. 

Determining Available EMS Memory

The second function,  EMSFree,  returns  the number of  16K EMS pages that  are  available  to  your
program. The remainder of the demonstration simply dimensions a 20,000 element double precision
array, and then saves it to expanded memory. Because this array exceeds 64K, you must start BASIC
with the /ah command line switch. Otherwise you will receive a "Subscript out of range" error message.

EMSFree uses function &H42 to ask the EMS driver for the number of free pages, and the driver
returns  the page count  in  BX. Although it  is  not shown here,  service &H42 also returns  the total
number of pages in the DX register. Therefore, you could easily create a TotalPages function from a
copy of EMSFree by changing the line that assigns the function output to instead be IF ErrCode =
0 THEN TotalPages& = EMSRegs.DX * 16. 

Storing and Retrieving Data

The actual storing and retrieving of data to and from Expanded memory is fairly complicated, because
of the need to map different logical pages to physical page zero. Although Figure 11-6 shows a single
group of logical pages, the EMS driver really maintains a separate series of logical pages for each
active handle.

EMSStore and EMSRetrieve store and retrieve data in Expanded memory respectively, and both of
these subprograms are designed to accommodate huge arrays larger than 64k. Therefore, additional
work is needed to calculate new segment values as each 16K portion has been processed.

As with all of the EMS procedures shown here, EMSStore begins by verifying that EMSThere has
already been invoked, and that a valid page frame segment has been obtained. The next step is to make
long  integer  copies  of  the  incoming  segment  and  address  parameters.  Because  of  the  segment
arithmetic that is performed later in the routine, long integers are needed to allow values greater than
32,767 to be compared. Equally important, a routine should never alter incoming parameters unless
they also return information or such changes are expected.

Next, EMSStore determines the total number of bytes of EMS storage that are needed, and from that
calculates the total number of 16K pages. Because the EMS driver allocates entire pages only, an odd
number of bytes requires an entire additional page. BASIC's MOD function is used for this, and if the
result is non-zero, the TotalPages variable is incremented.

Once the number of pages is known, service &H43 is called to allocate the Expanded memory. The
remainder of the procedure walks through the array data in 16K increments, mapping physical page
zero to the next logical page in sequence. Note the code that tests the current address to see if it is
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within 32K of spanning a segment boundary. In that case, the address is dropped by 32K, and the
segment is increased by an equivalent amount. Because each new segment starts 16 bytes higher than
the previous one, 32K \ 16 is added to LocalSeg& rather than a full 32K.

After the array is stored in EMS, it is redimensioned in the demonstration and then retrieved using the
EMSRetrieve subprogram. EMSRetrieve is nearly identical to EMSStore, except it copies from EMS to
the array, and releases memory when it is finished rather than claim it at the beginning. The final step in
the  demonstration  is  to  examine  the  value  in  each  element,  to  prove  that  the  array  was  restored
correctly. 

Detecting EMS Errors

The EMSError function retrieves the current value of ErrCode, and manipulates it into a form usable by
your programs. EMS errors are returned in the AH register, which requires dividing by 256 to derive a
single byte value. But since EMS error numbers start at 128, the value returned in AX appears negative
to BASIC programs which treat all integers as being signed. This is why a long integer is used initially
and then converted to a positive value, before dividing to produce the final result.

The EMSErrMessage function can be used to display an appropriate message if an error is detected.
The incoming error code is filtered through a series of CASE statements, based on the error values
defined by the EMS specification.

Suggested Enhancements

The  routines  presented  herein  provide  a  limited  set  of  services  for  accessing  Expanded  memory.
However, there are several improvements you can make, and a few other uses that I have not shown. If
you are  using  BASIC PDS [or  VB/DOS],  one  useful  enhancement  you can  add is  to  change  the
subprograms and functions to receive their parameters by value using the BYVAL option. In fact, this
can also be done with the DOS and mouse routines,  to minimize the amount of code the BASIC
compiler adds to your final executable program.

Although this demonstration shows storing array data only, you can also use these routines to store and
retrieve text and graphics screens. This is much quicker than saving them to disk, as was shown in
Chapter 6. For example, to save a 25 line by 80 column color text screen in Expanded memory you
would use the appropriate segment and address like this: 

CALL EMSStore(&HB800, 0, 1, 4000, Handle)
CALL EMSRetrieve(&HB800, 0, 1, 4000, Handle)

Just as you can cause problems by failing to close DOS handles during the development of a program,
the same problem can happen with an EMS driver. Unfortunately, it  is not as easy to know which
handle numbers are still open if you have not kept track of them yourself manually. DOS issues its
handles  using  a  sensible  series  of  sequential  numbers.  This  is  not  necessarily  the  case  with  EMS
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handles. The EMM386.EXE driver provided by Microsoft does issue sequential handles, starting with
handle 1. But many drivers use other starting values, some work from high numbers backwards, and
yet others use a handle number sequence that is not in order.

Finally,  to  learn about  all  of the possible  EMS services  you need a good reference.  Although the
primary services are shown here, there are several others you may find useful. For example, service
&H46 lets you retrieve the EMS version number, and service &H4C lets you see how many pages are
currently allocated for a given handle. The EMS driver version can be valuable, because newer drivers
offer more features which you may want to take advantage of. Ray Duncan's book Advanced MS-DOS
mentioned earlier is one good source, and it lists each EMS service and the possible errors that can be
returned.

Summary

In this chapter you learned how BASIC—and indeed, all languages—use interrupts to communicate
with the operating system. You learned what interrupts are and how to access them, and how the CPU
registers are used to communicate information between your program and the interrupt handler being
invoked. You also learned how some of the two-byte registers can be treated as two one-byte registers,
which requires multiplying and dividing to access those portions individually.

A number of complete programs were presented showing how to access the BIOS, DOS, the mouse
driver, and Expanded memory. In the section on BIOS interrupts, examples were given that showed
how to simulate pressing the PrtSc key, and also how to call the video service that clears or scrolls only
a portion of the display screen.

The DOS examples included a complete set of subroutines to replace BASIC's file handling statements.
One advantage gained by bypassing BASIC is to read and write large amounts of data at one time.
Another is to avoid the need for ON ERROR in certain programming situations. Although calling the
DOS services  directly  can  be  beneficial  in  many  cases,  it  also  requires  more  work  on your  part.
However, some services cannot be accessed using BASIC alone, such as reading file and directory
names, or determining a file's attribute. Where BASIC employs string descriptors to know how long a
string is, DOS instead uses a CHR$(0) zero byte to mark the end.

The mouse and Expanded memory discussions described how those interrupt services are accessed, and
provided  practical  advice  and  warnings  where  appropriate.  Although  a  large  number  of  interrupt
routines were described, there is a practical limit to how much information can be provided here. In
particular, you will need a separate reference manual that describes the details of each interrupt service
routine in depth.

In the next and final chapter you will learn how to program in assembly language, and how to add
assembly language routines to programs you write using BASIC. Assembly language is unlike any
high-level language, and it provides the ultimate means to exploit fully all of the resources in a PC.
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12
Assembly Language Programming

This book has consistently presented programming techniques that reduce the size of your programs,
and make them run faster. Most of the discussions focused on ways to write efficient BASIC code, and
several  showed how to  access  system interrupt  services.  Where speed was critical  or  BASIC was
inflexible, I presented subroutines written in assembly language.

Assembly language is  the most powerful way to communicate with a  PC, and it  offers speed and
flexibility unmatched by any other language. Indeed, assembly language is in many ways the ultimate
programming language because it lets you control fully every aspect of your PC's operation. Anything
that a PC is capable of doing can be accomplished using assembly language. This final chapter explains
assembly language in terms that most BASIC programmers can understand.

Why, you might ask, would a BASIC programmer be interested in assembly language?  After all, the
whole point of a high-level language such as BASIC is to shield the programmer from the underlying
hardware. Without having to worry about CPU registers and memory addresses, a BASIC programmer
can be immediately productive, and probably write programs with fewer initial bugs. However, there
are three important reasons for using assembly language:

• To speed up selected portions of a program
• To reduce the size of a program
• To perform services that BASIC simply cannot

It  is important to understand that any high-level language will  benefit  from the appropriate use of
assembler. And while it is possible to write a major application using only assembly language, the
increased complexity and added time to develop and debug it are often not worth the trouble. Using a
high-level language—especially BASIC—for the majority of a program and then coding the size and
speed-critical portions in assembly language often is the most practical solution.

Many BASIC programmers mistakenly believe that to achieve the fastest and smallest programs they
should learn C. In my opinion, nothing could be further from the truth. Assembly language is barely
more  difficult  to  use  than  C,  and  in  fact  the  code  is  often  more  readable.  Further,  no  high-level
language can come even close to what raw 8086 code can achieve. If you truly desire to become an
advanced programmer, you owe it to yourself to at least see what assembly language is all about. I
believe there is no deeper satisfaction than that gained by understanding fully what your computer is
doing at the lowest level.

This  chapter  assumes  that  you already understand basic  programming  concepts  such as  variables,
arrays, and subroutines. As we proceed, most of the examples will provide parallels to BASIC where
possible.  But  please  remember  one  important  point:  There  is  nothing  inherently  difficult  about
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assembly  language.  Attitude  is  everything,  and if  you  can  think  of  assembler  as  a  stripped-down
version of BASIC, you will be successful that much sooner.

For ease of reading, I will refer to the 8088 microprocessor used in the IBM PC throughout this chapter.
However, everything said about the 8088 also applies to the 8086, the 80286, the 80386/486, and the
NEC V series found in some older  PC compatible  computers.  I  will  also use the terms  assembly
language and  assembler interchangeably, although assembler can also be used to mean the program
that assembles your source files.

All of the examples in this chapter are meant to be assembled with the Microsoft Macro Assembler
(MASM) version 5.1 or later. MASM requires that you save your source files as standard ASCII text,
and most word processor programs can do this.

Some of the examples in this chapter are derived from those that used CALL Interrupt in Chapter 11. In
most cases I have not bothered to restate the same information from that chapter, and you may want to
refer back for additional information.

Finally, many entire books have been written about assembly language, and there is no way I can
possibly  teach  you  everything  you  need  to  know  here.  Rather,  my  intent  is  to  provide  a  gentle
introduction to the concepts using practical and useful examples.

As Easy as BASIC

Assembly  language  uses  the  same  general  form  as  a  BASIC  program.  That  is,  commands  are
performed in sequence until a GOTO or GOSUB is encountered. In assembly language these are called
Jump and Call, respectively. Many BASIC instructions have a direct assembler equivalent, although the
syntax is slightly different. One important difference, however, is that the 8088 microprocessor can
operate on integer numbers only. Another is that for the most efficiency, you are limited to only a few
working variables. I will begin by showing some rudimentary assembly language instructions, so you
can  see  how they  are  analogous  to  similar  commands  in  BASIC.  Consider  the  following BASIC
program fragment:

AX = 5

Here,  the  value  5  is  assigned  to  the  variable  AX.  The  8088  has  several  built-in  variables  called
registers, and one of them is called AX. To move the value 5 into the AX register you use the Mov
instruction: 

Mov AX,5

As with BASIC, the destination variable in an assembly language program is always shown on the left,
and the source is on the right. Now consider addition and subtraction. To add the value 12 to AX in
BASIC you do this: 
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AX = AX + 12

The equivalent 8088 command is:

Add AX,12

Again, the variable or register on the left is always the one that receives the results of any adding,
moving, and so on. Subtraction is very similar to addition, replacing Add with Sub:

BASIC:

AX = AX - 100

Assembler:

Sub AX,100

Comparing and branching in assembly language is also quite similar to BASIC. But instead of this:

AX = AX + 2
IF AX > 60 GOTO Finished

You'd do it in assembler this way:

Add AX,2
Cmp AX,60
Ja  Finished

This tells the 8088 to add 2 to AX, then compare AX to 60, and finally to jump if above to the code at
label Finished. There are several kinds of conditional jump instructions in assembly language, and they
often  follow a comparison as  shown here.  In  fact,  all  you can  really  do after  a  compare  is  jump
somewhere based on the results. And while there is no direct equivalent for this BASIC statement:

IF AX = 10 THEN BX = BX - 1

You can change the strategy to this:

IF AX <> 10 GOTO Not10
BX = BX - 1
Not10:
.
.

Now a direct translation is simple:

Cmp AX,10
Jne Not10
Dec BX
Not10:
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.

.

Jne stands for Jump if Not Equal. Also, notice the command Dec, which means decrement by 1. This is
one case in which an assembler instruction is actually more to the point than its BASIC counterpart,
and is equivalent to the BASIC command BX = BX - 1. While Sub BX, 1 would work just as
well, using Dec is faster and generates less code, and we all know that speed is the name of the game.

The complement to Dec is Inc, short for increment by one. You can use Inc and Dec with most of the
8088's registers, as well as on the contents of any memory location, which brings up an important issue.
At some point, many programs will require more variables than can be held within the CPU's registers.
All of the available free memory in a PC can be used as variable storage, with only a few limitations:

• You must first tell the assembler how much space to set aside, much like you would when
dimensioning an array. Moreover, MASM is pretty friendly and lets you use names for the
memory locations.  In  fact,  in  most  cases  you do not  need to  know the  memory addresses
variables will be stored in. The assembler handles that for you as well.

• Adding,  subtracting,  incrementing,  and decrementing are all  much faster  when done within
registers. When an operation is performed on a memory variable, it must first be fetched by the
CPU, manipulated, and then stored again. Because the registers are within the CPU chip, those
extra steps are not needed. The steps to retrieve and then store memory variables is handled
transparently by the 8088; I mention this merely to explain why register operations are faster.

• Some operations can be done only using registers. If you want to multiply the memory variable
Counter by 12, you first have to move the variable into AX, do the multiplication, and then
move it back into memory again. And if AX is currently holding a needed value, it must be
saved before multiplying and restored again afterward. Although assembly language is not as
complicated as many people think, it surely can be tedious at times.

Besides the CPU registers and conventional memory addresses, a special portion of memory called the
stack is also available for storage. The stack is much like the temporary memory on a four-function
calculator, and it is often used to store intermediate results. The stack is also commonly used to pass
variables between programs, because all programs can access it without having to know exactly where
in memory it is located. Again, assembly language doesn't usually require you to deal with absolute
memory addresses at all—especially for subroutines that will be added to a BASIC program. The only
exceptions might be when writing directly to the display screen,  or when looking at  low memory,
perhaps to see whether the Caps Lock key is engaged.

Spaghetti Code?

To write a routine that converts lower case letters to capital letters in BASIC, you might use something
like this:

IF AL$ => "a" AND AL$ <= "z" THEN
 AL$ = CHR$(ASC(AL$) - 32)
END IF
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In assembly language each compare must be done separately, followed by a jump based on the results.
Let's rephrase the BASIC example slightly: 

IF AL$ < "a" GOTO Done
IF AL$ > "z" GOTO Done
AL$ = CHR$(ASC(AL$) - 32)
Done:
.
.

Now a conversion to assembler is easy:

Cmp AL,"a"     ;compare AL to "a"
Jb  Done       ;Jump if Below to Done
Cmp AL,"z"     ;compare AL to "z"
Ja  Done       ;Jump if Above to Done
Sub AL,32      ;subtract 32 from AL
Done:
.
.

Notice how the assembler allows the use of quoted constants. When it sees a character or string in
double or single quotes, it knows you mean to use the character's ASCII value. Unlike BASIC with its
strong variable typing that prevents you from performing numeric operations on a string, assembly
language  has  very  few  such  restrictions.  Also  notice  how  much  jumping  around  is  necessary  to
accomplish even the simplest of actions.

As I mentioned earlier, assembly language can certainly be more tedious than BASIC, although the
logic  is  not  really  that  different.  Such  frequent  jumping around  is  called  spaghetti  code  by  some
programmers, and it is often used in a derogatory fashion when discussing BASIC's GOTO statement.
But this is the way that computers work, and I am amused by programmers who argue so strongly
against all use of the GOTO command. While nobody could seriously object to a well organized and
structured programming style, all programs are eventually converted to equivalent assembly language
jumps and branches.

The Registers

There are six general purpose registers available for you to use: AX, BX, CX, DX, SI, and DI. Each
register may be used for the most common operations like adding and subtracting, although some are
specialized  for  certain  other  operations.  However,  most  of  the  registers  also have  a  specialty.  For
example,  AX  is  the  only  register  that  can  be  multiplied  or  divided.  The  A in  AX  stands  for
Accumulator, and it often used for math operations such as accumulating a running total. Also, several
assembler instructions result in one byte less code when used with AX, when compared to the same
instructions using other registers.
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The B in BX means Base, and this register is frequently used to hold the base address of a collection of
variables or other data. If you have a text string in memory to be examined, you could put the address
of the first character in BX. The rest of the string can then be found by referencing BX.

BX can also be used to specify computed addresses using addition or subtraction. For example, the
instruction Mov AX,[BX+4] means to load AX with the word four bytes beyond the address held in
BX. Likewise, the instruction  Add DL,[BX+SI-10] adds the value of the byte at that computed
address to the current contents of DL. You may use BX this way with either a constant number, the SI
or DI register, or one of those registers and a constant number. However, only addition and subtraction
may be used, as opposed to multiplication or division. I will return to computed and indirect addressing
later in this chapter.

The C in CX stands for Count, since CX is most often used as the counter in an assembly language
FOR/NEXT loop. In fact, the assembly language command Loop uses CX to perform an operation a
specified number of times. The comparison below illustrates this.

BASIC:
    FOR CX = 1 TO 5
      GOSUB BeepTone
    NEXT

Assembler:
    Mov  CX,5
    Do:  Call Beep_Tone
    Loop Do

Here, the Loop instruction automatically branches to the label Do: CX times. That is much faster and
more efficient than this:

Mov  CX,5
Do:  Call Beep_Tone
Dec  CX
Cmp  CX,0
Jne  Do

The DX register is  a general purpose Data register,  and is  named accordingly.  DX is also used in
conjunction with AX when multiplying and dividing.

The last two general purpose registers are SI and DI. SI stands for Source Index, while DI means
Destination Index. It is not hard to guess that these registers are well suited for copying data from one
memory location to another. The 8088 has a rich set of instructions for moving and comparing strings,
using SI and DI to show where they are.

Like BX, SI and DI may be used with a constant offset such as [SI+100] to compute a memory address,
or with a constant value and/or BX. But again, SI and DI are still general purpose registers, and they
can be used for common chores as well. In many situations it really doesn't matter whether you use BX
or DI or SI or AX.
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There are two specialized registers called BP and SP. BP (Base Pointer) is another Base register like
BX, only it is intended for use with the stack. When you need to access data on the stack, BP is the
most appropriate register to use. Like BX, BP can reference computed addresses with a constant offset,
with SI or DI, or with a constant and SI or DI.

The SP (Stack Pointer) register holds the current address of the stack, and it should never be altered
unless you have a very good reason to do so.

The last four registers are the segment registers, but I will mention them only briefly right now. As you
undoubtedly know, the 8088 used a  segmented architecture;  although it  can utilize a  megabyte of
memory, it can do so only in 64K portions at a time. The CS register holds the current Code Segment
(your  program code),  DS  holds  the  Data  Segment  (your  memory  variables),  SS  holds  the  Stack
Segment, and ES is an Extra Segment that is often used to access arrays located in far memory.

Each of the 8088 registers can hold one word (two bytes), allowing you to store any integer number
between 0 and 65535. This range of values can also be considered as -32768 to 32767. But AX, BX,
CX, and DX may also be used as two separate one-byte registers with a range of either 0 to 255 or -128
to  127.  One byte is  often  sufficient—for  example,  when manipulating ASCII  characters—and this
ability  to  access  each  half  individually  effectively  adds  four  more  registers.  Remember,  the  more
variables you can keep within registers, the faster and more efficient a program will be.

When using the registers separately, the two halves are identified by the letters H and L, for High and
Low. That is, the high portion of AX is referred to as AH, while the low portion of DX is called DL.
This would be represented with BASIC variables as follows:

AX = AL + 256 * AH

Each half can also be represented as bit patterns:

             AX
  ┌──────────────────────┐
   1011  0110  0111  0101
  └──────────┘└──────────┘
       AH          AL

Notice that SI, DI, BP, and SP cannot be split this way, nor can the segment registers CS, DS, SS, and
ES.

There is also another register called the Flags register, though it is not intended for you to use directly.
After performing calculations and comparisons, certain bits in the Flags register are set or cleared by
the CPU automatically, depending on the results. For example, if you add a register that holds the value
40000 to another register whose value is 30000, the Carry flag will be set  to show that the result
exceeded  64K.  The  8088  flags  are  also  set  or  cleared  to  reflect  the  result  of  a  Cmp  (Compare)
instruction. Although you will not usually access these flags directly, they are used internally to process
Jne, Ja, and the other conditional jump commands.
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Variables in Assembly Language

All of the example routines shown so far have used the 8088 registers as working variables. Indeed,
using registers whenever possible is always desirable because they can be accessed very quickly. But in
many real-world applications, more variables are needed than can fit into the few available registers. As
with BASIC, MASM lets you define variables using names you choose, and you must also specify the
size of each variable.

The first step is to define the amount of space that will be set aside with the assembler instructions DB
and DW. These stand for Define Byte and Define Word respectively, and they allocate either one byte
of storage or two. You can also use DD to define a double word long integer variable. Notice that these
are not commands that the 8088 processor will execute; rather, they inform the assembler to leave room
for the data. Some examples are shown below:

MyByte DB 12h                     ;one byte, preset to 12h    
Buffer DB 15 Dup(0)               ;fifteen bytes, all 0    
Dummy  DW ?                       ;one word (two bytes), 0    
Msg    DB "Test message",13,10    ;message, CR, LF

In the first example one byte of memory is allocated using the name MyByte, and the value 12 Hex is
placed there at assembly time. The second example illustrates using the Dup (duplicate) command, and
tells MASM to set aside fifteen bytes filling each with the specified value. In this case that value is
zero. Initialized data is an important feature of assembly language, and one that is sorely missing from
BASIC. By being able to allocate data values at assembly time, additional code to assign those values
at runtime is not needed.

Filling an area with zeroes can also be accomplished with a question mark, and this is frequently used
when the value that will eventually end up there is not known in advance. Both do the same thing in
most  cases,  however  using "?" implies an unknown, as opposed to an explicit  zero.  You may use
whichever  method seems more appropriate  at  the time.  The last  example shows how text  may be
specified, as well as combining values in a single statement.

Since the assembler lets you use names for your data, fetching or storing values can be done with the
normal Mov instruction like this:

Error_Code  DB ?
Mov Error_Code,AL

This puts the contents of register AL into memory location Error_Code. Getting it back again later is
just as easy:

Mov DH,Error_Code

Sometimes the assembler needs a little help when you assign variables. When you move AL or DH in
and out of a memory location, the assembler knows that you are dealing with a single byte. And if you
specify BX or SI as the source or destination operand, the assembler understands this to mean two
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bytes, or one word. But when literal numbers are used, the size of the value is not always obvious.
Consider the following:

Mov [BX],3Ch

Does this mean that you want to put the value 3Ch into the byte at the address held in BX, or the value
003Ch into the word at that address?  There is no way for MASM to know what your intentions are, so
you must specify the size explicitly. This is done with the Byte Ptr and Word Ptr directives. Here, Ptr
stands for Pointer, and two examples are shown:

Mov Byte Ptr [BX],15
Mov Word Ptr ES:[DI],100

The first example specifies that the memory at address BX is to be treated as a single byte. Had Word
been used instead, a 15 would be placed into the byte at address held in BX, and a zero would be put
into the byte immediately following. Words are always stored with the low-byte before the high-byte in
memory.

Memory variables are accessed using the normal complement of instructions. For example, to add 15 to
the variable Counter you will  use  Add Counter,15.  And to multiply AX by the word variable
Number you will use  Mul Word Ptr Number. In MASM versions 5.0 and later, the Word Ptr
argument is not strictly necessary. That is, if Number had been defined using DW, then MASM knows
that you mean to multiply by a word rather than a byte. But earlier versions of the assembler were not
so smart, and an explicit Word Ptr or Byte Ptr was required.

Note, however, that you must still use Byte Ptr or Word Ptr to override a variable's type. For example,
if  Value  was  defined  as  a  word  but  you  want  to  access  just  its  lower  byte,  you  must  use  Mov
AL,Byte Ptr Value.  Here,  stating Byte Ptr  explicitly  tells  MASM that  you are intentionally
treating Value as a different data type. Otherwise, it will issue a non-fatal warning error message.

Sometimes you may want to refer to the address of a variable, as opposed to its contents. For example,
Mov AX,Variable tells MASM to move the value held in Variable into the AX register. But many
DOS services require that you specify a variable's address in a register. This is done using the Offset
operator:  Mov DX,Offset Buffer. Where  Mov DX,Buffer places the first two bytes of the
buffer into DX, using Offset tells MASM that you instead want the starting address of the buffer.

You can also use the Lea (Load Effective Address) command to obtain an address, but that is less
frequently used. Although  Lea DX,Buffer can be used to load DX with the starting address of
Buffer, it is a slightly slower instruction. Lea is needed only when an address must be computed. For
example, the instruction Lea SI,[BX+DI] loads SI with the sum of the BX and DI registers. You
may notice that Lea can provide a shortcut for adding or subtracting certain register combinations.
Although this use of Lea is uncommon, Lea can replace the following two instructions: 

Mov SI,BX
Add SI,DI
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To subtract two registers or a register and a constant value you could use Lea AX,[BX-DI] or Lea
SI,[BP-10].

Calculations in Assembly Language

When adding or subtracting you may use two registers, or a register and a memory variable. It is not
legal to specify two memory variables as in Add Var1,Var2.

Multiplying and dividing are not so flexible; only AL and AX may be multiplied. When dividing, the
numerator must be either in AX, or the long integer comprised of DX:AX. In this case, DX holds the
upper word and AX holds the lower one. However, you may multiply or divide these registers using
either a register or a memory location. Because of this restriction, it is not necessary to specify the
target operand size. That is, Mul CL means to multiply AL by CL leaving the result in AX, and Div
WordVariable divides DX:AX by the contents of WordVariable leaving the result in AX and the
remainder  in  DX.  Although  you  could  use  the  commands  Mul  AL,CL and  Div
AX,WordVariable, this is not necessary or common.

All of the allowable combinations for multiplying and dividing are shown in Table 12-1.

Instruction Operand Result Remainder
Mul ByteRegister AL AX n/a
Mul ByteVariable AL AX n/a
Mul WordRegister AX DX:AX n/a
Mul WordVariable AX DX:AX n/a

Div ByteRegister AX AL AH
Div ByteVariable AX AL AH
Div WordRegister DX:AX AX DX
Div WordVariable DX:AX AX DX

Table 12-1: The allowable register/memory combinations for 
multiplying and dividing.

In Table 12-1 ByteRegister means any byte-sized register such as AL or CH; WordRegister indicates
any word-sized register like CX or BP. Likewise, ByteVariable and WordVariable specify byte and
word-sized integer memory variables respectively.

It's important to understand that you must never divide by zero, because that will generate a critical
error. Because the result from dividing by zero is infinity, the 8088 has no way to handle that—it can't
simply ignore the error. Therefore, dividing by zero causes the CPU to generate an Interrupt 0. In a
BASIC program that  error  is  routed  to  BASIC's  internal  error  handling  mechanism which  either
invokes the ON ERROR handler if one is in effect, or ends your program with an error message. In a
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purely assembly language program, DOS intervenes printing an error message on the screen, and then
it ends the program.

Related to division by zero is dividing when the result  cannot fit  into the destination register.  For
example, if AX holds the value 20000 and you divide it by 2, the resulting 10000 cannot fit into AL.
Since this is another unrecoverable error that cannot be ignored, the 8088 generates an Interrupt 0 there
as well.

Besides the Div and Mul instructions, there are also signed versions called Idiv and Imul. Where Div
and Mul treat the contents of AX or DX:AX as an unsigned value, Idiv and Imul treat them as being
signed. You'll use whichever command is appropriate, so the 8088 knows if values having their highest
bit set are to be treated as negative. BASIC always uses Idiv and Imul in the code it generates, since all
integer and long integer values are treated by BASIC as signed.

Because only AX and DX:AX may be used for multiplying and dividing, this affects your choice of
registers. The short example that follows shows how you might select registers when translating a
simple BASIC-like expression that uses only integer (not long integer) variables.

BASIC:
Result = (Var1 + Var2 * (Var3 - Var4)) \ 100

Assembler:
Mov  AX,Var3          ;work from the innermost level out         
Sub  AX,Var4          ;so first perform Var3 - Var4         
Imul Word Ptr Var2    ;then multiply that by Var2
Add  AX,Var1          ;add Var1 to what we have so far         
Mov  DX,0             ;next prepare to divide DX:AX         
Mov  CX,100           ;use CX for the divisor
Idiv CX               ;do the division
Mov  Result,AX        ;then assign Result ignoring the remainder left in DX

Because dividing by an integer value uses both DX and AX, it is necessary to clear DX explicitly as
shown unless you are certain it is already zero. The use of CX to hold the value 100 is arbitrary. If CX
were currently in use, any available word-sized register or memory location could be used. If you
compile this program statement and view the resultant code using CodeView, you will see that BASIC
does an even better job of translating this particular expression to assembly language.

String Processing Instructions
Besides  being  able  to  add,  subtract,  multiply,  and  divide,  the  8088  provides  four  very  efficient
instructions for manipulating strings and other data in memory. Movs copies, or moves a string from
place to another; Cmps compares two ranges of memory; Stos fills, or stores one or more addresses
with  the  same  value;  and  Scas  scans  a  range  of  memory  looking  for  a  particular  value.  These
instructions require either a byte or word specifier. For example, you would use Movsb to copy a byte,
and Cmpsw to compare two words.
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There are two important factors that contribute to the power and usefulness of these string instructions:
each is only one byte long, and they automatically increment or decrement the SI and DI registers that
point to the data being manipulated. Thus, they are both convenient to use, and also very fast. Because
it  is  common  to  access  blocks  of  memory  sequentially  a  byte  or  word  at  a  time,  automatically
advancing SI  and DI saves you from having to  do that  manually with additional  instructions.  For
example, after one pair of words has been compared, SI and DI are already set to point at the next pair.

You can also specify that  SI  and DI are  to  be decremented by first  using the Std (Set  Direction)
command. The Direction Flag stores the current string operations direction, which is either up or down.
If a previous Std was in effect, then you'd use Cld (Clear Direction) to force copying and moving to be
forward. In fact, BASIC requires you to clear the direction flag to forward before returning from an
assembler routine that set it to backwards. 

Movs and Cmps

Movs and Cmps use the DS:SI register pair to point to the first range of memory being copied or
compared, and ES:DI to point to the second range. Each time a byte is being copied or compared, SI
and DI are incremented or decremented by one to point to the next address. And when a word is being
accessed, SI and DI are incremented or decremented by two.

Notice that there is no protection against SI or DI being incremented or decremented through address
zero, nor is there any indication that this has happened. Also notice that the name Movs is somewhat of
a misnomer. To me, moving something implies that it is no longer at its original location. Movs does
not alter the source data at all—it merely places a new copy at the specified destination address.

Scas and Stos

Scas compares the value in AL or AX with the range of memory pointed to by ES:DI. That is, Scasb
compares AL and Scasw uses AX. Stos also uses ES:DI to show where the data being written to is
located; Stosb stores the contents of AL in the address at ES:[DI] and then increments or decrements
DI by one. Likewise, Stosw stores the value in AX there and increments or decrements DI by two.

Repeating String Operations

If these four instructions merely acted on the data and incremented SI and DI automatically, that would
be very useful indeed. But they also have another talent:  they recognize a Rep (Repeat)  prefix to
perform their magic a specified number of times. The number of iterations is specified by the count
held in CX. Furthermore,  the number of repetitions can be made conditional when comparing and
scanning, based on the data encountered.
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If you have, say, 20 bytes of data that need to be copied from one place to another, you would first set
CX to 20 and then use Rep Movsb. And to compare 100 words you would load CX with the value
100 and use Rep Cmpsw. Stos also accepts a Rep prefix; Rep Stosb places the value in AL into CX
bytes of contiguous memory starting at the address specified in ES:DI. For each iteration the 8088
decrements CX, and when it reaches zero the copying or comparing is complete.

It is usually not valuable to scan a range of memory unconditionally and repeatedly. Therefore Scas is
generally  used in conjunction with either Repe (Repeat while Equal)  or Repne (Repeat  while  Not
Equal). Cmps is also generally used with these conditional prefixes, to avoid wasting time comparing
bytes after a match or a difference was found. In either case, however, you load CX with the total
number of bytes or words being compared or scanned.

Because  each  iteration  decrements  CX,  you  can  easily  calculate  how many  bytes  or  words  were
actually processed. Also, you can test the results of scanning and comparing using the normal methods
such as Je and Jne. The following few examples show some ways these commands can be used. 

See if two 40-byte ranges of memory are the same:
Mov  CX,20              ;comparing 20 words is faster than 40 bytes         
Repe Cmpsb              ;compare them
Je   Match              ;they matched

Copy a 2000-element integer array to color screen memory: 
Mov  AX,ArraySeg        ;set DS to the source segment         
Mov  DS,AX              ;through AX
Mov  SI,ArrayAdr        ;point SI to the array start         
Mov  AX,&HB800          ;the color text screen segment      
Mov  ES,AX              ;assign that to ES
Mov  DI,0               ;clear DI to point to address 0         
Mov  CX,2000            ;prepare to copy 2000 words         
Rep  Movsw              ;copy the data

Search a DOS string looking for a terminating zero byte: 
Mov  AX,StringSeg       ;set ES to the string's segment         
Mov  ES,AX              ;(ES cannot be assigned directly)         
Mov  DI,Offset ZString  ;point DI to the string data         
Mov  CX,80              ;search up to 80 bytes
Mov  AL,0               ;looking for a zero value
Repne Scasb             ;while ES:[DI] <> AL
;-- Now DI points just past the terminating zero byte.        
;-- The length of the string is (80 - CX + 1).

In the first example,  it  is assumed that DS:SI and ES:DI already point to the correct segment and
address.  By asking to  compare  only  while  the  bytes  are  equal,  the  result  of  the  most  recent  byte
comparison can be tested using Je. A common mistake many programmers make is comparing the
bytes, and then checking if CX is zero. The reasoning is that if CX is zero then they must have all
matched; otherwise the 8088 would have aborted the comparisons early. But CX will also be zero if all
but the last byte matched! Therefore, you must check the zero flag using Je (or Jne if that is more
appropriate).
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Notice in the first example how 20 words are compared, rather than 40 bytes. Although the net result is
the same, word operations are faster on 80286 and later processors when the blocks of memory begin at
an even numbered address.

Though you can't always know if a variable or block of
memory will begin at an even address, using the word
version will be more efficient at least some of the
time.

The second and third examples include the code needed to set up the appropriate segment and address
values in DS:SI and ES:DI. Although this may seem like a lot of work, you can often do this setup only
once and then use the same registers repeatedly within a routine. Unfortunately, you are not allowed to
assign a segment register from a constant number. You must first assign the number to a conventional
register, and then use Mov to copy it to the segment register.

The Stack

The primary purpose of the stack is to retain the return address of a program when a subroutine is
called. This is true not only for assembly language, but for BASIC as well. For example, when you use
the BASIC statement  GOSUB 1200,  BASIC must  remember the location in memory of the next
command to execute when the routine returns. It does this by placing the address of the next instruction
onto the stack before it jumps to the subroutine. Then when a RETURN instruction is encountered, the
address to return to is available. The 8088 understands Calls and Returns directly, and it places and
restores the addresses on the stack automatically.

The stack is not unlike a stack of books on a table, and one of its great advantages is that you don't need
to know where in memory it is actually located. Items can be placed onto the stack either manually
with the Push instruction, or automatically by the 8088 processor as part of its handling of Call and
Return statements. Values are retrieved from the stack with the Pop command, among other methods.

One important feature of the stack is when items are added and removed, the stack pointer register is
updated automatically to reflect the next available stack location. Thus, a program can access items on
the stack based on the stack pointer, rather than have to know the exact address at any given time. This
simplifies  exchanging  information  between  programs,  since  neither  has  to  know  how  the  other
operates. This mechanism also makes it possible for programs written in one language to communicate
with subroutines written in another. Figure 12-1 shows how the stack operates.
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As each item is pushed onto the stack, it is placed two bytes below the address held in the stack pointer.
Then the stack pointer is decremented by two, to show the next available stack location. Therefore, the
stack grows downward as new items are added. Note that only full words may be pushed onto the
stack, so all of the items shown here are two bytes in size. Also note that the stack pointer holds the
address of the last item that was pushed.

Passing Parameters

Imagine you have a BASIC subroutine that does something to the variable X. The code to assign X,
process, and print X might look like this: 

X = 12
GOSUB 2000     'the routine at line 2000 manipulates X
PRINT X

In assembly language you could push the value 12 onto the stack, and then call the subroutine. The
subroutine, expecting the value there would retrieve it, do its work, and then place the result back again
before returning. This is similar, but not identical, to how variables are passed between programs. Most
high-level languages including BASIC pass variables to subroutines by placing their addresses on the
stack. A called routine can then access the variable via its address, either to read it or to assign a new
value.

If BASIC let you access the registers directly, it could pass variables through them, as you saw when
telling DOS which of its services to do. But BASIC doesn't allow that and moreover, with a limited
number of registers, only a few variables or addresses could be accommodated. The stack can hold any
number of arguments, by pushing the address of each in turn.
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When you use  the  BASIC CALL command  and pass  a  variable  name to  a  SUB or  FUNCTION
procedure, BASIC first pushes the address of that variable onto the stack, before jumping to the code
being called. And if more than one variable is specified, all of the addresses are pushed. The example
below shows how you might call a routine that returns the current default drive. 

CALL GetDrive(Drive%)

When GetDrive begins, it knows that the stack is holding the address of Drive%. The segment and
address of the calling BASIC program is also on the stack; however, GetDrive is not concerned with
that.  The important point  is  that  it  can find the address on the stack using the SP (Stack Pointer)
register. When GetDrive begins the stack is set up as shown in Figure 12-2.

Notice that while GetDrive can get at the address of Drive% through SP, an extra step is still required to
get at the data held in Drive%. Let's digress for a moment to reconsider the difference between memory
addresses and values. The assembler command Mov AX,12 puts the value 12 into register AX. But
suppose you want to put the contents of memory location 12 into AX. You indicate this to the assembler
by using brackets, as shown in the two equivalent examples following.

Mov AX,[12]    ;load AX from address 12
Mov BX,12      ;assign BX to the value 12
Mov AX,[BX]    ;load AX from the address held in BX

The first statement loads AX from the contents of memory at address 12. The second first loads BX
with the number 12, and then uses BX to identify that address, moving the contents of that address into
AX. This is an important distinction, and is illustrated in Table 12-2 using parallels to BASIC's PEEK
and POKE commands.
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BASIC Assembler

BP = SP Mov BP,SP

AL = PEEK(BP + 8) Mov AL,[BP+8]

SI = 12  Mov SI,12

POKE SI, 12 Mov Byte Ptr [SI],12
Table 12-2: Similarities between BASIC's PEEK and 
POKE, and the assembly language Mov instruction.

Although you can easily find the address of Drive% by looking at SP, an extra step is required to get at
the  actual  value.  The  example  that  follows  shows  how  to  do  this,  except  there  is  one  added
complication. You are not allowed to use SP for addressing, except with 386 and later microprocessors.
Since you undoubtedly want your programs to work with as many computers as possible, a different
strategy must be used.

As I mentioned earlier, the BP register is a base register that is meant for accessing data on the stack.
Therefore, you must first copy SP into BP, and then use BP to access the stack. Then you can find
where Drive% is located, and put the current drive number into that address as shown following:

Mov  BP,SP      ;put the current stack pointer into BP
Mov  SI,[BP+4]  ;put the address of Drive% into SI
Mov  AH,19h     ;tell DOS we want the default drive
Int  21h        ;call DOS to do it
Mov  [SI],AL    ;put the answer into Drive%

Notice  how brackets  are  used to  indicate  the  addresses.  You must  first  determine  the  address  of  
Drive%'s  address  (whew!),  before you can  put  the  value  held in  AL there.  This  is  called  indirect
addressing, because a register is used to hold the address of the data.  Again, notice how the 8088
accepts addition on the fly when you tell it BP+4.

The complete working GetDrive routine has two small added complications. Beside being unable to
use SP for addressing memory, BASIC also requires you to not change BP either. The obvious solution,
therefore, is to first save BP on the stack before changing it, and then restore BP later before returning
to  BASIC.  The other  complication  is  caused by the  very  fact  that  BASIC put  extra  information  
(Drive%'s address) onto the stack. But neither is insurmountable, as shown here:

Push BP          ;save BP before changing it
Mov  BP,SP       ;put the stack pointer into BP
Mov  SI,[BP+6]   ;put the address of Drive% into SI
Mov  AH,19h      ;tell DOS we want default drive
Int  21h         ;call DOS to do it
Mov  [SI],AL     ;put the answer into Drive%
Pop  BP          ;restore BP to its original value
Ret  2           ;return to BASIC

Notice that here, the address of Drive% is at [BP+6] rather than [BP+4] as it was in the previous listing.
Since BP was pushed at the start of the procedure, the stack pointer is two bytes lower when it is
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subsequently assigned to BP. When SI is loaded, [BP] points to the saved version of itself, [BP+2] and
[BP+4] point  to  the  address  and segment  to  return to,  and [BP+6] holds  the address  of  Drive%'s
address. This is illustrated in Figure 12-3.

Normally when a Ret  command is  encountered,  the 8088 pops the last  four  bytes  from the stack
automatically, and returns to the segment and address contained in those bytes. But that would leave the
2-byte address of Drive% still cluttering up the stack. To avoid this problem the 8088 lets you specify a
parameter count as part of the Ret instruction.

For each variable address that is passed with a CALL from BASIC, you must add 2 to the Return
instruction in your assembler routine. This is the number of bytes to remove from the stack, with two
being used for each incoming two-byte address. Had two variables been passed, the program would
have used Ret 4 instead. Although it is possible to have the calling program clean up the stack itself,
that would be wasteful.

For every occurrence of every call that passes parameters, BASIC would have to include additional
code following the call  to  increment SP accordingly.  Pushing a parameter's  address onto the stack
leaves that much less stack space available. Therefore, someone has to reverse the process and either
pop the addresses or use Add SP,Num to adjust the stack pointer. By having the called routine handle it,
that code is  needed only once.  In fact,  this  is  an important  deficiency of C, because by design C
requires the caller to clean up the stack.

If  you've  managed  to  persevere  this  far  you'll  be
pleased to know that in practice, the assembler can be
told to handle most or all aspects of stack addressing
for you. This is discussed in the sections that follow.

It is also possible to tell BASIC to pass some types of parameters by value using the BYVAL option in
the DECLARE or CALL statements. When BYVAL is used, BASIC places the actual value of the
variable onto the stack, rather than its address. This has several important benefits. First, the assembly
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language routine can use one less instruction. Second, when a constant number is passed, BASIC does
not need to make a copy of it in DGROUP. This copying was described in Chapter 2.

However, BYVAL is appropriate only when a parameter does not have to be returned, and only when
the values are integers. If you pass a double precision parameter using BYVAL, all eight bytes are
placed on the stack using four separate instructions rather than only two needed to pass the address.
You can also instruct BASIC to pass the full, segmented address of a parameter, and that is discussed in
the section Dynamic Arrays. 

Procedures in Assembly Language

All of the discussions so far have focused on how to write the instructions for an assembly language
subroutine. However, none have described how these routines are added to a BASIC program, or how a
complete procedure is defined. Furthermore, the previous examples have not shown a key step that is
needed with all such external routines: establishing the code and data segments.

Before an external routine can be linked to a BASIC program you must establish a public procedure
name that LINK can identify. I will first show the formal method for defining a procedure and its
segments, and then show the newer, simplified methods that were introduced with MASM version 5.1.
The simplified syntax is used for all of the remaining examples in this chapter, so don't worry if the
setup details for this first example appear overwhelming.

The  simplest  complete  subprogram you are  likely  to  encounter  is  probably  the  PrtSc  routine  that
follows—all it does is call Interrupt 5 to send the contents of the current display screen to LPT1.

Code    Segment Word Public 'Code'
Assume  CS:Code
Public  PrtSc
PrtSc   Proc Far       ;this is equivalent to SUB PrtSc STATIC in BASIC 

Int  5                 ;call BIOS interrupt 5
Ret                    ;return to BASIC

PrtSc   Endp           ;this is equivalent to BASIC's END SUB 
Code    Ends
End

The first three lines tell the assembler that the code is to be placed in the segment named Code, and that
the name PrtSc is to be made public. The fourth line defines the start of a procedure. The actual code
occupies the next two lines. Of course, you must tell the assembler where the procedure ends, which in
this case is also the end of the code segment. Had several procedures been included within the same
block of code, each procedure would show a start and end point, but there would only be a single code
segment. The final End statement is needed to tell the assembler that this is the end of listing, although
you might think that MASM would be smart enough to figure that out by itself!
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Notice that there are two kinds of procedures: Far and Near. External routines that are called from
BASIC are always Far, because BASIC uses what is called a medium model. This means the procedure
does  not  necessarily  have to  be within the same code segment  as  the main BASIC program. The
medium  model  allows  the  combined  programs  to  exceed  the  usual  64k  limit  when  linked  to  a
final .EXE file.

When BASIC executes a CALL command, it uses a two-word address as the location to jump to. One
of  the  words  contains  a  segment,  and the  other  an address  within  that  segment.  Then when your
program finally returns, the 8088 must know to remove two words from the stack—a segment and an
address—to find where to return to in the calling BASIC program.

A near  procedure,  on the other  hand,  calls  an address  that  is  only one word long.  And when the
procedure returns, only a single word is popped from the stack. Again, the assembler does the bulk of
the dirty work for you. You just have to remember to use the word Far.

Simplified Directives

Fortunately, Microsoft realized what a pain dealing with segments and procedures and offsets from BP
can be, and they enhanced MASM beginning with version 5.0 to handle these details automatically for
you. Rather than require the programmer to define the various code and data segments,  all  that is
needed are a few simple key words.

The first is .Model Medium, which tells MASM that the procedures that follow will be Far. Used in
conjunction with .Code and .Data, .Model Medium tells MASM that any data you define should be
placed into a group named DGROUP. Adding ",Basic" after the .Model directive also declares your
procedures as Public automatically, so BASIC can access them when your program is linked.

By using the name DGROUP, the linker automatically gathers all of your DB and DW data variables,
and places them into the same segment that BASIC uses. While this has the disadvantage of impinging
on BASIC's near data space, it also means that on entry to the routine the DS register (which BASIC
sets to hold the DGROUP segment) hold the correct segment value for your variables as well.

To show the advantages of simplified directives, contrast the earlier PrtSc with this version that does
exactly the same thing:

.Model Medium, Basic

.Code

PrtSc Proc
 Int 5
 Ret
Endp
End
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MASM 5.1 introduced additional  simplified directives  that  let  you access  incoming parameters by
name, rather than as offsets from BP. All of the remaining examples in this chapter take advantage of
simplified directives, as the following revised listing for GetDrive illustrates. 

;Syntax: CALL GetDrive(Drive%)

.Model Medium, Basic

.Data
  ;-- if variables were needed they would be placed here

.Code
GetDrive Proc, Drive:Word

 Mov  AH,19h      ;tell DOS we want the default drive
 Int  21h         ;call DOS to do it
 Mov  BX,Drive    ;put the address of Drive% into BX
 Cbw              ;clear AH to make a full word
 Mov  [BX],AX     ;then store the answer into Drive%
 Ret              ;return to BASIC

GetDrive Endp     ;indicate the end of the procedure
End               ;and the end of the source file

As you can see, this looks remarkably like a BASIC SUB or FUNCTION procedure, with the incoming
parameter  listed  by  name  and  type  as  part  of  the  procedure  declaration.  This  greatly  simplifies
maintaining the code, especially if you add or remove parameters during development. If incoming
parameters are defined as shown here using Drive%, code to push BP and then move SP into BP is
added  for  you automatically.  When  you refer  to  one  of  the  parameters,  the  assembler  substitutes
[BP+##] in the code it generates. Note, however, that the Word identifier for Drive refers to the 2-byte
size of its address, and not the fact that Drive% is a 2-byte integer.

Also notice the new Cbw command, which is used here to clear the AH register. Cbw (Convert Byte to
Word) expands the byte value held in AL to a full word in AX. A full word is needed to ensure that both
the high and low-byte portions of Drive% are assigned, in case it held a previous value. If the value in
AL is positive (between 0 and 127), AH is simply cleared to zero. And if AL is negative (between -128
and -1 or between 128 and 255), Cbw instead sets all of the bits in AH to be on. Thus, the sign of the
original number in AL is preserved.

A complementary statement,  Cwd (Convert  Word to Double Word),  converts the word in AX to a
double-word in DX:AX. Again, if AX is positive when considered as a signed number, DX is cleared to
zero. And if AX is currently negative, DX is set to FFFFh (-1) to preserve the sign. Cbw and Cwd are
both one-byte instructions, so even with unsigned values they are always smaller and faster for clearing
AH or DX than Mov AH,0 and Mov DX,0 which require two bytes and three bytes respectively.

Finally, the Ret command that exits the procedure is translated by MASM to include the correct stack
adjustment value, based on the number of incoming parameters. If you have multiple exit points from
the procedure (equivalent to EXIT SUB), the exit code will be generated multiple times. That is, each
occurrence of Ret is replaced with a code sequence to pop the saved registers, and preform the 3-byte
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Ret # instruction. Therefore, you should always use a single exit point in a routine, and jump to that
when you need to exit from more than one place.

Calling Interrupts

Chapter 11 explained how interrupts work, and mentioned that only assembly language can call an
interrupt directly. An assembler program uses the Int instruction, and this tells the 8088 to look in the
interrupt vector table in low memory to obtain the interrupt procedure's segment and address. Then the
procedure is called as if it were a conventional subroutine.

All of the DOS and BIOS services are accessed using interrupts, though there are so many different
services that you also have to pass a service number to many of them. Most of the DOS services are
accessed through interrupt 21h. Where BASIC uses the &H prefix to indicate a hexadecimal value,
assembly language uses a trailing letter H. If you specify a number without an H it is assumed by
MASM to be regular decimal. Note that MASM doesn't care if you use upper or lowercase letters, and
knows that either means hexadecimal.

When specifying hexadecimal values to MASM, the first character must always be a digit. That is,
1234h is acceptable, but &HB800 must be entered as 0B800h. Using B800h will generate a syntax
error. 

DOS and BIOS Services

You have already seen how to call the BIOS routine that prints the screen and the DOS routine that
returns the current drive. Let's continue and see how to call some of the other useful routines in the
BIOS and DOS.

The next example program, DosVer, shows how to call the DOS service that returns the DOS version
number.  Like many of  the assembler  routines  that  you can use with BASIC, DosVer relies  on an
existing DOS service to do the real work. In this program you will also learn how to push and pop
values on the stack.

The  syntax  for  DosVer  is  CALL DosVer(Version%),  where  Version% returns  with  the  DOS
version number times 100. That is, if your PC is running DOS version 3.30, then Version% will be
assigned the value 330. Manipulating floating point numbers is much more difficult than integers, and
the added complexity is not justified for this routine.

The DOS service that retrieves the version number returns with two separate values—the major version
number  (3  in  this  case)  and  the  minor  number  (30).  These  values  are  returned  in  AL and  AH
respectively. The strategy here is to first multiply AL by 100, and then add AH. The last step is to
assign the result to the incoming parameter Version%.
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Unfortunately, when you use AL for multiplication, the value 100 must be in a register or memory
location. You can't just use MUL AL,100 though it would sure be nice if you could. Further, whenever
AL is multiplied the result is placed into the entire AX register. Therefore, DosVer also uses BX to
temporarily store the original contents of AX before the two are added together.

As you already have learned, the only register that can be multiplied is AX, or its low-byte portion, AL.
MASM knows if you plan to multiply AX or AL based on the size of the argument. For example, Mul
BX means to multiply AX by BX and leave the result in DX:AX. Mul CL instead multiplies AL by CL
and leaves the answer in AX.

The complete DosVer routine is shown following, and comments explain each step.

;DOSVER.ASM, retrieves the DOS version number

.Model Medium, Basic

.Code

DOSVer Proc, Version:Word

 Mov  AH,30h      ;service 30h gets the version
 Int  21h         ;call DOS to do it

 Push AX          ;save a copy of the version for later
 Mov  CL,100      ;prepare to multiply AL by 100
 Mul  CL          ;AX is now 300 if running DOS 3.xx

 Pop  BX          ;retrieve the version, but in BX
 Mov  BL,BH       ;put the minor part into BL for adding
 Mov  BH,0        ;clear BH, we don't want it anymore
 Add  AX,BX       ;add the major and minor portions

 Mov  BX,Version  ;get the address for Version%
 Mov  [BX],AX     ;assign Version% from AX
 Ret              ;return to BASIC

DOSVer Endp
End

Notice the extra switch that is done with BH and BL. AX is saved onto the stack because multiplying
the byte in AL leaves the result as a full word in AX, thus destroying AH. When the version is popped
into BX, the minor part is in BH. But you are not allowed to add registers that are different sizes (AX
and BH). Further, any number in the high half of a register is by definition 256 times the value of the
same number in a low half. Therefore, BH is first copied to BL to reflect its true value. BH is then
cleared so it won't affect the result, and finally AX and BX are added.

A better way to save AX and then restore it to BX would be to simply use Mov BX,AX immediately
after the call to Interrupt 21h. I used Push and Pop just to show how this is done. As you can see, it is
not necessary to pop the same register that was pushed. However, every Push instruction must always
have a corresponding Pop, to keep the stack balanced. If a register or other value is on the stack when
the final Ret is encountered, that value will be used as the return address which is of course incorrect.
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Division also acts on AX, or the combination of DX:AX. When you use the command Div BL, the
8088 knows you want to divide AX because BL is a byte-sized argument. It then leaves the result in AL
and the remainder, if any, is placed into AH. Similarly, Div DX means that you are dividing the long
integer in DX:AX, because DX is a word.  The result  of this  division is  assigned to AX, with the
remainder in DX.

Accessing BASIC Strings in Assembly Language

As Chapter 2 explained, strings are stored very differently than regular numeric variables. BASIC lets
you find the address of any variable with the VARPTR function. For integer or floating point numbers,
the value VARPTR returns is the address of the actual data. But for strings, VARPTR instead returns
the address of a string descriptor.

DOS employs a different method entirely for its strings, using a CHR$(0) to mark the end. This is
described separately later in the section DOS Strings.

BASIC Near Strings

A BASIC string descriptor is a table containing information about the string—that is, its length and
address. In Microsoft compiled BASIC a string descriptor is comprised of two words of information.
For QuickBASIC and near strings when using BASIC PDS, the first word contains the length of the
string  and  the  second  holds  the  address  of  the  first  character.  Consider  the  following  BASIC
instructions:

X$ = "Assembler"
V = VARPTR(X$)

V now holds the starting address of the four-byte descriptor for X$. For the sake of argument, let's say
that V is now 1234. Addresses 1234 and 1235 will together contain the length of X$ which is 9, and
addresses 1236 and 1237 will contain yet another address—that of the first character in X$. You can
therefore find the length of X$ using this formula: 

Length = PEEK(V) + 256 * PEEK(V + 1)

And the first character "A" can be located with this:

Addr = PEEK(V + 2) + 256 * PEEK(V + 3)

You could then print the string on the screen like this:

FOR C = Addr TO Addr + Length - 1
 PRINT CHR$(PEEK(C));
NEXT
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Therefore, this is a BASIC model for how strings are located by an assembly language program. When
you call an assembler routine with a string argument, BASIC first pushes the address of the descriptor
onto the stack, before calling the routine. The next example is called Upper, because it capitalizes all of
the characters in a string. Even though BASIC offers the UCASE$ and LCASE$ functions, these are
relatively  slow because  they  return  a  copy  of  the  data  that  has  been  manipulated.  Upper  instead
capitalizes the data in place very quickly.

The strategy is to first get the descriptor address from the stack. Then Upper puts the length into BX
and  the  address  of  the  string  data  into  SI.  Upper  steps  through  the  string  starting  at  the  end,
decrementing BX by one for each character. When BX crosses zero, it is done. A BASIC version is
shown first, followed by the assembly language equivalent.

Upper in BASIC:

SUB Upper(Work$) STATIC
 '-- load SI with the address of Work$ descriptor
 SI = VARPTR(Work$)

 '-- assign LEN(Work$) to BX
 BX = PEEK(SI) + 256 * PEEK(SI + 1)

 '-- the address of the first character goes in SI
 SI = PEEK(SI + 2) + 256 * PEEK(SI + 3)

More:
 BX = BX - 1                'point to the end of Work$
 IF BX < 0 GOTO Exit        'no more characters to do
 AL = PEEK(SI + BX)         'get the current character
 IF AL < ASC("a") GOTO More 'skip conversion if too low
 IF AL > ASC("z") GOTO More 'or if too high
 AL = AL - 32               'convert to upper case
 POKE SI + BX, AL           'put character back in Work$
 GOTO More                  'go do it all again

Exit:                        'return to caller
END SUB

Upper in assembly language:

Upper Proc, Work:Word

 Mov  SI,Work    ;load SI with Work$'s descriptor address   
 Mov  BX,[SI]    ;put LEN(Work$) into BX
 Mov  SI,[SI+2]  ;SI holds address of the first character 
More:
 Dec  BX         ;point to the next prior character
 Js   Exit       ;if sign is negative BX is less than 0
 Mov  AL,[BX+SI] ;put the current character into AL
 Cmp  AL,"a"     ;compare it to ASC("a")
 Jb   More       ;jump if below to More
 Cmp  AL,"z"     ;compare AL to ASC("z")
 Ja   More       ;jump if above to More
 Sub  AL,32      ;convert AL to upper case
 Mov  [BX+SI],AL ;put AL back into Work$
 Jmp  More       ;jump to More
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Exit:
 Ret             ;return to BASIC

Upper Endp
End

What's Your Sign?

Notice that for expediency, these routines work backwards from the end of the string. There are a
number of shortcuts that you can use in assembly language, and one important one is being able to
quickly test the result of the most recent numeric operation. If the program worked forward through the
string, it would take three lines of code to advance to the next character, and also require saving the
string length separately: 

Inc  BX           ;point to the next character
Cmp  BX,Length    ;are we done yet?
Jne  More         ;no, continue

Notice the use of a new form of conditional jump—Js which stands for Jump if Signed. Here the code
tests the sign of the number in BX, and jumps if it is negative. Though I haven't mentioned this yet, a
conditional jump doesn't always have to follow a compare. Although a comparison will set the flags in
the 8088 that indicate whether a particular condition is true, so will several other instructions. Some of
these are Add, Sub, Dec, and Inc, but not Mov. So instead of having to include an explicit comparison: 

Dec  BX           ;decrement BX
Cmp  BX,0         ;compare it to zero
Jl   More         ;jump if less to More

All that is really needed is this:

Dec  BX
Js   More

The Dec instruction sets the Sign Flag automatically, just as if a separate compare had been performed.

Conditional Jump Instructions

Besides  Je,  Jne,  and Js,  there  are  a  few other  forms  of  conditional  jump instructions  you should
understand. Table 12-3 lists all of the ones you are likely to find useful.

Command Meaning
Je Jump if equal
Jne Jump if not equal
Ja Jump if above (unsigned basis)
Jna Jump if not above (unsigned basis)
Jb Jump if below (unsigned basis)
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Command Meaning
Jnb Jump if not below (unsigned basis)
Jg Jump if greater (signed basis)
Jng Jump if not greater (signed basis)
Jl Jump if less (signed basis)
Jnl Jump if not less (signed basis)
Jc Jump if Carry Flag is set
Jnc Jump if Carry Flag is clear
Js Jump if sign flag is set
Jns Jump if sign flag is not set
Jcxz Jump if CX is zero

Table 12-3: The 8088 conditional jump instructions.

You should know that Je and Jne also have an alias command name: Jz and Jnz. These stand for Jump
if Zero and Jump if Not Zero respectively, and they are identical to Je and Jne. In fact, though I didn't
mention this earlier, the Repe and Repne string repeat prefixes are sometimes called Repz and Repnz.

Because Je and Jz cause MASM to generate  the identical  machine code bytes,  they may be used
interchangeably. In some cases you may want to use one instead of the other, depending on the logic in
your program. For example, after comparing two values you would probably use Je or Jne to branch if
they are equal or not equal. But after testing for a zero or non-zero value using Or AX,AX you would
probably use Jz or Jnz. This is really just a matter of semantics, and either version can be used with the
same results.

Also, please understand that Jnb is not the same as Ja. Rather, the case of being Not Below is the same
as being Above Or Equal. In fact, MASM recognizes Jae (Jump if Above or Equal) to mean the same
thing as Jnb. Likewise, Jbe (Jump if Below or Equal) is the same as Jna, Jge (Jump if Greater or Equal)
is the same as Jnl, and Jle (Jump if Less or Equal) is identical to Jng. Again, which form of these
instructions you use will depend on how you are viewing the data and comparisons.

Note the special form of conditional jump, Jcxz. Jcxz stands for Jump if CX is Zero, and it combines
the effects of Cmp CX,0 and Je label into a single fast instruction. Jcxz is also commonly used
prior  to a  Loop instruction.  When you use Loop to perform an operation repeatedly,  CX must  be
assigned initially to the number of times the loop is to be executed. But if CX is zero the loop will
execute 65536 times!  Thus, adding Jcxz Exit avoids this undesirable behavior if zero was passed
accidentally.

Finally, you must be aware that a conditional jump cannot be used to branch to a label that is more than
128 bytes earlier, or 127 bytes farther ahead in the code. A conditional jump instruction is only two
bytes, with the first indicating the instruction and the other holding the branch distance. If you need to
jump to a label farther away than that you must reverse the sense of the condition, and jump to a near
label that skips over another, unconditional jump:

Cmp  AX,BX             ;we want to jump to Label: if AX is greater    
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Jna  NearLabel         ;so jump to NearLabel if it's NOT greater    
Jmp  Label             ;this goes to Label: which is farther away    
NearLabel:
.
.

As used here, the unconditional Jmp instruction can branch to any location within the current code
segment. There is also a short form of Jmp, which requires only two bytes of code instead of three. If
you are jumping backwards in the program and the address is within 128 bytes, MASM uses the shorter
form automatically.  But if  the jump is  forward,  you should specify Short  explicitly:  Jmp Short
Label.  Some non-Microsoft  assemblers  do  not  require  you to  specify  Short;  the  newest  MASM
version 6.x also adjusts its generated code to avoid the extra wasted byte.

DOS Strings

When string information is passed to a DOS routine, for example when giving a file or directory name,
the string must end with a CHR$(0). In DOS terminology this is called an ASCIIZ string. (Do not
confuse this with a CHR$(26) Ctrl-Z which marks the end of a file.)  Unlike BASIC, DOS does not use
string descriptors, so this is the only way DOS can tell when it has reached the end. By the same token,
when DOS returns a string to a calling program, it marks the end with a trailing zero byte.

When  passing  a  string  to  a  DOS  service  from  BASIC  you  must  either  concatenate  a  CHR$(0)
manually, or add extra code within the assembler routine to copy the name into local storage and add a
zero byte to the copy. From BASIC you would therefore use something like this: 

CALL Routine(FileName$ + CHR$(0))

BASIC Fixed-Length Strings

Fixed-length strings and the string portion of a TYPE variable do not use a string descriptor, which you
might think would require a different strategy to access them. But whenever a fixed-length string is
used as an argument  to  an assembler  routine or BASIC subprogram, BASIC first  copies  it  into a
temporary conventional string, and it is the temporary string that is passed to the routine. When the
routine  returns,  BASIC copies  the  characters  back into  the  original  fixed-length  string.  Thus,  any
routine written in assembly language that expects a descriptor will work correctly, regardless of the
type of string being sent.

Of course, this copying requires BASIC to generate many extra bytes of assembler code for each call.
If you do not want BASIC to create a temporary string copy from one of a fixed-length, you must first
define the string as a TYPE like this:

TYPE Flen
 S AS STRING * 20
END TYPE
DIM FString AS FLen
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Though this appears to be the same as defining FString as a string with a fixed length of 20, there is an
important difference: declaring it as a TYPE tells BASIC not to make a copy. That is, BASIC does not
treat FString as a string, as long as the ".S" portion that identifies it as a string is not used. Here's an
example based on the FLen TYPE that was defined above: 

DIM FString AS FLen           'FString is a TYPE variable    
FString.S = "This is a test"  'assign the string portion    
CALL Routine(FString)         'call the routine without .S 

Here, the address of the first character in the string is passed to the routine, as opposed to the address of
a temporary string descriptor. We have told BASIC to call Routine, and pass it the entire FString TYPE
but without interpreting the .S string component. This next example does cause BASIC to create a
temporary copy:

CALL Routine(FString.S)

The short assembly language routine that follows expects the address of a fixed-length string with a
length of 20, as opposed to the address of a string descriptor. The routine then copies the characters to
the upper-left corner of a color monitor.

Push BP         ;access the stack as usual
Mov  BP,SP
Mov  SI,[BP+6]  ;SI points to the first character
Mov  DI,0       ;the first address in screen memory
Mov  AX,0B800h  ;color monitor segment when in text mode    
Mov  ES,AX      ;move into ES through AX
Mov  CX,20      ;prepare to copy 20 characters
Cld             ;clear the direction flag to copy forward 

More:
Movsb           ;copy a byte to screen memory
Inc  DI         ;skip over the attribute byte
Loop More       ;loop until done
Pop  BP         ;restore BP
Ret  2          ;return to BASIC

Recall that the color monitor segment value of 0B800h must be assigned to ES through AX, because it
is not legal to assign a segment register from a constant. Also, notice the way that DI is cleared to zero.
Although Mov DI,0 indeed moves a zero into DI, this is not the most efficient way to clear a register.
Any time a numeric value is used in a program (0 in this case), that much extra space is needed to store
the actual value as part of the instruction. A preferred method for clearing a register is with the Xor
instruction. That is, Xor DI,DI gives the same result as Mov DI,0 except it is one byte shorter and
slightly faster.

When Xor is performed on any two values, only those bits that are different are set to 1. But since the
same register is used here for both operands, all of the result bits will be cleared to 0. The code for
using Xor is decidedly less obvious, but you'll see Xor used this way very often in assembly listings in
magazines and books. Another, equally efficient way to clear a register is to subtract it from itself using
Sub AX,AX. 
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Far Strings in BASIC PDS

Accessing near strings in QuickBASIC and BASIC PDS is a relatively simple task, because both the
descriptor  and the  string  data  are  known to  be in  near  DGROUP memory.  But  BASIC PDS also
supports far strings, where the data may be in a different segment. The composition of a far string
descriptor was shown in Chapter 2; however, you do not need to manipulate these descriptors yourself
directly.

BASIC PDS includes two routines—StringLength and StringAddress—that do the work of locating far
strings for you. Further, because Microsoft could change the way far strings are organized in the future,
it makes the most sense to use the routines Microsoft supplies. If the layout of far string descriptors
changes, your program will still work as expected.

StringLength and StringAddress expect the address of the string descriptor, and they return the string's
length  and segmented  address  respectively.  Note  that  while  far  string  data  may  be  in  nearly  any
segment, the descriptors themselves are always in DGROUP. Also note that these routines are not very
well-behaved.  In particular,  registers you may be using are changed by the routines.  To solve this
problem and also to let you get all of the information in a single call, I have written the StringInfo
routine. StringInfo is contained in the FAR$.ASM file on the accompanying disk.

;from an idea originally by Jay Munro
.Model Medium, Basic
 Extrn StringAddress:Proc ;these are part of PDS
 Extrn StringLength:Proc

.Code
StringInfo Proc Uses SI DI BX ES

 Pushf                    ;save the flags manually

 Push ES                  ;save ES for later
 Push SI                  ;pass incoming descriptor
 Call StringAddress       ;call the PDS routine

 Pop  ES                  ;restore ES for StringLength
 Push AX                  ;save offset and segment
 Push DX                  ;  returned by StringAddress

 Push SI                  ;pass incoming descriptor
 Call StringLength        ;get the length
 Mov  CX,AX               ;copy the length to CX

 Pop  DX                  ;retrieve the saved Segment
 Pop  AX                  ;and the address

 Popf                     ;restore the flags manually
 Ret                      ;restore registers and return

StringInfo Endp
End
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StringInfo is called with DS:SI pointing to the string descriptor, and it returns the length in CX and the
address of the string data in DX:AX. Although StringInfo could be designed to return the segment in
DS or ES, it is safer to assign the segment registers yourself manually.

Notice the Uses clause—this tells MASM that the named registers must be preserved, and generates
additional code to push those registers upon entry to the procedure, and pop them again upon exit.

Also notice the new Extrn directive at the beginning of the source file. These tell the assembler that the
stated routines are not in the current source file. MASM then places the external name in the object file
header, with instructions to LINK to fill in the address portion of the Call. Data must also be declared
as external if it is not in the same source file as the routine being assembled. When a data item is to be
made available to other modules, you must also have a corresponding Public statement in that file for
the same reason:

.Model Medium, Basic

.Data
 Public MyData
 MyData DW 12345
  .
  .

Accessing Arrays

As you have seen, a conventional variable is passed to an assembly language subroutine by placing its
address onto the stack. If the variable is a string, then the address passed is that of its descriptor, and the
string data address is read from there. Accessing array elements is only slightly more involved, because
array elements are always stored in adjacent memory locations. Let's look first at integer arrays.

When BASIC encounters the statement  DIM X%(100) in your program, it allocates a contiguous
block  of  memory  202  bytes  long.  (Unless  you  first  used  the  statement  OPTION  BASE  1,
dimensioning an array to 100 means 101 elements.)  The first two bytes in this block hold the data for
X%(0), the next two bytes hold X%(1), and so forth. When you ask VARPTR to find X%(0), the
address it returns is the start of this block of memory. 

The address of subsequent array elements may then be easily computed from this base address. But
with a dynamic array, the segment that holds the array may not be the same as the segment where
regular  variables  are  stored.  Also,  huge arrays  that  span  more  than  64K require  extra  care  when
crossing a 64K segment boundary.

String arrays are  structured in  a similar  fashion,  in  that  each element  follows the previous one in
memory.  For  each string  array  element  that  is  dimensioned,  four  bytes  are  set  aside.  These  bytes
comprise a table of descriptors which contain the length and address words for each element in the
array. But the important point is that once you know where one element or string descriptor is located,
it is easy to find all of those that are adjacent. Following is a QuickBASIC example that shows how to
locate Array$(15), based on the VARPTR address of Array$(0).
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DIM Array$(100)
Array$(15) = "Find me"

Descriptor = VARPTR(Array$(0))
Descriptor = Descriptor + (4 * 15)

Length = PEEK(Descriptor) + 256 * PEEK(Descriptor + 1)
PRINT "Length ="; Length

Addr = PEEK(Descriptor + 2) + 256 * PEEK(Descriptor + 3)
PRINT "String = ";
FOR X = Addr TO Addr + Length - 1
 PRINT CHR$(PEEK(X));
NEXT

Dynamic Arrays

Most of the routines shown so far manipulated variables that are located in near memory. BASIC can
store numeric, TYPE, and fixed-length string arrays in far memory, and additional steps are needed to
read from and write to those arrays.

When an assembly  language routine  receives  control  after  a  call  from BASIC,  it  can  access  your
regular variables because they are in the default data segment. Most memory accesses assume the data
is in the segment held in the DS register. For example, the statement Mov [BX],AX assigns the value
in  AX to  the  memory  location  identified  by  BX within  the  segment  held  in  DS.  Likewise,  Sub
[DI+10],CX subtracts the value held in CX from the memory address expressed as DI+10, where
that address is again in the default data segment.

It  is also possible to specify a segment other than the current default.  One way is with a  segment
override command, like this:

Mov ES:[BX],AX

Here, the segment held in ES is used instead of DS. A segment override adds only one byte of code, so
it is quite efficient. If you plan to access data in a different segment many times, you can optionally set
DS to that segment. However, it is mandatory that you reset DS to its original value before returning to
BASIC.  You  must  also  understand  that  changing  DS means  you  no  longer  have  direct  access  to
DGROUP anymore.  In  that  case you could  use the stack segment  as  an override,  since the stack
segment is always the same as the data segment in a BASIC program. The next short example shows
this in context.

Push DS                ;save DS
Mov DS,FarSegment      ;now DS points to your far data
.                      ;access that far data here
.
Mov AX,SS:[Variable]   ;access Variable in DGROUP
.                      ;access more far data here
Pop DS                 ;restore DS before returning
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When Microsoft introduced QuickBASIC version 2.0, one of the most exciting new features it offered
was support for dynamic numeric arrays. Unlike QuickBASIC near strings, string arrays, and non-array
variables, these arrays are always located outside of BASIC's near 64K data segment. This means that
an assembler routine needs some way to know both the address and the segment for an array element
that is passed to it.

In general,  routines you design that work on an entire array will  be written to expect  a particular
starting element. The routine can then assume that all of the subsequent elements lie before or after it in
memory. Unfortunately, this does not always work unless you add extra steps. If you call an assembly
language routine passing one element of a far-memory dynamic array like this:

CALL Routine(Array(1))

BASIC makes a copy of the array element into a temporary variable in near memory, and then passes
the address of that copy to the routine. Thus, while the routine can still receive an array element's value,
it has no way to determine its true address. And without the address, there is no way to get at the rest of
the array.

Since being able to pass an entire array is obviously important, BASIC supports two options to the
CALL command—SEG  and  BYVAL.  The  SEG keyword  indicates  that  both  the  address  and  the
segment are to be passed on the stack, and it also tells BASIC not to make a copy of the array element.
SEG is used with an array element (or any variable, for that matter) like this:

CALL Routine(SEG Array%(1))

You could also send the segment and address manually, like this: 

CALL Routine(BYVAL VARSEG(Array%(1)), BYVAL VARPTR(Array%(1))) 

In both cases, BASIC first pushes the segment where the element resides onto the stack, followed by
the element's address within that segment. By pushing them in this order the routine can conveniently
use either Lds (Load DS) or Les (Load ES) to get both the segment and address in one operation:

Les DI,[BP+6]       ;if using manual stack addressing

or

Les BX,[StackArg]   ;if using MASM's simplified directives 

Les loads four bytes in one operation, placing the lower word at [BP+6] into the named register (DI in
the first example case), and the higher word at [BP+8] into ES. Lds works the same, except the higher
word is instead moved into DS. Once the segment and address are loaded, you can access all of the
array elements:

Push DS              ;save DS
Lds  SI,[BP+6]       ;now DS:SI points at first element
Mov  [SI],AX         ;assign Array%(1) from AX
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Add  SI,2            ;now SI points at the next element
Mov  [SI],BX         ;assign Array%(2) from BX
Pop  DS              ;restore DS
.                    ;continue
.

If Les were used instead of Lds, then an ES: override would be needed to assign the elements. Although
you must always preserve the contents of DS regardless of the version of BASIC, some registers need
to be saved only when using BASIC PDS far strings. Other registers do not need to be saved at all.
Table 12-4 shows which registers must be preserved based on the version of BASIC.

QuickBASIC and PDS near strings BASIC PDS far strings
DS DS
SS SS
BP BP
SP SP

ES
SI
DI

Table 12-4: The registers that must be preserved in an assembly language subroutine.

Besides having to save and restore the registers shown in Table 12-4, you must also be sure that the
Direction Flag is cleared to forward before returning to BASIC. The Direction Flag affects the 8088
string operations, and is by default set to forward. You can usually ignore the direction flag unless you
set it to backwards explicitly with the Std instruction. In that case, you must use a corresponding Cld
command.

Huge Arrays

A huge array is one that spans more than one 64K segment, and as you can imagine, it requires extra
steps to access all of the elements. That is, the assembler routine must know which elements are in
what segment, and manually load those segments as needed. The following code fragment shows how
to walk through all of the elements in a huge integer array, and just for the sake of the example adds
each element to determine the sum of all of them.

A simple setup example and call syntax for this routine is as follows: 

REDIM Array&(1 TO 30000)
FOR X% = 1 TO 30000
 Array&(X%) = X%
NEXT

CALL SumArray(SEG Array&(1), 30000, Sum&)
PRINT "Sum& ="; Sum&

And here's the code for the SumArray routine:

.Model Medium, Basic
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.Code

SumArray Proc Uses SI, Array:DWord, NumEls:Word, Sum:Word

 Push DS          ;save DS so we can restore it later
 Push SI          ;PDS far strings require saving SI too

 Xor  AX,AX       ;clear AX and DX which will accumulate
 Mov  DX,AX       ; the total

 Mov  BX,NumEls   ;get the address for NumElements%
 Mov  CX,[BX]     ;read NumElements% before changing DS
 Lds  SI,Array    ;load the address of the first element
 Jcxz Exit        ;exit if NumElements = 0

Do:
 Add  AX,[SI]     ;add the value of the low word
 Adc  DX,[SI+2]   ;and then add the high word
 Add  SI,4        ;point to the next array element

 Or   SI,SI       ;are we beyond a 32k boundary?
 Jns  More        ;no, continue

 Sub  SI,8000h    ;yes, subtract 32k from the address
 Mov  BX,DS       ;copy DS into BX
 Add  BX,800h     ;adjust the segment to compensate
 Mov  DS,BX       ;copy BX back into DS

More:
 Loop Do          ;loop until done

Exit:
 Pop  SI          ;restore SI for BASIC
 Pop  DS          ;restore DS and gain access to Sum&
 Mov  BX,Sum      ;get the DGROUP address for Sum&
 Mov  [BX],AX     ;assign the low word
 Mov  [BX+2],DX   ;and then the high word

 Ret              ;return to BASIC

SumArray Endp
End

The segment bounds checking is handled by the six lines that start with Or SI,SI. The idea is to see
if the address is beyond 32767, subtract 32768 if it is, and then adjust the segment to compensate. The
most direct way would have been with Cmp SI,32767 and then Ja More, but Cmp used this way
generates three bytes of code, whereas Or creates only two bytes. Since Or sets the Sign flag if the
number is negative (above 32767), you can use it to know when the address adjustment is needed.

Because it is not legal to add or subtract a segment register, DS is first copied to BX, 800h is added to
that, and the result is then copied back to DS. 800h is used instead of 8000h (32768) because a new
segment begins every 16 bytes; that is, adding 800h to a segment value is the same as adding 8000h to
the address.

SumArray also introduces a new instruction:  Adc means Add with Carry, and it is used to add long
integer values that by definition span two words. When you add two registers—say, AX and BX—if the
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result  exceeds  65535 only the remainder  is  saved.  However,  the Carry Flag  is  set  to  indicate  the
overflow condition. Adc takes this into account, and adds one extra to its result if the Carry Flag is set.
Therefore, whenever two long integers are added you'll use Add to combine the lower words, and Adc
for the high words. Similarly, subtracting long integers requires that you use Sub to subtract the lower
words and then Sbb (Subtract with Borrow) on the upper words.

Although the details are hidden from you, when more than one parameter is passed to an assembly
language routine it is the last in the list that is at [BP+6] on the stack. The previous argument is at
[BP+8], and the one before that is at [BP+10]. Because the stack grows downward as new items are
pushed onto it, each subsequent item is at a lower address.

Finally, in a real program this routine would probably be designed as a function. Using a function
avoids having to pass the Sum& parameter to receive the returned value, and helps reduce the size of
the program. 

Assembler Functions

Designing a procedure as a function lets you return information to a program, but without the need for
an extra passed parameter. Functions are also useful because BASIC performs any necessary data type
conversion automatically. For example, if you have written a function that returns an integer value, you
can freely assign the result to a single precision variable.

You can also test the result of a function directly using IF, display it directly with PRINT, or pass it as a
parameter to another procedure. Some typical examples are shown here:

SingleVar! = MyFunction%

IF YourFunction&(Argument%) > 1004 THEN ...

PRINT HisFunction$(Any$)

Beginning with QuickBASIC version 4.0, functions written in assembly language may be added to a
BASIC program. To have a function return an integer value, simply place the value into the AX register
before returning to BASIC. If the function is to return a long integer, both DX and AX are used. In that
case, DX holds the higher word and AX holds the lower one. 

String Functions

String functions are only slightly more complicated to design. A string function also uses AX as a
return  value,  but  in  this  case  AX holds  the  address  of  a  string  descriptor  you have  created.  The
complete short string function that follows accepts an integer argument, and returns the string "False" if
the argument is zero or "True" if it is not.
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;Syntax:
;DECLARE FUNCTION TrueFalse$(Argument%)
;Answer$ = TrueFalse$(Argument%)

.Model Medium, Basic

.Data
 DescLen DW 0
 DescAdr DW 0
 True    DB "True"
 False   DB "False"

.Code
TrueFalse Proc, Argument:Word

 Mov  DescLen,4            ;assume true
 Mov  DescAdr,Offset True

 Mov  BX,Argument          ;get the address for Argument%   
 Cmp  Word Ptr [BX],0      ;is it zero?
 Jne  Exit                 ;no, so we were right
 Inc  DescLen              ;yes, return five characters
 Mov  DescAdr,Offset False ;and the address of "False"

Exit:
 Mov  AX,Offset DescLen    ;show where the descriptor is
 Ret                       ;return to BASIC

TrueFalse Endp
End

Although the function is declared using a dollar sign in the name, the actual procedure omits that. The
dollar sign merely tells BASIC what type of information will be returned. It is not part of the actual
procedure  name.  TrueFalse  begins  by defining  a  string  descriptor  in  the  .Data  segment.  It  is  also
possible to store strings and other data in the code segment and access it with a CS: segment override.
However, data that is returned as a function must be in DGROUP, and so must the descriptor.

The first two statements assign the descriptor to an output string length of four characters, and the
address of the message "True". Then, the address of Argument is obtained from the stack, and its value
is compared to zero. If it is not zero, then the descriptor is already correct and the function can proceed.
Otherwise, the descriptor length is incremented to reflect the correct length, and the address portion is
reassigned to show where the string "False" begins in memory. In either case, the final steps are to load
AX with the address of the descriptor, and then return to BASIC.

MASM also lets you access data using simple arithmetic. For example, the descriptor could have been
defined as a single pair of words with one name, and the second word could be accessed based on the
address of the first one like this:

.Data
 Descriptor DW 0, 0
 True       DB "True"
 False      DB "False"

.Code
  .
  .
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 Inc  Descriptor
 Mov  Descriptor+2,Offset False
  .
  .

Far String Functions

Far  string  functions  require  more  work  to  write  than  near  string  functions,  because  of  the  added
overhead needed to support far strings. Fortunately, BASIC includes routines that simplify the task for
you.  Actually,  the  routines  to  create  and  assign  strings  have  always  been  included;  it's  just  that
Microsoft never documented how to do it before BASIC 7.0. Later in this chapter I'll show code to
create strings that works with all versions of BASIC 4.0 or later.

The StringAssign routine expects six arguments on the stack, for the segment, address, and length of
both the source and destination strings. StringAssign can assign from or to any combination of fixed
and variable-length strings. If the length argument for either string is zero, then StringAssign knows
that the address is that of a descriptor. Otherwise, the address is of the data in a fixed-length string.

Because of the added overhead of obtaining values and pushing them on the stack, I have created a
short wrapper program that does this for you. MakeString accepts the same arguments as StringAssign,
but they are passed using registers rather than on the stack. Of course, calling one routine that in turn
calls another takes additional time. But the savings in code size when MakeString is called repeatedly
will overshadow the very slight additional delay.

MakeString is called with DX:AX holding the segmented address of the source string, and CX holding
its fixed length. If the source is a conventional string, CX is set to zero to indicate that. The destination
address is identified with DS:DI, using BX to hold the length. Again, BX holds zero if the destination is
not a fixed-length string. 

;from an idea originally by Jay Munro
.Model Medium, Basic
Extrn STRINGASSIGN:Proc

.Code
MakeString Proc Uses DS

Push DX           ;push the segment of the source string   
Push AX           ;push the address of the source string   
Push CX           ;push the string length
Push DS           ;push the segment of the destination
Push DI           ;push the address of the destination
Push BX           ;push the destination length

Call STRINGASSIGN ;call BASIC to assign the string
Ret

MakeString Endp
End
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Now, with the assistance of MakeString, TrueFalse$ can be easily modified to work with BASIC 7 far
strings:

.Model Medium, Basic
Extrn MakeString:Proc        ;this is in FAR$.ASM

.Data
Descriptor DW 0, 0           ;the output string descriptor   
True       DB "True"
False      DB "False"

.Code
TrueFalse Proc Uses ES DS SI DI, Argument:Word

Mov  CX,4             ;assume true
Mov  AX,Offset True

Mov  BX,Argument      ;get the address for Argument%
Cmp  Word Ptr [BX],0  ;is it zero?
Jne  @F               ;no, so we were right

Inc  CX               ;yes, assign five characters
Mov  AX,Offset False  ;and use the address of "False"

@@:
Mov  DX,DS                ;assign the segment and address
Mov  DI,Offset Descriptor ;  of the destination descriptor
Xor  BX,BX                ;assign to a descriptor
Call MakeString           ;let MakeString do the work

Mov  AX,DI            ;AX = address of output descriptor
Ret                   ;return to BASIC

TrueFalse Endp
End

Notice  the  introduction  of  the  new at-symbol  (@) assembler  directive.  The at-symbol  and double
at-symbol label are quite useful, because they let you avoid having to create unique label names each
time you specify  the  target  of  a  jump.  As  with  BASIC,  creating  many different  label  names is  a
nuisance, and also impinges on the assembler's working memory. When a label is defined using @@:
as a name, you can jump forward to it using @F or backwards using @B. Multiple @@: labels may be
used in the same program, and @F and @B always branch to the nearest one in the stated direction.

Floating Point Functions

Single and double precision functions are handled in yet another manner. Although a single precision
value could be returned in the DX:AX register combination, a double precision result would need four
registers, which is impractical. Further, a floating point number is most useful to BASIC if it is stored
in a memory location, rather than in registers.

When BASIC invokes a floating point function it adds an extra, dummy parameter to the end of the list
of arguments you pass. If no parameters are being used, it creates one. This parameter is the address
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into which your routine is to place the outgoing result. Because of this added parameter, it is essential
that you account for it when returning to BASIC. Thus, a function without arguments must use Ret 2,
a  function with  one argument  needs  Ret 4,  and so forth.  Since  we're  using MASM's  simplified
directives, all that is needed is to create an extra parameter name.

The short double precision function that follows squares a double precision number much faster than
using  Value# ^ 2,  and also shows how to perform simple floating point  math using assembly
language. You will declare and invoke Square like this:

DECLARE FUNCTION Square#(Variable#)
Result = Square#(Variable#)

;SQUARE.ASM, squares a double precision number
;
;WARNING: This file must be assembled using /e (emulator). 
.Model Medium, Basic
.Code
.8087                   ;allow 8087 instructions

Square Proc, InValue:Word, OutValue:Word

 Mov  BX,InValue       ;get the address for InValue
 FLd  QWord Ptr [BX]   ;load InValue onto the 8087 stack
 FMul QWord Ptr [BX]   ;multiply InValue by itself

 Mov  BX,OutValue      ;get the address for OutValue
 FStp QWord Ptr [BX]   ;store the result there
 FWait                 ;wait for the 8087 to finish

 Mov  AX,BX            ;return DX:AX holding the full
 Mov  DX,DS            ;  address of the output value
 Ret                   ;return to BASIC

Square Endp
End

This Square function illustrates several important points. The first is the use of MASM's /e switch,
which  lets  an  assembly  language  routine  share  BASIC's  floating  point  emulator.  When  a  BASIC
program begins, it looks to see if an 8087 coprocessor is installed in the host PC. If so, it uses one set of
library routines; otherwise it uses another.

The library routines that use an 8087 simply modify the caller's  code to change the floating point
interrupts that BASIC generates into actual 8087 instructions. It then returns to the instruction it just
created and executes it. Although this adds to the time needed to perform a floating point operation, the
code is patched only once. Thus, statements within a FOR or DO loop operate very quickly after the
first iteration. This is very much like the method used by the BRUN library described in Chapter 1.

When no coprocessor is detected, the floating point interrupts that BASIC generates are used to invoke
routines in BASIC's floating point software emulator. As its name implies, an emulator imitates the
behavior of a coprocessor using assembly language commands. A coprocessor can perform a variety of
floating  point  operations,  including  addition,  multiplication,  and  rounding,  as  well  as  some
transcendental functions such as logarithms and arctangents.
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When you use the /e switch, MASM adds extra information to the object file header that tells LINK
where to patch your 8087 instructions. LINK can then change your code to the equivalent floating point
interrupts, similar to the way BASIC patches its own code to change the interrupts to 8087 instructions.
Therefore, when you write floating point code that will be called from BASIC, your routine can tie into
BASIC's emulator, and use it automatically if no coprocessor is installed.

Also, notice the .8087 directive which tells MASM not to issue an error message when it sees those
instructions.  Other,  similar  directives  are  .80287  and  .80387,  and  also  .80286  and  .80386.  These
directives  inform MASM  that  you  are  intentionally  using  advanced  commands  that  require  these
processors, and have not made a typing error.

The actual body of the Square function is fairly simple. First, the address of the incoming value is
retrieved from the system stack, and then the data at that address is loaded onto the coprocessor's stack
using the FLd (Floating point Load) instruction. Since this is a double precision value, QWord Ptr
(Quad Word Pointer) is needed to indicate the size of the data. Had the incoming value been single
precision, DWord Ptr (Double Word Pointer) would be used instead. One important feature of an 8087
or software emulator is that a number may be converted from one numeric format to another simply by
loading it as one data type, and then saving it as another.

The next instruction, FMul (Floating point Multiply), multiplies the value currently on the 8087 stack
by the same address. Since the original value is still present, there's no need to make a new copy. Next,
the destination address is placed into BX, and the result now on the 8087 stack is stored there. The
trailing letter p in the FStp instruction specifies that the value loaded earlier is to be popped from the
coprocessor stack.

A complete discussion of 8087 instructions and how the coprocessor stack operates goes beyond what I
can hope to cover here. When in doubt about what instruction is needed, I suggest that you code a
similar sample in BASIC, and then examine the code BASIC generates using CodeView. There are also
several books that focus on writing floating point instructions in assembly language.

The last 8087 instruction is FWait, and it tells the 8088 to wait until the coprocessor has finished,
before continuing. Because an 8087 is a true coprocessor, it operates independently of the main 8088
CPU. Once a value is loaded and the 8087 is instructed to perform an operation, the 8087 returns
immediately to the program that issued the instruction and continues to process the numbers in the
background. If Square exited immediately and BASIC read the returned value, there's a good chance
that the 8087 did not finish and the value has not yet been stored. In that case, whatever happened to be
in memory at that time would be the value that BASIC uses, which is obviously incorrect.

Experienced 8087 programmers know how long the various coprocessor instructions take to complete,
and with careful planning the number of FWait commands can be kept to a minimum. However, the
code that BASIC generates always finishes with an FWait. Of course, there is no need to wait when the
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emulator is in use. In fact, an FWait is patched by BASIC to do nothing (Mov AX,AX), rather than
waste time invoking an empty interrupt handler repeatedly.

As shown, Square can be added to a Quick Library for use with either QuickBASIC or BASIC PDS.
Unfortunately, the information link needs to patch 8087 instructions is available only with BASIC PDS.
Therefore,  the  following file  is  included in  the  libraries  on the  accompanying disk,  to  supply  the
external data that LINK requires.

;FIXUPS.ASM, deciphered by Paul Passarelli

 FIARQQ  Equ 0FE32h
 FJARQQ  Equ 04000h
 FICRQQ  Equ 00E32h
 FJCRQQ  Equ 0C000h
 FIDRQQ  Equ 05C32h
 FIERQQ  Equ 01632h
 FISRQQ  Equ 00632h
 FJSRQQ  Equ 08000h
 FIWRQQ  Equ 0A23Dh

 Public  FIARQQ
 Public  FJARQQ
 Public  FICRQQ
 Public  FJCRQQ
 Public  FIDRQQ
 Public  FIERQQ
 Public  FISRQQ
 Public  FJSRQQ
 Public  FIWRQQ
End

These  values  are  added to  the  floating point  instruction bytes  during the linking process,  and the
addition  converts  those  statements  into  equivalent  BASIC floating  point  interrupt  commands.  For
example, the 8087 statement Fld DWord Ptr [1234h] is represented in memory as the following
series of Hexadecimal bytes:

9B D9 06 34 12

After LINK adds the value FIDRQQ (5C32h) to the first two bytes of this command the result is:

CD 35 06 34 12

And when disassembled back to assembler mnemonics, the CD35h displays as Int 35h. The three
bytes that follow are always left unchanged, and they specify the type of operation—DWord Ptr on a
memory location—and the address of that location.

Floating Point Comparisons

At the core of any sorting or searching routine is an appropriate comparison function. Previous chapters
showed how to compare string data, and as you can imagine comparing floating point values is much
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more complex. But now that you know how to tap into BASIC's floating point routines it is almost
trivial to effect a floating point comparison. The routines that follow let you compare either single or
double precision values, by passing them as arguments.

;COMPAREFP.ASM, compares floating point values

;WARNING: This file must be assembled using /e (emulator)

.Model Medium, Basic
 Extrn B$FCMP:Proc    ;BASIC's FP compare routine

.8087                 ;allow coprocessor instructions

.Code

CompareSP Proc, Var1:Word, Var2:Word

 Mov  BX,Var2        ;get the address of Var1
 Fld  DWord Ptr [BX] ;load it onto the 8087 stack
 Mov  BX,Var1        ;same for Var2
 Fld  DWord Ptr [BX]
 FWait               ;wait until the 8087 says it's okay
 Call B$FCMP         ;compare the values, (and pop both)

 Mov  AX,0           ;assume they're the same
 Je   Exit           ;we were right
 Mov  AL,1           ;assume Var1 is greater
 Ja   Exit           ;we were right
 Dec  AX             ;Var1 must be less than Var2
 Dec  AX             ;decrement AX to -1

Exit:
 Ret                 ;return to BASIC

CompareSP Endp

CompareDP Proc, Var1:Word, Var2:Word

 Mov  BX,Var2        ;as above
 Fld  QWord Ptr [BX]
 Mov  BX,Var1
 Fld  QWord Ptr [BX]
 FWait
 Call B$FCMP

 Mov  AX,0
 Je   Exit
 Mov  AL,1
 Ja   Exit
 Dec  AX
 Dec  AX

Exit:
 Ret

CompareDP Endp
End
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Like the Compare3 function shown in Chapter 8, CompareSP and CompareDP are integer functions
that return  -1, 0, or 1 to indicate if the first value is less than, equal to, or greater than the second.
Therefore, to use these from BASIC you would invoke them like this:

IF CompareSP%(Value1!, Value2!) = -1 THEN
 'the first value is smaller than the second
END IF

And to test if the first is equal to or greater than the second you would instead do this:

IF CompareSP%(Value1!, Value2!) >= 0 THEN
 'the first value is equal or greater
END IF

You can also use these functions  from assembly language.  But  if  you do this,  I  suggest  a simple
modification.  A comparison routine  meant  to  be  called  from another  assembler  routine  would  not
generally  return the result  in  the registers.  Rather,  it  would leave the flags  set  appropriately for  a
subsequent Ja or Jne branch.

Fortunately,  BASIC's  B$FCMP routine  already does  this.  Therefore,  you will  make a  copy of  the
COMPAREF.ASM source  file,  and delete  the  six  lines  between the  call  to  B$FCMP and the  Ret
instruction. You can also remove the Exit: label if you like, although its presence causes no harm. Of
course,  the  code  itself  is  so  simple  that  the  best  solution  may  be  to  simply  duplicate  the  same
instructions inline in your routine. 

Exploiting MASM's Features

Each example I have shown so far introduced another useful MASM feature. For example, you learned
how MASM lets  you establish  data  memory with  an  initial  value,  so you don't  have  to  assign  it
explicitly. But there are several other features you should know about as well.   One is conditional
assembly.

Conditional Assembly

With conditional assembly you can specify that only certain portions of a file are to be assembled. This
makes it easier to maintain two different versions of a routine, for example one for near strings and one
for far strings. If you had to create two separate copies of the source file, any improvements or bug
fixes that you add would have to be done twice.

There are two ways that a section of code can be optionally included or excluded. One is to define a
constant at the beginning of the source file, and then test that constant using a form of IF and ELSE
test. Like BASIC, MASM lets you define constant values using meaningful names. The problem with
this method—albeit a minor one—is that you must alter the code prior to assembling each version. The
example that follows shows how this kind of conditional assembly is employed.
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MyConst = 1
.
.
IF MyConst
      ;do whatever you want here
ELSE   ;the ELSE is optional
      ;do whatever else you want here
ENDIF
.
.

The idea is that if you want the code that follows the IF test to be assembled, you would use a non-zero
value for MyConst. If you wanted to create an alternate version using the code within the optional
ELSE block, you would change the value to be zero.

You can also use IFE (If  Equal  to  zero)  to  test  if  a  constant  is  zero.  And this  brings  up another
interesting MASM feature.  There are actually two types of constants you can define.  The constant
MyConst shown above is  called a  redefinable constant,  because you can actually change its value
during the course of a program. The other type of constant is defined using the Equ (Equate) directive,
and may not be changed: 

YourConst Equ 100

Redefinable constants are often used in repeating macros, and macros are discussed later in this section.

The other way to tell MASM that it is to assemble just a portion of the file is with IFDEF. IFDEF (If
Defined) tests if a constant has been defined at all, as apposed to comparing for a specific value. The
value of this approach is that you can define a constant on the MASM command line when you run it.
The first example below tells MASM to assemble the code within the IFDEF block, and the second
tells it to not to. 

C:\ASM\> masm program /def myconst ;

C:\ASM\> masm program ;

Here's the portion of the routine that is being assembled conditionally: 

IFDEF MyConst
 ;do something optional here
ENDIF

Likewise, IFNDEF (If Not Defined) tests if a constant has not been defined when reversing the logic is
more sensible to you. MASM includes a great number of such conditional tests, and only by reading
that section of the MASM manual will you become familiar with those that are the most useful. 

Comment Blocks
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Another  useful  MASM feature  that  I  personally  would  love  to  see  added  to  BASIC is  multi-line
comment blocks. The Comment command accepts any single character you choose as a delimiter, and
considers  everything  thereafter  to  be  comments  until  the  same  character  is  encountered.  Many
programmers use a vertical bar, because it is not a common character:

Comment |
This program is intended to blah blah blah, and it works by loading AX with blah 
blah blah.
|

Besides avoiding the need to place an explicit semicolon on each comment line, this also makes it easy
to remark out large sections of code while you are debugging a routine.

Quoted Strings

Yet another useful feature is MASM's willingness to use either single or double quotes to indicate
ASCII text and individual characters. In BASIC, if you want to specify a double quote you must use
CHR$(34)—it simply is not legal to use """, where the quote in the middle is the character being
defined.

With the introduction of VB/DOS triple quotes may now
be used for this purpose.

If you need to define a double quote simply surround it with apostrophes like this:

SomeData DB '"'
Mov  AH, '"'

Or you can place a single quote within double quotes like this: 

Add DL, "'"

MASM can use either convention as needed, which is a feature I personally like a lot.

Length and Address Self-Calculation

Whenever  MASM sees  the  dollar  sign  ($)  operator  it  interprets  that  to  mean here,  or  the  current
address. This can be used both for data and code, though it is more common with data as the example
below illustrates. 

.Data
 Descriptor DW MsgLen, Address
 Message    DB "This is a message."
 Address =  Offset Message
 MsgLen  =  $ - Address
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The expression $ - Address tells the assembler to take the current data address, and subtract from
that  the  address  where  Message  begins.  This  is  a  very  powerful  concept  because  it  frees  the
programmer from many tedious calculations. In particular, if the string contents are changed at a later
time, the new length is recalculated by MASM automatically. 

Defining Data Structures

To assist you in manipulating data structures, MASM offers the Struc directive. This is identical to
BASIC's TYPE statement, whereby you define the organization of a collection of related data items.
The  example  below  shows  how to  define  a  custom data  structure  using  BASIC,  followed  by  an
equivalent MASM Struc definition.

BASIC:

TYPE MyType
 LastName  AS STRING * 15
 FirstName AS STRING * 12
 ZipCode   AS STRING * 5
 RecordPtr AS LONG
END TYPE
DIM MyVar AS MyType

MASM:

Struc MyStruc
 LastName  DB 15 Dup (?)
 FirstName DB 12 Dup (?)
 ZipCode   DB  5 Dup (?)
 RecordPtr DD  ?
MyStruc Ends
MyVar DB Size MyStruc Dup (?)

Like BASIC, defining a structure merely establishes the number and type of data items that will be
stored; memory is not actually set aside until you do that manually. In BASIC, you must use DIM to
establish the memory that will hold the TYPE variable. In assembly language you instead use DB in
conjunction with the Size directive, to set aside the appropriate number of bytes.

Each component of the Structure is defined using an identifying name and a corresponding data type.
Then, whenever a structure member is referenced in your assembler routine, MASM replaces it with a
number that shows how far into the structure that member is located. MASM uses the same syntax as
BASIC, with a period between the data name and the structure identifier. Here are a few examples:

Mov  AL,[BX+MyVar.LastName]   ;same as Mov AL,[BX+15]
Les  DI,[MyVar.RecordPtr]     ;loads ES:DI from RecordPtr 

Minimizing DGROUP Usage
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In many cases you will store the variables your routines need in DGROUP using the .Data directive. As
with static subprograms and functions in BASIC, this data will not change between subroutine calls.
But this also means that these variables are combined into the same 64k segment that is shared with
BASIC. When there are many variables or many different routines each with their own variables, this
can  significantly  reduce the  amount  of  near  memory available  to  BASIC.  There  are  two effective
solutions to this problem.

Local Variables

One way to reduce the DGROUP impact of many variables is to place some of them onto the system
stack. MASM lets you do this automatically with its Local directive, or you can do it manually by
subtracting the requisite number of bytes from SP. Of course, there is only so much room on the stack,
so this approach is most useful when there are many routines and each has less than 1K or so of data.
Stack variables are also useful when programming for OS/2 or Windows. These operating systems
require that all of your procedures be reentrant so static variables cannot be used.

The example below creates room for fifty words of local storage on the stack, and then clears the
variables to zero.

Routine Proc Uses ES DI, Param1:Word, Param2:Word
 Sub  SP,100         ;50 words = 100 bytes
 Push SS             ;assign ES from SS
 Pop  ES
 Mov  DI,SP          ;point DI to the start of storage
 Xor  AX,AX          ;fill with zeros
 Mov  CX,50          ;clear fifty words
 Rep  Stosw          ;store AX CX times at ES:[DI]
  .                  ;the routine continues
  .
 Add  SP,100         ;restore SP to what it had been
 Ret                 ;return to BASIC
Routine Endp

MASM can also allocate the stack memory automatically for you using Local like this: 

Routine Proc Uses ES DI, Param1:Word, Param2:Word
 Local Buffer [100]:Byte
 Lea  DI,Buffer      ;clear the stack variables here
  .                  ;the routine continues
  .
 Ret                 ;return to BASIC
Routine Endp

As you can see, Local lets you refer to the start of the local stack data area by name. Notice how Lea is
required  here,  because  the  address  of  Buffer  is  expressed  as  an  offset  from BP.  That  is,  MASM
translates the Lea instruction to Lea DI,[BP-100]. You cannot use Mov DI,Offset Buffer
because Buffer's address—which is based on the current setting of the stack pointer—is not known
when the routine is assembled or linked.
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In this case only one local block is defined, so you could also use Mov DI,SP to set DI to point to the
start of the data. It is not strictly necessary to clear the stack space before using it, but it is important to
understand that whatever junk happened to be in memory at that time will still be there after using
Local.

It is also important to be aware of a number of bugs with the Local directive. I have found that limiting
the use of Local to a single set of data as shown here is safe with all MASM versions through 5.1.
Using multiple Local directives defined with data structures can result in the wrong part of the stack
being written to when a structure member is accessed by name.

Storing Data in the Code Segment

Another time-honored technique for conserving DGROUP memory is to place selected variables into
the code segment. In most cases storing data for a routine in the code segment will make your programs
slightly larger and slower, because of the need for an added CS: segment override. But when large
amounts of data must be accommodated, this can be very valuable indeed. One advantage to using the
code segment is that you can establish initial values for the data, which is not possible when using the
stack.

As an example of this technique, I have written a string function called Message$ that stores a series of
messages in the code segment. In this case only a single CS: segment override is needed, so the impact
of using the code segment for data is insignificant. Message$ is designed to be declared and invoked as
follows:

DECLARE FUNCTION Message$(BYVAL MsgNumber%)
Result$ = Message$(AnyInt%)

Message$ is table driven, which makes it simple to modify the routine to change or add messages
without having to make any changes to the function's structure. As shown here, Message$ is designed
to return the name of a weekday, given a value between one and seven. You can easily modify it to
return other strings of nearly any length.

.Model Medium, Basic
 Extrn B$ASSN:Proc         ;BASIC's assignment routine

.Data
 Descriptor DD 0           ;the output string descriptor
 Null$      DD 0           ;use this to return a null
                           ;  (needed for BASIC PDS only, 
.Code                      ;  but okay with QuickBASIC)

Message Proc Uses SI, MsgNumber:Word

 Mov  SI,Offset Messages   ;point to start of messages
 Xor  AX,AX                ;assume an invalid value

 Mov  CX,MsgNumber         ;load the message number
 Cmp  CX,NumMsg            ;does this message exist?
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 Ja   Null                 ;no, return a null string
 Jcxz Null                 ;ditto if they pass a zero

Do:                        ;walk through the messages
 Lods Word Ptr CS:0        ;load and skip over this message's length
 Dec  CX                   ;show that we read another
 Jz   Done                 ;this is the one we want

 Add  SI,AX                ;skip over the message text
 Jmp  Short Do             ;continue until we're there

Done:
 Or   AX,AX                ;are we returning a null?
 Jz   Null                 ;yes, handle that differently
 Push CS                   ;no, pass the source segment

Done2:
 Push SI                   ;and the source address
 Push AX                   ;and the source length

 Push DS                   ;pass the destination segment
 Mov  AX,Offset Descriptor ;and the destination address
 Push AX
 Xor  AX,AX                ;0 means assign a descriptor
 Push AX                   ;pass that as well

 Call B$ASSN               ;let B$ASSN do the dirty work
 Mov  AX,Offset Descriptor ;show where the output is
 Ret                       ;return to BASIC

Null:
 Push DS                   ;pass the address of Null$
 Mov  SI,Offset Null$
 Jmp  Short Done2

Message Endp

;----- DefMsg macro that defines messages
DefMsg Macro Message
 LOCAL MsgStart, MsgEnd    ;;local address labels
 NumMsg = NumMsg + 1       ;;show we made another one
 IFB <Message>             ;;if no text is defined
   DW 0                    ;;just create an empty zero
 ELSE                      ;;else create the message
   DW MsgEnd - MsgStart    ;;first write the length
   MsgStart:               ;;identify the starting address       
   DB Message              ;;define the message text
   MsgEnd Label Byte       ;;this marks the end
 ENDIF
Endm

Messages Label Byte         ;the messages begin here
NumMsg = 0                  ;tracks number of messages
                            ;DO NOT MOVE this constant
DefMsg "Sunday"
DefMsg "Monday"
DefMsg "Tuesday"
DefMsg "Wednesday"
DefMsg "Thursday"
DefMsg "Friday"
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DefMsg "Saturday"
End

After declaring BASIC's B$ASSN routine as being external, Message$ defines two string descriptors in
the Data segment. The first is used for the function output when returning a normal message, and the
second is used only when returning a null string. In truth, the need for a separate output descriptor and
the slight added steps to detect the special case of a null output string is needed only with BASIC PDS
far strings. And this brings up an important point.

It is impossible to write one assembly language subroutine that can work with both QuickBASIC and
BASIC PDS far strings using the normal, documented methods. To create a string function for use with
QuickBASIC and PDS near strings, you define and fill in a string descriptor in DGROUP, and assign
its address in AX before returning to BASIC. And to return a far string as a function for PDS requires
calling  the internal  STRINGASSIGN routine  that  Microsoft  provides  with PDS.  STRINGASSIGN
works with both near and far strings in PDS, but is not available in QuickBASIC.

The  trick  is  to  use  the  undocumented  name  B$ASSN,  which  is  really  the  same  thing  as
STRINGASSIGN. The big difference, though, is that B$ASSN is available in all versions of BASIC
4.0 and later. When near strings are used the B$ASSN routine is extracted from the near strings library.
When linking with far strings a different version is used, extracted by LINK from the far strings library.
This is a powerful concept to be sure, and one we will use again for other examples later on in this
chapter.

Message$ begins by loading SI with the starting address of a table of messages. These messages are
located at the end of the source file in the code segment, and each is preceded with the length of the
text. Although it may not be obvious from looking at the source listing, the message data is actually
structured like this:

DW 6
DB "Sunday"
DW 6
DB "Monday"
.
.

Next, AX is cleared to zero just in case the incoming string number is illegal. Later in the program AX
holds the length of the output string; clearing it here simply makes the program's logic more direct.

CX is  then loaded with the message number the caller  asked for.  If  CX is  either  higher  than the
available  number  of  messages  or  zero,  the  program jumps  to  the  code  that  returns  a  null  string.
Otherwise, a small loop is entered that walks through each message, decrementing CX as it goes. When
CX reaches zero, SI is pointing at the correct message and AX is holding its length. Otherwise, the
current length is added to SI, thus skipping over that data.

Notice the unusual form of the Lodsw statement, to allow it to work with a CS: override. MASM has a
number of quirks that are less than intuitive, and this is but one of them. Normally you would use either
Lodsb or Lodsw, to indicate loading either a byte into AL or a word into AX. But when you use a
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segment override MASM requires omitting the "b" or "w" Lods suffix, and you must state Byte Ptr or
Word Ptr explicitly. Then, a dummy argument must be placed after the override colon.

MASM Macros

The last new feature this listing introduces is the use of macros. The most basic use of MASM macros
is to define a block of code once, and then repeat it multiple times with a single statement. This is not
unlike keyboard macro programs such as Borland's SuperKey, that let you assign a string of text to a
single key. For example, you could press Alt-S and SuperKey will type "Very truly yours", five Enter
keys, and then your name. MASM macros also offer many other interesting and useful capabilities,
including the ability to accept arguments.

I should mention  that  the main point  of  the DefMsg
macro is to make this function easy to modify, so you
can create other, similar string functions from this
same routine.

Before attempting to explain the DefMsg (Define Message) macro I designed for use with Message$,
let's consider some macro basics.

Say, for example, you find that a particular routine needs to push the same five registers many times
during the course of a procedure. To simplify this task you could define a macro—perhaps named
PushRegs—that performs the code sequence for you. Such a macro definition would look like this:

PushRegs Macro
 Push AX
 Push BX
 Push SI
 Push DS
 Push ES
PushRegs Endm

Now, each time you want to execute this series of instructions you would simply use the command
PushRegs. Please understand that a macro is not the same as a called subroutine. The assembler still
places each Push command in sequence into your source code each time the macro is invoked. But a
simple macro like this can reduce the amount of typing you must do, and minimize errors such as
pushing registers in the wrong order. And in some cases Macros also make your code easier to read.

As I mentioned, a MASM macro can accept arguments, and it can even be designed to accept a varying
number of them. If you need to push three registers but which ones may change, you would define
PushRegs like this: 

PushRegs Macro Reg1, Reg2, Reg3
 Push Reg1
 Push Reg2
 Push Reg3
Endm
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Then to push AX, SI, and DI you would invoke PushRegs as follows: 

PushRegs AX, SI, DI

Of course, a corresponding PopRegs macro would be defined similarly. Once a macro has been defined
you can pass any legal argument to it. For example, you could also use this:

PushRegs AX, Word Ptr [BP-20], IntVar

Here, you are pushing AX, the word 20 bytes below where BP points to on the stack, and the integer
variable named IntVar.

A useful enhancement to this macro would let you pass it a varying number of parameters. The PushM
macro that follows accepts any number of arguments (up to eight), and pushes each in sequence.

PushM Macro A,B,C,D,E,F,G,H     ;;add more place-holders to suit      
IRP CurArg, <A,B,C,D,E,F,G,H>   ;;repeat for each argument        
IFNB <CurArg>                   ;;if this arg is not blank          
Push CurArg                     ;;push it
   ENDIF
 Endm                           ;;end of repeat block
Endm                            ;;end of this macro

From this you can create a complementary PopM macro by changing the name, and also changing the
Push instruction to Pop.

The IRP command works much like a FOR/NEXT loop in BASIC, and tells MASM to repeat the
following statements for each argument that was given. IFNB (If Not Blank) then tests each argument
to see if it was in fact present in the incoming list of parameters. In this case, CurArg assumes the name
of the argument, and the Push instruction is expanded to specify that name.

There is no disputing that the syntax of a MASM macro is confusing at best. Having to enclose some
arguments in angle brackets but not others requires frequent visits to the MASM manual. Further, a
MASM macro is virtually impossible to debug. If you write a macro incorrectly or create a syntax
error,  MASM  reports  an  error  at  the  line  where  the  macro  was  invoked,  rather  than  at  the  line
containing the error in the macro. It is not uncommon to receive a number of errors all pointing to the
same source line, with no indication whatsoever where the error really is.

Now  consider  how  the  DefMsg  macro  operates.  DefMsg  begins  by  defining  a  single  incoming
parameter  named  Message.  Two local  labels—MsgStart  and  MsgEnd—are  defined,  and  these  are
needed so MASM can calculate the length of the messages. Although labels within a macro do not have
to be declared as local, you would get an error if the macro were used more than once. Like BASIC, the
assembler requires that each label have a unique name. By using local labels MASM generates a new,
unique internal name for each macro invocation, instead of the actual label name given.
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The next statement increments a MASM variable named NumMsg. To avoid an error caused by calling
Message$  with  an  invalid  message  number,  it  compares  the  number  you  pass  to  the  number  of
messages that are defined. This test occurs in the fourth line of the procedure, at the Cmp CX,NumMsg
statement. NumMsg is a constant, except it may be redefined within the routine. When a constant is
assigned using the word Equate, its value may not be changed by either your source code or by a
macro. But when a variable is defined using an equals sign (=), MASM allows it to be altered as it
assembles your program. Understand that the resulting number is added to your program as a constant.
However, its value can be changed during the course of assembly. Therefore, each time DefMsg is
invoked, it increments NumMsg. MASM places the final value into the Cmp instruction, as if you had
defined it using a fixed known value.

The IFB (If Blank) test checks to see if DefMsg was given a parameter when it was invoked. In most
cases you will probably want to define a series of consecutive messages. As it is used here, seven
different  day  names are  returned in  sequence.  But  there  may be times when you want  to  leave  a
particular message number blank. For example, you could create a series of messages that correspond
to BASIC's error  numbers.  BASIC file error numbers  range from 50 through 76, but there are no
messages numbers 60, 65, or 66. You could therefore leave those blank, and invoke a modified copy of
Message$ like this:

CALL DOSMessage$(51 - ERR)

When DefMsg is  used with no argument,  it  merely creates  a  zero  word at  that  point  in  the  code
segment. Otherwise, the length of the message is stored, followed by the message text. The statement
DW MsgEnd - MsgStart is replaced with the difference between the addresses, which MASM
calculates for you. This is similar to the earlier example that showed how a dollar sign ($) can simplify
defining strings that may change.

The last macro I will describe here is Rept, which means "Repeat the following statements a given
number  of  times".  In  the  simplest  sense,  Rept  could  be  used  to  generate  a  series  of  the  same
instructions: 

Rept 100
 Xor  AX,AX
 Push AX
 Call SomeProc
Endm

A Rept macro is not invoked by name; rather, it is added inline to a program (or included within a
macro that is called by name). In most cases you would use a coding loop to repeat a block of code,
since a Rept macro actually generates the same code repeatedly in the program. But there are situations
where  timing  is  very  critical,  and  a  loop  is  always  somewhat  slower  than  a  sequence  of  inline
instructions.

Another good use for Rept is in conjunction with redefinable equates,  such as this example which
defines the letters of the alphabet: 
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Alphabet:
Char = 0
Rept 26               ;;do this 26 times
 DB "A" + Char        ;;define ASC("A") + Char
 Char = Char + 1      ;;increment Char
Endm

Although the MASM manual states that you must use double semicolons for remarks within a macro as
shown here, I have used a single semicolon without problems.

There are other macro commands and features I will not describe here, because I have not found them
to be particularly useful. However, macros can be recursive, multiple macros may be nested, and even
redefined  on  the  fly.  I  urge  you  to  refer  to  the  documentation  that  Microsoft  provides  for  more
information on those advanced features.

Segment Naming

Aside  from the  short  PrtSc  example  shown earlier  in  this  chapter,  we have  relied  upon MASM's
simplified segmentation directives to spare us from the nuisance of defining and naming segments.
Indeed, when writing routines that will be added to BASIC it is rarely necessary to do this manually, so
why bother?

One place where naming segments explicitly is useful is when you have many internal procedures that
are never called from BASIC directly. If, for clarity and organization reasons, you decide to store those
routines in different files, you still may want to access the routines using near calls. Since a near call is
two bytes shorter than a far call and also operates slightly faster, this can make a difference when there
are many Call commands within the routines.

As LINK pulls all of the various pieces of your program together from separate object and library files,
it reads the segment names and combines those with the same name. Thus, a routine in one source file
can call a routine in a different file, and LINK will place both routines into the same segment if they
use the same segment name. This is of course needed to ensure that the called routine is reachable by
the caller (within 64K).

All of the standard segment names that Microsoft recommends are listed in the MASM manual, along
with instructions for creating your own names.

Accessing BASIC Internals

In  preceding  sections  you  learned  that  it  is  possible—even  desirable—to  call  BASIC's  internally
routines directly. Besides those that have already been described, there are several other useful routines
that can be accessed from assembly language. One of these is B_ONEXIT, which lets you tap into
BASIC's termination procedure.
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When a BASIC program ends by running out of statements, or by using END, STOP, or SYSTEM,
BASIC makes a call to a central routine that in turn tells DOS to end the program. If a fatal error occurs
and  there  is  no  ON  ERROR  handler,  BASIC  also  calls  a  routine  that  prints  an  error  message.
B_ONEXIT lets you tell BASIC the segment and address of a routine you want called as part of the
termination process. B_ONEXIT is supported only in QuickBASIC version 4.5 and BASIC PDS.

One reason you might want to use B_ONEXIT is to ensure that interrupts taken over by your assembler
routine are restored properly. Taking over interrupts will be described later in the section  Handling
Interrupts.  Here's a program fragment showing how B_ONEXIT is set up and called: 

Extrn B_ONEXIT:Proc     ;declare B_ONEXIT as external
Push CS                 ;pass your code segment
Mov  AX,Offset TermProc ;and the address of the routine
Push AX                 ;  that is to be called
Call B_ONEXIT           ;register it with B_ONEXIT
 .
 .

TermProc Proc           ;this is the routine to be called
 .                      ;do whatever you need to here
 .
 Ret                    ;don't forget to return!
TermProc Endp

BASIC's Internal Data

There are two internal variables BASIC maintains that you will find useful. One is the current DEF
SEG setting, and it is stored in the integer variable named B$SEG. The other is the current color value
that is used by PRINT and CLS. The foreground and background colors are stored combined in a single
word named B$FBColors. The reason these are useful is because you may want to change and then
restore them from inside a BASIC subprogram. Much of the benefit of reusable programming is lost if
you cannot put things back to the way they were originally.

For example, if you have written a BASIC routine that prints an error message in bright red at the
bottom of the screen, you will need to use a subsequent COLOR command to put the color back to
what it had been. But what color do you use? The same holds true for a routine that changes the current
DEF SEG setting, perhaps before loading or saving a file using BLOAD or BSAVE. If you cannot
return that to its original value, extra work is needed in the main program each time the routine is used.

Access to B$SEG requires a single assembler instruction, as shown in the complete GetSeg function
shown following. Declare and use GetSeg like this:

DECLARE FUNCTION GetSeg%()
SavedSeg = GetSeg%
.
.
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DEF SEG = SavedSeg

;GETSEG.ASM
.Model Medium, Basic
.Data
 Extrn B$Seg:Word

.Code
GetSeg Proc

 Mov  AX,B$Seg   ;load the value from B$Seg
 Ret             ;return with the function output in AX

GetSeg Endp
End

Because BASIC combines its colors into a single word, a few extra steps are needed to separate them.
Call GetColor like this:

CALL GetColor(FG%, BG%)

FG% and BG% are returned to you holding the current foreground and background color values. Here's
how GetColor works:

;GETCOLOR.ASM
.Model Medium, Basic
.Data
 Extrn B$FBColors:Word

.Code

GetColor Proc, FG:Word, BG:Word

 Mov  DX,B$FBColors    ;load the combined colors
 Mov  AL,DL            ;copy the foreground portion
 Cbw                   ;convert it to a full word
 Mov  BX,FG            ;get the address for FG%
 Mov  [BX],AX          ;assign FG%
 Mov  AL,DH            ;load the background portion
 Mov  BX,BG            ;get the address for BG%
 Mov  [BX],AX          ;assign BG%
 Ret                   ;return to BASIC

GetColor Endp
End

One unfortunate problem is that GetColor cannot be used in the editing environment. When BASIC
compiles a PEEK or POKE statement, it generates inline code that loads ES with the segment from
B$SEG, and then reads or writes the data at the specified address. Therefore, the current segment must
be available to BASIC routines that use PEEK or POKE in a Quick Library. But the color values are
accessed only by routines in BASIC's runtime library,  so the information is  not made available to
procedures  in  a  Quick  Library.  Because  of  this  issue,  the  GetColors  routine  is  provided  on  the
accompanying disk only in the BASIC.LIB and BASIC7.LIB linking libraries.
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There are several other internal data items you may want to know about, and one that I have found
useful is called __osversion. This byte holds the major DOS version number; for example, if DOS 3.x
is running then __osversion will  hold the value 3.  Even though it  is  trivial  to query DOS for the
number, why bother since you can get it this way with a single Mov. 

BASIC's Internal Routines

Besides the procedures and internal data I have described previously, there are many others you will no
doubt find useful. You can, for example, call SETMEM prior to claiming memory from DOS. And
although the B$ASSN routine can assign any type of data from any other type including strings, a
simplified version is also present to assign to and from conventional strings only.

As you have seen, the beauty of using BASIC's own routines is that identical code can be used for both
near and far strings. In either case, the string descriptors are known to reside in DGROUP, and the
internal routines are designed to operate on those descriptors. You don't even have to know which of
the string libraries (near or far) is being used.

There are also several math routines that can be accessed directly, including those that multiply, divide,
and compare  long integers.  Even if  you know how to do  that,  it's  always easier  to  call  BASIC's
routines. This result in less code as well. And if you need to read the current cursor position, you can
access CSRLIN and POS(0) directly. In some cases, you can't read that information from the BIOS, so
calling BASIC is the only reliable way to get it.

The following section documents the BASIC internal routines that I have found useful when called
from assembly language. I have purposely omitted routines that handle BASIC commands such as
PRINT, INKEY, GET, and PUT. Even though several of these were described throughout the course of
this book, they have little relevance within a called assembler routine.

BASIC's internal services that follow are listed in alphabetical order, based on their call names. Be sure
to declare them as external procedures in your routine's source code.

B$CPI4: Compare Two Long Integers

B$CPI4 expects two long integer arguments to be placed onto the stack by value, and it returns the
result of its comparison in the Flags register. For example, to see if Var1 is greater than Var2 you'd use
code like this:
 
  Push Word Ptr [Var1+2]   ;first push Var1's high word
  Push Word Ptr [Var1]     ;and then its low word
  Push Word Ptr [Var2+2]   ;next do the same for Var2
  Push Word Ptr [Var2]
  Call B$CPI4              ;compare them
  Jg   Label               ;Var1 is indeed greater
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Remember that long integers are compared by BASIC on a signed basis, so you should use Jg or Jl
rather than Ja or Jb. The letters CPI4 stand for Compare Integer 4 bytes.

B$CSRL: CSRLIN Function

B$CSRL is called with no arguments, and it returns BASIC's current row in AX as follows:

Call B$CSRL
.                       ;do what you want with AX

B$DVI4: Divide Two Long Integers

Like B$CPI4, B$DVI4 (Divide Integer 4 bytes) expects the incoming integer arguments to be passed
by value on the stack. The result is then returned in DX:AX as a long integer:

Push Word Ptr [Var2+2]   ;always push the high word first
Push Word Ptr [Var2]     ;then the low word
Push Word Ptr [Var1+2]   ;ditto for Var2
Push Word Ptr [Var1]
Call B$DVI4              ;divide them
.                        ;now DX:AX holds Var1 \ Var2

Notice that with B$DVI4, the divisor is pushed first onto the stack, followed by the dividend.

B$FPOS: POS(0) Function

Even  though  the  argument  passed  to  BASIC's  POS(0)  is  ignored,  it  is  still  expected  mainly  for
historical  reasons.  Therefore,  you  must  push  something—anything—onto  the  stack  before  calling
B$FPOS: 

Push AX
Call B$FPOS
.                       ;now AX holds the column

As with all of BASIC's functions that return an integer, B$FPOS returns the current column in AX. The
leading F in FPOS stands for Function. 

B$FRI2: FRE() Function

B$FRI2 (Free Integer 2 bytes) requires an incoming integer argument by value on the stack, and for
safety you should use this for the -1 and -2 variations only.

Using -1 reports the total amount of memory that is available to BASIC, so you might use this before
calling SETMEM to release memory for your own uses.  Although B$FRI2 uses an integer for an
argument, it returns a long integer in DX:AX. You can also use an argument of  -2 to see how much
stack space is available:
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Mov  AX,-2
Push AX
Call B$FRI2
.              ;now DX:AX holds the available stack space 

B$RDIM: REDIM Statement

In most cases you will probably not find the ability to call REDIM directly very valuable. One notable
exception is explained later in the section entitled Reading the Array Descriptor, where I show how to
size and then load a string array with all of the files that match a given search specification.

B$RDIM is fairly complicated to set up and call, because it accepts a varying number of parameters.
This is needed because BASIC accepts a variable number of dimensions, and the same routine is used
for  all  cases.  The following example shows how to  prepare and call  this  routine  when resizing a
one-dimensional array.

Mov  AX,LBound           ;first pass the lower bound value    
Push AX
Mov  AX,UBound           ;then pass the upper bound
Push AX
Mov  AX,ElementLength    ;next the length of each element    
Push AX
Mov  AX,Features         ;see the accompanying text for    
Push AX                  ;  information on these two items    
Mov  AX,Offset ArrayDescriptor
Push AX
Call B$RDIM              ;call REDIM to do it

Chapter 2 described the array descriptor in detail, including the Features word. However, you must not
use REDIM to create a new array where none existed before. Instead, you will read the current features
from the existing array descriptor, and pass the same values on again to B$RDIM. This will be shown
in context momentarily.

B$STDL: String Delete

You can call B$STDL to delete a string or string array element, and it requires less code than assigning
the string from another, null string. The single argument is the address of a string descriptor: 

Mov  AX,Offset Descriptor
Push AX
CALL B$STDL

B$SETM: SETMEM Function

B$SETM expects a long integer argument by value on the stack; if the value is negative then that much
memory is released back to DOS, and thus taken from your BASIC program. However, you should call
B$SETM again later with a positive value when you are finished, so the BASIC program can reclaim
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that memory. Since SETMEM is a function, B$SETM also returns the amount of memory currently
available in the DX:AX register pair.

B$SASS: String Assign

Where B$ASSN is capable of assigning any mix of conventional and fixed-length strings, B$SASS
works with conventional strings only. However, it requires only two parameters instead of six:

Mov  AX,Offset Source$
Push AX
Mov  AX,Offset Destination$
Push AX
CALL B$SASS

Note that if the destination string is not null, its current contents are released after assigning it from
Source$. This is the normal way that strings are assigned, and B$ASSN also works like this.

Finding Other Routines

The routines just  described are those that I  personally have found to be useful.  Discovering other
routine  names  and  how  they  are  called  is  in  fact  quite  simple.  If  you  wanted  to  access,  say,
COMMAND$,  you  would  write  a  one-line  BASIC  program,  and  then  examine  the  code  that  is
generated using Microsoft CodeView. CodeView lets you see which and how many parameters are
being passed as well as the routine name being called, making exploration both easy and fun.

BASIC string functions such as COMMAND$ and ENVIRON$ return the DGROUP address of the
result string descriptor in AX, just like an assembly language function you would write. If you do call a
built-in BASIC function, be sure to also pass its output descriptor to B$STDL (String Delete) when you
are done with it. Otherwise, the string space it uses, and the temporary output descriptor, will never be
released. 

Reading the Array Descriptor

Chapter 2 described the BASIC array descriptor in detail, and discussed each of the components it
contains.  Understanding  how  an  array  descriptor  works  opens  many  opportunities  to  assembly
language programmers,  because  it  lets  you write  routines  that  accept  an array  passed  with empty
parentheses. This was shown in the Sort routine introduced in Chapter 8, although the techniques used
there were not detailed.

As an example of the possibilities direct access to an array descriptor offers, I will show a subroutine
that accepts a file specification, and returns a string array filled with the names of all matching files.
GetNames calls  upon three internal  BASIC routines:  B$FLEN, B$RDIM, and B$ASSN. B$FLEN
returns the length of a string, and is used here to know how long the file specification is. B$RDIM
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redimensions  the  passed  string  array  to  the  correct  number  of  elements,  based  on the  number  of
matching file names that are found. B$ASSN then assigns each element to those names.

This next short BASIC program shows how GetNames is set up and used. 

DECLARE FUNCTION GetNames%(Array$())
REDIM Array$(1 TO 1)            'use REDIM, not DIM
Array$(1) = "*.*"               'any valid spec is okay
NumFiles% = GetNames%(Array$()) 'load all names at once

IF NumFiles% = 0 THEN           'were any files found?
 PRINT "No matching files."     'no, say so and end
 END
END IF

FOR X% = 1 TO NumFiles%         'yes, print each name
 PRINT Array$(X%)
NEXT
PRINT NumFiles; "matching files were found"

As you can see, you must establish the array initially using REDIM. To avoid the need for an extra
parameter, the file specification is passed in the first element of the array. Furthermore, GetNames
returns the number of files that matched as an integer result. If no files were encountered, GetNames
leaves the array as it was.

When GetNames is called, the array may already contain other data, and it can have any legal upper
and lower bounds. As long as the lowest element number contains a valid search specification, the spec
can  be  found  and  the  array  will  be  redimensioned  starting  at  element  number  one.  The
GETNAMES.BAS demonstration program on the accompanying disk adds to this short example by
sorting the names after they are read.

A complete description of how GetNames works follows this source listing.

;GETNAMES.ASM, loads a group of file names into an array

.Model Medium, Basic
 Extrn B$RDIM:Proc       ;this redimensions an array
 Extrn B$ASSN:Proc       ;this assigns a string
 Extrn B$FLEN:Proc       ;this returns a string's length

 DTAType Struc           ;define the DOS DTA structure
   Intern  DB 21 Dup (?) ;this is used by DOS internally
   FAttr   DB ?          ;this holds the file attribute
   FTime   DW ?          ;this holds the file time
   FDate   DW ?          ;this holds the file date
   FSize   DD ?          ;this holds the file size
   FName   DB 13 Dup (?) ;this holds each file name
 DTAType Ends

.Data
 DTA DB Size DTAType Dup (?) ;DOS places file info here
 NumFiles   DW 0             ;how many names were read
 SpecLength DW 0             ;remembers file spec length

.Code
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GetNames Proc Uses SI DI, Array:Word

 Local Buffer[80]:Byte  ;copy the spec here, add a zero

;-- Create a local Disk Transfer Area for our own use.
 Lea  DX,DTA            ;show DOS where the new DTA goes
 Mov  AH,1Ah            ;set DTA service
 Int  21h               ;call DOS to do it

;-- Read the array descriptor, get the search spec from the first element, 
;   then copy it to the stack appending a CHR$(0) byte (ASCIIZ string).   
 Mov  SI,Array          ;get address of array descriptor
 Mov  BX,[SI+0Ah]       ;now BX holds adjusted offset
 Mov  AX,4              ;each element is four bytes long
 Mul  Word Ptr [SI+10h] ;multiply by first element number   
 Add  BX,AX             ;BX holds first element's address 
 Push DS                ;push source segment and address
 Push BX                ;  for call to B$ASSN later on
 Xor  AX,AX             ;tell B$ASSN source is descriptor   
 Push AX                ;using a value of zero

 Push BX                ;pass descriptor addr to B$FLEN
 Call B$FLEN            ;this returns the length in AX
 Mov  SpecLength,AX     ;save length locally for a moment 
 Lea  AX,Buffer         ;get the destination address
 Push SS                ;pass the segment to assign into
 Push AX                ;and then the address
 Push SpecLength        ;we're assigning a fixed length
 Call B$ASSN            ;copy the file spec to the stack

 Lea  BX,Buffer         ;retrieve start address of spec
 Mov  DX,BX             ;copy to DX where DOS expects it
 Add  BX,SpecLength     ;point just past end of string
 Mov  Byte Ptr [BX],0   ;and append trailing zero byte

;-- Count the number of names that match the search specification.
 Mov  AH,4Eh            ;specify Find First matching name   
 Mov  CX,00100111b      ;this matches any type of file
 Xor  BX,BX             ;BX counts the number of names

CountNames:
 Int  21h               ;see if there's a matching name
 Jc   DoneCount         ;carry set means no more names
 Inc  BX                ;otherwise, we found another one
 Mov  AH,4Fh            ;find the next matching name
 Jmp  CountNames        ;continue until there are no more 
DoneCount:
 Mov  NumFiles,BX       ;remember how many files we found   
 Or   BX,BX             ;did we fail on the first name?
 Jz   Exit              ;yes, return a count of zero

;-- Now that we know how many file names there are, REDIM the string array.
 Mov  AX,1              ;specify an LBOUND of 1
 Push AX                ;pass that on to B$RDIM
 Push BX                ;and pass on the new UBOUND value   
 Mov  AL,4              ;each descriptor takes four bytes
 Push AX                ;pass that on too

 Mov  BX,Array          ;get array descriptor again
 Mov  AX,[BX+08]        ;load the existing Features word
 Push AX                ;use that again for this call
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 Push BX                ;show where array descriptor is
 Call B$RDIM            ;finally, redimension the array

;-- This is the main processing loop that reads and assigns each name 
;   that is found.
 Mov  AH,4Eh            ;specify Find First matching name   
 Lea  DX,Buffer         ;load address of file spec again
 Mov  BX,Array          ;get array descriptor address too   
 Mov  BX,[BX+0Ah]       ;reload the adjusted offset value   
 Add  BX,4              ;BX is first descriptor address

Do:
 Mov  CX,00100111b      ;specify any type of file again
 Int  21h               ;see if there's a matching name
 Jc   Exit              ;carry set means no more names
 Push BX                ;otherwise, save the address

;-- Search for the zero that marks the end of this name.
 Mov  DI,Offset DTA.FName
 Push DS                ;in anticipation of call below
 Push DI                ;DI too while the address handy

 Push DS                ;ensure that ES=DS
 Pop  ES
 Mov  CL,13             ;search up to 13 characters
 Repne Scasb            ;do the search
 Mov  AL,CL             ;save the remainder in AL

 Mov  CL,13             ;calc number of chars to copy
 Sub  CL,AL             ;the answer is now in CX
 Dec  CX                ;don't include the zero byte
 Push CX                ;pass that on to B$ASSN

 Push DS                ;show where destination string is   
 Push BX
 Xor  AX,AX             ;zero means B$ASSN is assigning
 Push AX                ;  to a conventional string
 Call B$ASSN            ;assign this element to the name

 Pop  BX                ;retrieve the descriptor address
 Add  BX,4              ;point to the next element
 Mov  AH,4Fh            ;specify Find Next matching name
 Jmp  Do                ;and keep on keepin' on

Exit:
 Mov  AX,NumFiles       ;assign the function output
 Ret                    ;return to BASIC

GetNames Endp
End

GetNames begins by declaring the three BASIC routines it will call as being external. Next the DTA
structure is defined, to simplify access to the file name address when it assigns each element in the
string array. The only data items are the DTA itself, two working variables, and the local stack buffer.
Since the incoming file specification needs to be converted to an ASCIIZ string for DOS, GetNames
copies that specification into Buffer and then appends a CHR$(0) zero byte to the end.
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Once the DTA has been established, the next step is to read the file specification passed in the first
element, and copy it into local storage. B$FLEN is used to obtain the length of the string, so GetNames
will know how far into the buffer the zero byte will be placed. The last preparatory steps call B$ASSN
telling it to copy from a conventional string (the array element) to a fixed-length string (Buffer), and
then store the zero byte.

The actual body of the program is broken into two portions. The first simply calls DOS repeatedly to
count the file names, to know how many elements are needed. The count is then saved in NumFiles; if
none were found GetNames exits without doing anything else. Otherwise, the incoming string array is
redimensioned from 1 to the number of files.

The second portion again reads each file name through DOS, but this time the names are actually
assigned to the array elements using B$ASSN. This time, however, B$ASSN assigns a conventional
string from the fixed-length string portion of the DTA. Since the source is  now of a fixed-length,
GetNames needs to know how long each name is. The longest possible name is 13 bytes long (eight for
the name, a period, three for an extension, and one more for the terminating zero byte). Therefore,
ES:DI is set to point to the start of the DTA, AX is set to zero to search for the zero byte, and CX is
loaded with the number of characters to scan.

Once the zero is found—and it always will be—the count that remains in CX is subtracted from 13 to
obtain the actual length of the current name. Because that calculation includes the unwanted CHR$(0),
CX is decremented by one.

There is one small related trick that bears explaining. Just before the call to B$RDIM, AX is loaded
with the number 1, to specify that as the first element number. This three-byte instruction sets AL to 1,
and clears AH to 0. Three lines below that only AL is assigned, which is sufficient because we know
that AH is already zero. Because the number being assigned is one byte long, assigning AL requires
only two bytes.

Admittedly, the savings is small, but the affect on code readability is minimal once you know about
such tricks. And a byte saved is always welcome in assembly language programming. The same trick is
used  when  setting  CL to  13,  where  CH is  known to  be  zero  after  assigning  the  file  attribute  of
00100111b to all of CX.

Handling Interrupts

The last programming technique I want to describe is writing an interrupt handler you can attach to a
BASIC program. There are several applications for this, such as tapping into the timer interrupt to
display an on-screen clock. Instead of having to constantly print TIME$ during your INKEY$ input
loops, such a routine would act as a sort of TSR, getting control at each timer tick and displaying the
time automatically.
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The example I will show here takes over the keyboard interrupt, and disables the Ctrl-Alt-Del key
sequence. This lets you prevent rebooting with its corresponding loss of data, should someone press
those keys inadvertently (or on purpose). NoReboot is called as follows: 

CALL NoReboot(BYVAL InstallFlag%)

If InstallFlag is non-zero, you are telling NoReboot to install itself and take over the keyboard interrupt
to prevent rebooting. An argument of zero instead unhooks the interrupt, and re-enables those keys.
Although you could certainly modify NoReboot to use BASIC's B_ONEXIT service to uninstall itself
automatically, I have left that feature out on purpose in the interest of clarity. This also lets you activate
NoReboot selectively in your program, since there is no way to revoke a request to B_ONEXIT.

;NOREBOOT.ASM, traps Ctrl-Alt-Del within a BASIC program

.Model Medium, Basic

.Code

NoReboot Proc Uses DS, InstallFlag:Word

 Cmp  InstallFlag,0     ;are they asking to install?
 Je   Deinstall         ;no, so deinstall it

 Cmp  CS:Old9Seg,0      ;yes, are we already installed?
 Jne  Exit              ;yes, and don't do that again!

 Mov  AX,3509h          ;ask DOS for current Int 9 vector   
 Int  21h               ;DOS returns it in ES:BX
 Mov  CS:Old9Adr,BX     ;save it locally
 Mov  CS:Old9Seg,ES

 Mov  AX,2509h          ;point Int 9 to our own handler
 Mov  DX,Offset NewInt9
 Push CS                ;copy CS into DS
 Pop  DS
 Int  21h

Exit:
 Ret                    ;return to BASIC

;-- Control comes here when a key is pressed or released.
NewInt9:
 Sti                    ;enable further interrupts
 Push AX                ;save the registers we're using
 Push DS

 In   AL,60h            ;read the keyboard scan code
 Cmp  AL,83             ;is it the Delete key?
 Jnz  Continue          ;no, continue on to the BIOS

 Xor  AX,AX             ;see if Alt and Ctrl are pressed
 Mov  DS,AX             ;by looking at address 0:417h

 Mov  AL,DS:[417h]      ;get shift status at 0000:0417h
 Test AL,8              ;is Alt key depressed?
 Jz   Continue          ;no, continue on to the BIOS
 Test AL,4              ;is Ctrl key depressed?
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 Jz   Continue          ;no, continue on to the BIOS

 In   AL,61h            ;send an acknowledge to keyboard
 Mov  AH,AL             ;otherwise the Ctrl-Alt-Del
 Or   AL,80h            ;  keystroke will still be
 Out  61h,AL            ;  hanging around the next time
 Mov  AL,AH             ;  a program asks for a key
 Out  61h,AL
 Mov  AL,20h            ;indicate end of interrupt to the   
 Out  20h,AL            ;  8259 interrupt controller chip 
 Pop  DS                ;ignore, simply return to caller
 Pop  AX
 Iret                   ;use this special Ret when
                        ;  returning from an interrupt
Continue:
 Pop  DS                ;restore the saved registers
 Pop  AX
 Jmp  DWord Ptr CS:Old9Adr   ;continue on to the BIOS by
                             ;  jumping to the address
                             ;  that was saved during
                             ;  initialization
DeInstall:
 Mov  AX,2509h          ;restore original Int 9 handler
 Mov  DX,CS:Old9Adr     ;from segment and address saved
 Mov  DS,CS:Old9Seg     ;  earlier
 Int  21h               ;DOS does this for us
 Mov  CS:Old9Seg,0      ;clear this as an installed flag
 Jmp  Short Exit        ;and then exit back to BASIC

NoReboot Endp

 Old9Adr DW 0           ;remembers original Int 9 address   
 Old9Seg DW 0           ;these must be stored in the code
                        ; segment because DS is undefined                        
                        ; when NewInt9 receives control
End

The first thing NoReboot does is look to see if the caller is installing or uninstalling. If installation is
requested, the saved Interrupt 9 segment is checked, to be sure that it holds the initial value of zero. It is
important  to  prevent  multiple  installations,  because  installing  saves  the  current  interrupt  handler's
address. If NoReboot installed itself twice, it would save its own address on top of the original BIOS
handler's saved address. And once that address is lost, it is impossible to restore it again later.

Assuming it  is safe to be installed,  the next step is  to ask DOS for the current interrupt handler's
address using service 35h. This service expects the service number in AH, and the interrupt number in
AL. To save a byte, both values are loaded at once. Service 35h returns the segment and address in
ES:BX, and these are saved in the code segment. Because the original address will be called from
within the interrupt  handler,  CS is  the only register  whose contents are  known. Accessing data  in
DGROUP is more difficult,  because an interrupt can occur at any time, and DS will  likely not be
holding the correct segment.

Execution could be at any point in the program when
Ctrl-Alt-Del  is  pressed,  including  within  a  routine
that has changed DS. So when NoReboot receives control
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it can't be certain that DS holds the segment for .Data
variables it has defined.

Once the original interrupt handler address has been saved, NoReboot calls DOS again, but this time to
assign the segment and address of its replacement handler in the interrupt vector table. It is easy to
access the interrupt vector table directly using Mov instructions, but it is even easier to have DOS do
that.

Finally,  NoReboot  returns to  the calling BASIC program, and all  subsequent  key presses  are  now
routed to the NewInt9 procedure.

NewInt9 must perform a few tricks, partly because it is handling a hardware interrupt. All interrupt
handlers begin with the instruction Sti, which tells the 8088 to allow further interrupts to occur and be
processed. Next, the two registers being used are saved on the stack, so they can be restored again later.
Because a keyboard interrupt can occur at any time interrupting the process that is currently running, it
is imperative that you not alter any aspect of the 8088's current state. This includes the settings of the
Flags register as well. However, the Flags register is saved automatically by the 8088 as part of its
handling of interrupts, so the flags don't have to be saved or restored manually using Pushf and Popf.

The next sequence of instructions reads the key that was pressed from the keyboard's I/O port (60h),
and compares that to the scan code for the Del key. If any other key was pressed, NoReboot jumps to
the original keyboard handler in the ROM BIOS. Otherwise, it examines low memory to see if both the
Ctrl and Alt keys are also currently pressed. Unless all three conditions are met, control passes on to the
BIOS. But if Ctrl-Alt-Del is pressed, NoReboot handles the keystroke entirely on its own and ignores
it. In that case DS and AX are restored, and NoReboot exits back to the underlying program.

Notice the special form of return command, Iret (Interrupt Return). Like a conventional far return, Iret
pops the address and segment to return to from the stack, but it also pops the Flags register that was
stored there by the 8088 automatically.

The final section of code restores the original interrupt vector, and clears the Old9Seg variable to zero.
This lets NoReboot know that it is not installed, in case you call it again later.

This  same  technique  can  be  applied  to  handle  other  interrupt  services,  and  I  encourage  you  to
experiment on your own. You could, for example, write a routine that takes over the communications
interrupt,  and displays  a  flashing box in a  corner  of  the  screen  whenever  characters  are  received.
Likewise, you could modify this routine to create an on-screen display of the Caps Lock and Num Lock
state. Each time one of those keys is pressed you would either print or clear a status message.

Debugging With CodeView
As useful as CodeView can be for a purely BASIC program, it is even more necessary when writing in
assembly language. CodeView lets you step through the code that BASIC generates to set up and call
your subroutine, and then step through the routine a line at a time. Being able to watch your program as
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it executes helps you to quickly zero in on any problems. Further, CodeView shows you the current
CPU register contents, as well as the value of memory locations about to be read from or written to.

To debug an assembly language subroutine with CodeView, you must first assemble it using the /Zi
option switch:

masm routine /zi;

Then you link the routine to your BASIC program using the /Co option. Of course, the BASIC program
must also have been compiled using /Zi: 

bc program /o /zi;
link program routine /co;

Finally, you start CodeView specifying the name of the BASIC program: 

cv program

Once the BASIC source code is showing on the screen you can step and trace through it as described in
Chapter 4. As with BASIC subprograms and functions, to step into an assembler routine you press F8
at the CALL statement. If the routine is designed as a function you instead press F8 at the line in which
the function is referenced.

Once CodeView has  traced into  the  routine,  you can  press  F3 to  view the  source  code only,  the
assembly code only, or both intermixed. I usually prefer to view only my original source, but that hides
the data memory addresses that MASM and LINK assigned. Usually you will not need to know those
addresses, but there are times when this can be helpful. For example, when a program is not working
correctly,  the  bug  could  be  caused  by  a  different  portion  of  the  program overwriting  the  named
variables.

Besides the F3 key, you can also use F4 and F7, and these have the same meaning as the same keys
when used in the BASIC editor. Indeed, debugging an assembly language subroutine is quite similar to
debugging a BASIC program as far as which keys are used.

MASM 6.0 Enhancements

All of the discussions in this chapter have focused on using MASM version 5.1. However, Microsoft's
more recent version 6.0 introduces a number of significant changes and new features. Perhaps the most
useful new feature in this release is the greatly improved documentation. The manuals that came with
past versions of MASM were very dry, containing reams of facts but no practical advice or guidance.
The new documentation include both facts and programming tips, and this addition is welcome indeed.

If  you  already  have  existing  assembly  language  source  code,  you  may  have  to  change  it  to
accommodate the new MASM 6.0 conventions. In particular, MASM's handling of data structures has
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changed substantially, and in many cases code that used to work correctly no longer does. However,
you can optionally use the /Zm command line switch, to tell MASM 6.0 to behave like the earlier 5.1
version.

A new MASM.EXE program launcher  is  also  included  to  offer  a  similar  capability.  Where  older
versions of MASM were named MASM.EXE, the new program is called ML.EXE. The MASM.EXE
that now comes with MASM 6.0 simply passes the /Zm option on to ML, along with some other option
switches that are needed to tell ML to mimic the older assembler's behavior. 

Improved Assembly Optimizations

Before MASM 6.0, a conditional jump was limited to a distance no greater than 128 bytes earlier or
127 bytes farther ahead in the code. When there was no way to restructure your code to accommodate
this inherent 8088 limitation, you had to use a conditional jump around another unconditional jump like
this:

;if AX < 12 go to FarLabel
 Cmp  AX,12              ;compare AX to 12
 Jnl  NearLabel          ;jump if not less over far jump      
 Jmp  FarLabel           ;perform the far jump
NearLabel:
  .                      ;program continues
  .
  .                      ;this label is more than
FarLabel:                ;  127 bytes past Jnl

MASM 6.0 avoids this limitation and lets you use Jl to the far label directly, although it really just
replaces your use of Jl with code equivalent to that shown above.

Another, similar optimization affects unconditional jumps. As I mentioned earlier, each time MASM
5.1 encounters a label in your source code, it remembers its address in the resultant object code. Then if
you jump backwards to that label later, MASM knows if it can use the shorter two-byte form of the
Jmp instruction. But a forward jump to a near label requires you to explicitly state Jmp Short to obtain
this code savings, since MASM 5.1 does not yet know the target label's address. Without Short, MASM
5.1 uses a long jump on a trial basis. If the jump turns out to be within the near range MASM goes back
and patches the code to a short jump followed by a byte-wasting Nop (No Operation) instruction.

MASM 6.0 avoids this problem by processing your source file in multiple passes. That is, MASM
reads your code and assembles what it can, using far jumps when the target address has not yet been
encountered. Then it processes that intermediate code again modifying its earlier output as appropriate.
If a three-byte jump can be replaced with the two-byte version, MASM 6.0 rewrites the code sliding
subsequent instructions back a byte. MASM 6.0 is called an n-pass assembler, because as many passes
as needed are performed until the code is as small as possible. 
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New Simplified Directives

Besides  the  improved  optimizing,  MASM  6.0  offers  several  features  borrowed  from  high-level
languages. These include .IF, .ELSE, and .ELSEIF; .WHILE and .ENDW; and .REPEAT and .UNTIL.
Unfortunately,  these  new  constructs  are  modelled  after  the  C  language,  and  provide  little  if  any
clarification to BASIC programmers. For example, you can now write code such as this: 

.IF (AL < "0") || (AL > "9")

which is equivalent to this BASIC statement:

IF AL < ASC("0") OR AL > ASC("9")

Even worse, the MASM manual does not document each directive showing precisely what it does to
your code.

Like C, BASIC's AND is replaced with a double ampersand (&&), testing for equality uses a double
equals  sign (==),  and NOT is  replaced with  an exclamation  point  (!).  Therefore,  you could  write
assembly language source statements like these next two examples:

.IF (AX != 14) && (BX < 10) ;IF AX <> 14 AND BX < 10 THEN      
 Mov  AX,SomeVar            ;divide SomeVar by CX
 Cwd
 Div  CX
 Mov  SomeVar,AX
.ENDIF

.REPEAT
 Mov  AH,1                 ;ask for a keyboard character      
 Int  21h                  ;through DOS
.UNTIL (AL == 13)          ;loop until they press Enter 

PROTO and INVOKE are two other new simplified directives, and it's hard for me to recommend
using them for similar reasons. PROTO mimics C's function prototype capability, and lets you define a
called procedure and its arguments. INVOKE then calls that routine passing the arguments you give it.
To define a procedure called, say, MyProc, you would use PROTO like this:

MyProc PROTO Var1:Word, Var2:Word, Var3:DWord

Then to call MyProc you use INVOKE as follows:

INVOKE MyProc, BX, 100, LongVar

Thus, PROTO and INVOKE are very similar to DECLARE SUB and CALL in BASIC. The problem is
that you have no way to know what code MASM generates for this command unless you create a
sample program, assemble it, and examine the result using CodeView. In particular, how does the value
100 used here get onto the stack?  As it turns out, assembling the preceding INVOKE command results
in the following code:
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Push BX
Mov  AX,100
Push AX
Push Word Ptr [LongVar+2]
Push Word Ptr [LongVar]

As you can see, even if AX is holding an important value, its contents are destroyed when MASM
assigns the value 100 prior to placing it on the stack. While I applaud Microsoft's attempts to make
assembly language easier to use, such behavior can and will introduce subtle bugs. These bugs can be
even harder to track down than usual, because you did not make the coding error, the assembler did.
Since the whole point of programming in assembly language is to control fully what the CPU is doing,
such hidden behavior can have disastrous effects.

One new feature that I do find useful, however, is the ability to continue a line with a trailing comma.
Often, a single source statement will extend into the comments column, spoiling the appearance of your
listing. You can now avoid this by placing a comma in the middle of a logical line, and then continuing
the remainder of the statement on the next line.

Another  very  useful  feature  is  MASM 6's  ability  to  accept  wild  cards  on the  command line.  For
example, you can assemble all of the files in the current directory using the command masm *.asm;.

Tricks of the Trade

The final topic I want to present is a variety of assembly language programming short cuts and other
techniques I have developed over the years. In preceding sections you saw how Xor or Sub can be used
to clear a register, using less code than Mov. And if you know that the high-byte portion of a register or
memory variable is already zero, you can save a byte by assigning only the lower byte. And to clear
both AX and DX you can use Xor with AX, and then Cwd to extend the zero into DX using only one
additional byte. As you might imagine, there are many other ways to be clever in assembly language.

Minimize Code to Access Parameters

When parameters are accessed within an assembly language subroutine, the usual way to get at them is
through BP. Even when you use MASM's simplified directives, code to push BP, assign it from SP, and
then reference the address on the stack is added to your program. In that case, the steps are simply
hidden from you. Because BASIC (and indeed, every high-level language) requires you to preserve BP,
one byte each is needed for the Push and Pop instructions.

You can eliminate  that  overhead by taking advantage  of  the  fact  that  the  stack  is  always  kept  in
DGROUP, and that SS and DS are equal. The trick is to use BX as a stack reference, because it doesn't
need to be preserved. Unfortunately, this precludes using the simplified methods for parameter access.
But  when speed or code size are paramount  or you have many routines,  stack addressing via  BX
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affords a real savings.  Here's  how you will  design the routine,  using an example that accesses an
incoming string: 

GetString Proc      ;one parameter, not shown

 Mov  BX,SP         ;address the stack manually using BX      
 Mov  BX,[BX+04]    ;get the address for the string
 Mov  CX,[BX]       ;get the length of the string
 Jcxz Exit          ;quit if the string is null
 Mov  BX,[BX+02]    ;get address of first character

Exit:
 Retf 2             ;specify far return with 2 bytes

GetString Endp
End

Because BP has not been pushed onto the stack, the incoming string descriptor address is at [BX+4]
rather than [BX+6]. Other than that, the remainder of the routine proceeds as usual.

Byte Savers

Another useful trick lets you save a byte when adding two to a variable. As you know, Inc and Dec
when used with a register are always better than Add and Sub, because they are one-byte instructions.
Therefore, two Inc or Dec commands in a row are still better than  Add AX,2 which requires three
bytes. However, you must never do this with SP. The stack pointer must always hold an even number,
and it is possible that an interrupt could come along after the first Inc or Dec, but before the second has
executed. Which brings up a related byte saver.

If you need only a single word of local stack storage, don't use Sub SP,2 to allocate the space and
Add SP,2 later to clear it. Instead, simply use Push AX, or Push with any other register. Likewise,
just before returning to BASIC, pop any register that doesn't return information, such as CX or BX.

Rep Always Clears CX

Another trick you can take advantage of is that CX is often zero after a repeating string command that
uses Rep. Zero is a common value in assembly language programming, and you can usually save a byte
by using a register instead of a constant zero. In particular, if you are copying a file name to a buffer
and adding a CHR$(0) to the end, you can use code like this:

...                  ;set up DS:SI and ES:DI here
Mov  CX,NumBytes
Rep  Movsb
Mov  [DI],CL         ;tack a zero byte onto the end
...
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This trick is made even more valuable by the fact that DI is left pointing at the byte just past the data
that was just copied. Of course, CX is not necessarily zero after Repe or Repne, because those forms of
Rep can terminate before CX is exhausted.

Use AX Where Possible

Another little-known fact is that memory operations that use AX are one byte smaller than equivalent
operations on any other register. That is,  Mov BX,KeyCode results in four bytes of code, whereas
Mov AX,KeyCode creates only three. I often use the DOS DEBUG program for quick tests, just to
see which sequence of instructions results  in less code.  Since DEBUG does not let  you specify a
variable name, use [100] or any other address instead:

-a 100
-####:0100 Mov AX,[100]
-####:0103 Mov BX,[100]
-####:0107 <press Enter to stop assembling>
-u 100,106
####:0100 A10001      MOV   AX,[0100]
####:0103 8B1E0001    MOV   BX,[0100]
-q

This sample session tells DEBUG to begin assembling at address 100 (the default for .COM files), and
then assemble the two instructions shown. When you are done press Enter at the dash prompt, and then
unassemble the results and quit. As you can see, using AX creates one less byte of code. 

Multiplying and Dividing By a Power of 2

Because of the way binary numbers are organized, shifting the bits left or right can provide a very fast
way to multiply or divide by a power of two. And because the bit shifting commands can be used with
all but the segment registers, this can also save you from having to copy the data to AX or DX:AX first.
To divide a register by two simply shift the bits right one position:

Shr CX,1

And to multiply by two shift them left:

Shl SI,1

If you need to multiply or divide by four, eight, sixteen, and so forth, the shift count must first be
placed into the CL register: 

Mov CL,5       ;prepare to divide BP by 32
Shr BP,CL

On 80186 and later processors you can specify a shift count directly. Unfortunately, this doesn't work
with an 8088, so CL must be used. Still, multiplying and dividing are extremely slow instructions on an
8088, so the added setup will be more than offset if speed is the primary factor. 
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Low Memory is at Segment Zero

Another useful byte saver is to treat the BIOS data area in low memory as being at segment zero,
instead of the more commonly used segment 40h. By convention, the BIOS data area is said to reside at
segment  40h,  even  though  a  number  of  segment/address  pairs  can  be  used  to  access  that  data.  I
mentioned this briefly in Chapter 11, in the discussions about using BASIC's CALL Interrupt. Since
Xor or Sub can be used to clear a register to zero with one byte less code than assigning it a value of
40, I use this technique frequently:

This example generates 9 bytes:

Xor  AX,AX
Mov  DS,AX
Test Byte Ptr [417h],8  ;see if the Alt key is depressed 

And this example creates 10 bytes:

Mov  AX,40h
Mov  DS,AX
Test Byte Ptr [17h],8

Scanning An ASCIIZ String

Because ASCIIZ strings are used in programs that access DOS services, searching those strings to find
the end is a common operation. For example, the GetNames function does this to determine the length
of each file name before assigning it to elements in the incoming string array. In that routine CX is
assigned to 13, which is the maximum length a file name can be. Since CX is decremented for each
character that is examined, the length is calculated by subtracting CX from 13, which requires an extra
register.

As long as you are certain that a zero byte is present, you can use a clever trick to determine directly
the number of bytes that were searched. Instead of loading CX with the maximum number of bytes to
scan, assign it to  -1. As each character is searched CX is decremented, which results in a negative
version of the number of bytes. Then the NOT instruction can be used to revert  that to a positive
number:

Mov  ES,Segment     ;point ES:DI to the start of the data    
Mov  DI,Address
Cld                 ;ensure that scanning is forward
Mov  CX,-1          ;set CX to -1
Mov  AL,0           ;search for a zero byte

Repne Scasb         ;scan the string
Not  CX             ;convert to a positive number
Dec  CX             ;don't include the zero byte itself
Mov  AX,CX          ;now AX holds the length of the string 
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As you learned in Chapter 2, BASIC's NOT instruction flips all of the bits, converting ones to zeros and
vice versa. The assembly language version works the same way, and can be used with registers or
memory locations. 

Cycle Savers

Besides savings bytes when possible, most assembly language programmers also like to save clock
cycles.  Every  assembler  instruction  requires  a  certain  amount  of  CPU  timing  cycles  to  execute,
although there are other factors that also affect the actual throughput of a given piece of code. But
instructions with the fewest number of clock cycles as published by Intel are always faster than those
that require more cycles. 

Move and Store Words Instead of Bytes

One very effective speed enhancement is to copy and store words when possible, instead of bytes. On
80286 and later processors, words are moved and stored as quickly as bytes. Therefore, moving 50
words is much faster than moving 100 bytes. If you know ahead of time how many bytes are going to
be processed and that the number is even, you can simply load CX with half the value, and use Rep
Movsw or Rep Stosw instead of Rep Movsb or Rep Stosb. This trick can be used even if the program
runs on an 8088, but the speedup only occurs with 80286 and later CPUs.  With only a little added code
you can also use this technique to determine at runtime if an odd byte needs to be processed. Here's one
way to do that: 

Shr  CX,1     ;divide CX by 2
Rep  Movsw    ;copy the words
Jnc  Done     ;the Carry Flag is clear
Movsb         ;copy the odd byte
Done:
.             ;program continues
.

First, CX is divided by 2, and the odd bit, if there was one, is stored by the CPU in the Carry Flag.
Then the data words are copied to their destination. Finally, the Carry flag is tested and the program
either copies a single additional byte or skips over that command. 

A Jump Not Taken is Faster Than One That is

And this brings us to yet another cycle saver. In some cases the Jnc will be executed, and in others it
will not. And in most programs, the chances of either happening are about fifty-fifty. But if you know
ahead of time that a particular action will happen less often than another, you can take advantage of
another 8088 fact: A jump not taken is always faster than one that is taken.

Each time the 8088 jumps to a new location or calls a procedure, it discards its pre-fetch queue. The
pre-fetch queue is a small area of memory on the CPU itself that holds the next few instructions to be
executed. In many cases, the 8088 can do several things at once. So while it is adding or subtracting
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numbers, it simultaneously fetches instruction bytes from your code, in anticipation of what it will do
next. This lets the CPU act on the subsequent instructions very quickly, because they are already in its
own local on-chip memory. Just as data in registers can be accessed faster than data that must be read
from memory, so too can instructions that are already in the CPU.

But when execution branches to a new location, any bytes present in the pre-fetch queue are obsolete.
Therefore, the 8088 must read the new bytes at the new location, which takes additional time. If you
have a routine that makes a test repeatedly within a loop you should change the logic as necessary, to
branch on the less likely situation. That is, instead of Jne you might use Je, or vice versa.

Miscellaneous Techniques

One very powerful technique you will surely find useful is self-modifying code. As its name implies,
self-modifying code actually writes new instructions into its own code segment, and this is useful in a
variety  of  situations.  For  example,  if  you are  writing  a  routine  that  accepts  a  variable  number  of
parameters this lets you patch the Ret instruction to be Ret 2, Ret 4, and so forth.

One warning, however, is related to the pre-fetch queue. If a byte or word has already been read into
the CPU, changing it in the code segment has no effect. Worse, there is no way to know for certain
which bytes will have already been read, because the size of the pre-fetch queue has grown with each
new CPU from Intel. For example, only four bytes are allocated for a pre-fetch queue on an 8088, but
the 80386 uses 16 bytes.

In general, if the code you are patching is located at least a few dozen bytes farther in the program, you
should be safe. Such self-modifying code was used in the SORT.ASM routine shown in Chapter 8, to
let the same code sort either forward or backward. There, the bytes that represent Jae and Jbe were
assigned to AL and AH, and the code was patched based on the incoming sort direction. Since the
patching takes place a hundred or so bytes earlier in the program, it is unlikely that this routine will fail
with future processors.

Static-Free CGA Text Display

The final technique you will find useful is writing to CGA text mode video memory without creating a
disturbance. When IBM designed the original CGA adapter they skimped on the design, using circuitry
that shares a single address line for both the 8088 CPU and the video hardware that updates the screen.
Even when a program is not reading from or writing to display memory, that memory is still  read
periodically by the display adapter and sent to the monitor. Therefore, accessing that memory directly
from an assembly language routine creates a disturbing burst of static that is visible on the monitor.
This is caused by the conflict of the CPU and the video adapter accessing the same video memory
addresses at the same time.

Newer CGA adapters employ a dual-port design that arbitrates simultaneous read and write requests,
thereby eliminating this problem. And, of course, EGA and VGA adapters are much more sophisticated
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than the CGA, and fortunately also more common these days. However,  you can avoid the screen
disturbance on older CGA adapters by synchronizing your reading and writing with the horizontal
retrace timing.

As you undoubtedly know, the image on a CRT is drawn by scanning a single dot horizontally across
each successive row. This happens so quickly that the eye perceives the moving dot as an entire image.
After each row is drawn, the dot is turned off, quickly placed at the start of the next row below, and
then turned on again. By writing to the screen only while the dot is turned off you can hide the memory
conflicts that cause static.

The short code fragment below shows how to synchronize video writing with the CGA's horizontal
retrace.  In  a  windowing  routine  that  also  needs  to  read  video  memory,  you  would  use  the  same
technique just before each byte or word is read.

.

.
Mov  SI,Descriptor  ;get the incoming descriptor address
Mov  CX,[SI]        ;the string's length goes in CX
Mov  SI,[SI+2]      ;and the address of the data in SI

Mov  AX,&HB800      ;load ES with the CGA video segment    
Mov  ES,AX          ;through AX
Xor  DI,DI          ;point DI to the upper left corner

Mov  AH,Color       ;load color parameter (passed BYVAL)
Jcxz Done           ;don't try to print a null string!

No_Retrace:
  In   AL,DX          ;get the video status byte
  Test AL,1           ;test the horizontal retrace bit
  Jnz  No_Retrace     ;if doing retrace, wait until done
  Cli                 ;disable interrupts until we're done 
Retrace:
  In   AL,DX          ;get the status byte again
  Test AL,1           ;are we currently doing a retrace?
  Jz   Retrace        ;no, wait until we are
  Lodsb               ;load the current character
  Stosw               ;store the character and attribute

  Sti                 ;re-enable interrupts
  Loop No_Retrace     ;loop until the string is printed

Done:
.                  ;program continues or exits here
.

The current horizontal retrace status can be read using the In instruction, and then masking off all but
the lowest bit. To protect against the case where the print loop is entered just as the retrace is about to
end, this routine waits until a new period has just begun. This is not unlike the empty loop used in the
benchmark examples in Chapter 9, that waited for a new system clock cycle to begin.

Summary
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In this final chapter you have learned what assembly language programming is all about, and how it
can help you as a BASIC programmer. There is no doubt that using assembly language is more tedious
than BASIC, but the overall methods and code structures are similar.

You learned  about  the  8088's  registers,  and  why  operations  that  use  them are  faster  than  similar
operations on memory variables. The string instructions are particularly useful, because they are very
small and do several things at once. Coupled with the Rep prefix these commands can replace many
separate Mov and Inc and Cmp statements. You also learned how to perform simple calculations in
assembly language, and an example showed how to translate simple BASIC integer and floating point
expressions.

This chapter explained how the stack operates,  and how procedures are designed to accept passed
parameters. The new simplified directives introduced with MASM 5.1 eliminate the need to define
segments and figure parameter stack displacements in your routines. This chapter also explained how to
call DOS and BIOS interrupts from assembly language.

You learned how to access every kind of data a BASIC program can pass to a routine, including near
and far strings, integers, and even floating point values. The section that described arrays showed how
to access both near and far data, and even huge arrays that span multiple segments.

Besides conventional called procedures, you also learned how to create functions that can return any
type of data. Several innovative techniques were presented, including a method for creating a single
procedure that can work with both near and far strings, and even with different versions of the BASIC
compiler. Equally innovative are the methods that show how to write floating point instructions and tie
them into BASIC's software emulator. And if you are not certain how to code a particular floating point
instruction, you can create a short BASIC program and then examine its code using CodeView.

This chapter explained many of MASM's features, such as initialized data, conditional assembly, and
defining structures and macros. In particular, macros can greatly simplify coding redundant instructions
and  data  definitions.  Furthermore,  MASM can calculate  data  addresses  and lengths  automatically,
reducing your work when the data must be changed later on.

Because so many different data items all compete for the same 64K near memory segment, it is often
desirable to store working variables on the system stack. Likewise, when large amounts of data are
involved,  variables  and  tables  can  be  stored  in  the  code  segment.  Both  of  these  techniques  were
described in depth, and accompanying examples showed how to do this in context.

Several of BASIC's most useful internal variables and procedures were described, showing their public
names and parameter requirements. The GetNames function brought all of this information together,
showing how to read an array descriptor, redimension a string array, and assign individual elements—
all using code that works identically with both near and far strings.
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You also learned how to write an interrupt handler that can be installed and uninstalled from within a
BASIC program. The example showed how to take over the keyboard interrupt; however, the same
technique can be applied to nearly any other hardware or software interrupt as well.

Finally, this chapter described many useful tricks and techniques that help to reduce the size of your
assembly language routines, and also make them faster. Many operations that use the AX register result
in less code than the same operations using other registers. And when moving or storing contiguous
data,  accessing  the  data  as  words  instead  of  bytes  can  sometimes  yield  a  nearly  two-fold  speed
improvement. When in doubt about which of several sequences of code is smaller, you can use the
DOS DEBUG utility to quickly determine that.
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Appendix

Overview of the Accompanying Files

BTU.ZIP contains all of the example code, BASIC programs, and assembly language source files used
in this book. The example BASIC files have names like CHAPn-n.BAS, where the first part of the
name indicates which chapter the example was used in, and the second part is the listing number within
that chapter. The remaining BASIC files use more descriptive names, and those are the ones you're
most likely to actually use and add to your own programs. Likewise, the shorter assembly language
examples  from Chapter  12 are in files named CHAP12-n.ASM, but  source code for the complete
routines are in files having names based on the actual routine names.

The library files named BASIC.* are meant for use with QuickBASIC version 4.0 or later, and the files
named BASIC7.* are for use with BASIC PDS and VB/DOS. Files with a .QLB extension are Quick
Libraries that you load along with QB.EXE or QBX.EXE or VBDOS.EXE, depending on your version
of BASIC. The .LIB files are intended for use with LINK, when you create executable programs. There
are also a few .BI (BASIC Include) and .MAK (Make) files used to support some of the programs. I did
not  bother to  include separate  .OBJ files  for the assembly language routines,  since you can easily
extract them from BASIC.LIB or BASIC7.LIB if you need them. 

Starting BASIC

To start QuickBASIC and load the BASIC.QLB library, enter this from the DOS command line:

qb [program] /l basic.qlb /ah

If you specify the optional BASIC source program name, that is loaded into the QuickBASIC editor
along with the BASIC.QLB library. The /ah switch tells QuickBASIC to allow huge (greater than 64K)
arrays, which is needed for some of the demonstration programs.

If you are using BASIC PDS, start QBX as follows:

qbx [program] /l basic7.qlb /ah /es

The /es switch is needed for the EMS.BAS demonstration, and it tells QBX to cooperate with your use
of Expanded memory. When /es is omitted, QBX assumes no other programs are using EMS, which
lets it access that memory slightly faster. Since EMS.BAS stores its sample data in Expanded memory,
this option is needed to avoid corrupting EMS memory. Even if you do not plan to run EMS.BAS,
using /es is harmless.
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If you have VB/DOS you should start it like this:

vbdos [program] /l basicvbd.qlb /ah /es

Once the appropriate Quick Library has been loaded, you may use the File Open menu sequence to
load the BASIC programs. Note that with VB/DOS, the Open menu defaults to a .MAK extension, so
you'll have to enter *.BAS or type the complete name of a BASIC program source file.

Some of the example programs use BASIC's CALL Interrupt command, and to run those you will have
to quit the BASIC editor, and restart it loading the default Quick Library that comes with your version
of BASIC. You do not need to specify a Quick Library name when loading the default library; using
only the /l switch is sufficient.

Linking

When you compile and link programs manually from the DOS prompt and you want to use the .LIB
libraries supplied with this book, you must specify the library name manually on the LINK command
line:

link program [/options] , , nul, basic[7] ;

The BASIC7 library works  with both BASIC PDS and also VB/DOS, so it  was  not  necessary to
provide a separate BASICVBD.LIB file. You can also compile and link from within the QuickBASIC
or QBX editors using the menu options. When a Quick Library is loaded, the BASIC editor uses the
same first name for the LINK library when it shells to run BC and LINK. For example, if you started
QBX like this:

qbx /l basic7.qlb

QBX  tells  LINK  to  use  a  parallel  .LIB  library  named  BASIC7.LIB.  But  since  there  is  no
BASICVBD.LIB file  you must  compile  and link manually when using VB/DOS. If  you don't  use
BASIC PDS you can optionally rename BASIC7.LIB to be BASICVBD.LIB. Then when you start VB/
DOS as shown above it can specify the correct library name when it shells to LINK.

The BASIC editor limits you to using either the Quick Library from this book or BASIC's version that
contains CALL Interrupt—you cannot load two Quick Libraries at one time. However, you can link
with  more  than  one  library  when  creating  an  executable  program manually.  This  example  is  for
QuickBASIC, and you would substitute QBX.LIB and BASIC7.LIB with PDS, or VBDOS.LIB and
BASIC7.LIB when using VB/DOS:

bc program [/o] ;
link [/options] program [other modules], , nul, qb.lib basic.lib ;
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